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Abstract: In network communications, mixes provide protection against observers hiding
the appearance of messages, patterns, length and links between senders and receivers.
Statistical disclosure attacks aim to reveal the identity of senders and receivers in a
communication network setting when it is protected by standard techniques based on mixes.
This work aims to develop a global statistical disclosure attack to detect relationships
between users. The only information used by the attacker is the number of messages sent
and received by each user for each round, the batch of messages grouped by the anonymity
system. A new modeling framework based on contingency tables is used. The assumptions
are more flexible than those used in the literature, allowing to apply the method to multiple
situations automatically, such as email data or social networks data. A classification scheme
based on combinatoric solutions of the space of rounds retrieved is developed. Solutions
about relationships between users are provided for all pairs of users simultaneously, since
the dependence of the data retrieved needs to be addressed in a global sense.
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1. Introduction

When information is transmitted through the Internet, it is typically encrypted in order to prevent
others from being able to view it. The encryption can be successful, meaning that the keys cannot be
easily guessed within a very long period of time. Even if the data themselves are hidden, other types
of information may be vulnerable. In the e-mail framework, anonymity concerns the senders “identity,
receivers” identity, the links between senders and receivers, the protocols used, the size of data sent,
timings, etc. Since [1] presented the basic ideas of the anonymous communications systems, researchers
have developed many mix-based and other anonymity systems for different applications, and attacks on
these systems have also been developed. Our work aims to develop a global statistical attack to disclose
relationships between users in a network based on a single mix anonymity system.

2. Introducing Anonymous Communications

The infrastructure of the Internet was initially planned and developed to be an anonymous channel,
but nowadays, it is well known that anybody can spy on it with different non-robust tools, like, for
example, using sniffers and spoofing techniques. Since the Internet’s proliferation and the use of some
services associated with it, such as web searchers, social networks, webmail and others, privacy has
become a very important research area, not just for security IT experts or enterprises. Connectivity and
the enormous flow of information available on the Internet are a very powerful tool to provide knowledge
and to implement security measures to protect systems.

Anonymity is a legitimate means in many applications, such as web browsing, e-vote, e-bank,
e-commerce and others. Popular anonymity systems are used by hundreds of thousands people, such
as journalists, whistle blowers, dissidents and others. It is well known that encryption does not guarantee
the anonymity required for all participants. Attackers can identify traffic patterns to deduce who, when
and how often users are in communication. The communication layer is exposed to traffic analysis, so it
is necessary to anonymize it, as well as the application layer that supports anonymous cash, anonymous
credentials and elections.

Anonymity systems provide mechanisms to enhance user privacy and to protect computer systems.
Research in this area focuses on developing, analyzing and executing anonymous communication
networks attacks.

Two categories for anonymous communication systems are commented on below: high latency
systems and low latency systems. Both systems are based on Chaum’s proposal [1] that introduced
the concept of mixing.

• High latency anonymity systems aim to provide a strong level of anonymity and are oriented to
limited activity systems that do not demand quick responses, such as email systems. These systems
are message-oriented systems.
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• Low latency anonymity systems can be used for interactive traffic, for example web applications,
instant messaging and others. These systems are connection-based systems and are used to defend
from a partial attacker who can compromise or observe just a part of the system. According to
its nature, these systems are more susceptible to timing attacks and traffic analysis attacks. The
majority of these systems depend on onion routing [2] for anonymous communication.

In low latency communication systems, an attacker only needs to observe the flow of the data stream
to link sender and receptor users. Traditionally, in order to prevent this attack, dummy packets are added
and delays incorporated into stream data to make the traffic between users uniform. The previously
mentioned scenario can be useful for passive attackers that do not insert timing partners into the traffic
to compromise anonymity. An active attacker can control routers of the network. Timing attacks are one
of the main challenges in low latency anonymous communication systems. These attacks are closely
related to traffic analysis in mix networks.

Traffic analysis techniques belong to the family of methods to infer information from the patterns in
a communication system. Even when communication content has been ciphered, information routing
needs to be sent clearly for routers to know the next package’s destination in the network. Every data
packet traveling on the Internet contains the node addresses of sending and recipient nodes. Therefore,
it is well understood that, actually, no packet can be anonymous at this level.

2.1. Mixes and the Mix Network Model

Mixes are considered the base for building high latency anonymous communication systems. In
network communications, mixes provide protection against observers hiding the appearance of messages,
patterns, length and links between senders and receivers. Chaum [1] introduced also the concept of
anonymous email. Their model suggested hiding the correspondence between senders and receivers
encrypting messages and reordering them through a path of mixes before relaying them to their
destinations. The set of the most likely receivers is calculated for each message in the sequence, and
intersection of sets will make it possible to know who the receiver of the stream is.

A mix networks aims to hide the correspondences between the items in its input and those in its
output, changing the incoming packets appearance through cryptographic operations (see Figure 1). The
anonymity set is the set of all possible entities who might execute an action. The initial process in order
for Alice send a message to Bob using a mix system is to prepare the message. The first phase is to
choose the message transmission path; it has a specific order for iteratively sending messages before
arriving at its final destination. It is recommended to use more than one mix in every path for improving
system security. The next phase is to utilize the public keys of the chosen mixes for encrypting the
message in the inverse order that they were chosen. Therefore, the public key of the last mix initially
encrypts the message, then the next one before the last one, and finally, the public key of the first mix will
be used. Every time a message is encrypted, a layer is built, and the next node address is included. This
way, when the first mix gets a message prepared, this will be decrypted with its correspondent private
key and will get the next node address.
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An observer or an active attacker should not be able to find the link between the bit pattern of encoded
messages arriving at the mix and decoded messages departing from it. Appending a block of random
bits at the end of the message has the purpose of making messages uniform in size.

Figure 1. Mix network model.

2.2. ISDN-Mixes

The first proposal for the practical application of mixes [3] showed the way a mix-net could be used
with ISDN lines to anonymize a telephone user’s real location. The origin of this method took into
account the fact that mixes in their original form imply a significant data expansion and significant
delays, and therefore, it was often considered infeasible to apply them to services with higher bandwidth
and real-time requirements. The protocol tries to defeat these problems.

2.3. Remailers

The first Internet anonymous remailer was developed in Finland and was very simple to use. A user
added an extra header to the e-mail pointing out its final destination: an email address or a Usenet
newsgroup. A server receives messages with embedded instructions about where to send them next
without revealing their origin. All standard-based email messages include the source and transmitting
entities at the headers. The full headers are usually eliminated. The application replaces the original
email’s source address with the remailer’s address.

Babel [4], Mixmaster [5] and Mixminion [6] are some others anonymous communication designs.
The differences between systems will not be addressed in our work. We centered only on senders and
receivers active in a period of time, and we do not take into account message reordering, because this
does not affect our attack. Onion routing [2] is another design used to provide low latency connection for
web browsing and other interactive services. It is important to specify that our method does not address
this kind of design; they can be treated by short-term timing or packet counting attacks [7].
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3. The Family of Mix Systems Attacks

The attacks against mix systems are intersection attacks and aim to reduce the anonymity by linking
senders with the messages that they send, receivers with the messages that they receive or linking
senders with receivers. Attackers can derive relations of frequency through observation of the network,
compromising mixes or keys, delaying or altering messages. They can deduce the messages’ most
probable destinations through the use of false messages sent to the network and using this technique to
isolate target messages and to derive their properties. Traffic analysis belongs to a family of techniques
used to deduce pattern information in a communication system. It has been proven that cipher by itself
does not guarantee anonymity. See [8] for a review of traffic analysis attacks.

3.1. The Disclosure Attack

In [9], Agrawal and Kesdogan presented the disclosure attack, an attack centered on a single batch
mix, aiming to retrieve information from a particular sender, called Alice. The attack is global, in the
sense that it retrieves information about the number of messages sent by Alice and received by other
users, and passive, in the sense that attackers cannot alter the network, for example, by sending false
messages or delaying existent messages.

It is assumed that Alice has exactly m recipients and that Alice sends messages with some probability
distribution to each of her recipients; also that she sends exactly one message in each batch of b messages.
The attack is modeled considering a bipartite graph G. Through numerical algorithms, disjoint sets of
recipients would be identified to reach, through intersection, the identification of Alice recipients. The
authors use several strategies in order to estimate the average number of observations for achieving the
disclosure attack. The assumptions are: (i) Alice participates in all batches; and (ii) only one of Alice’s
peer partners is in the recipient set of all batches. This attack is computationally expensive, because
it takes an exponential time analyzing the number of messages to identify a mutually disjoint set of
recipients. The main bottleneck for the attacker derives from an NP-complete problem when it is applied
to big networks. The authors claim the method performs well on very small networks.

3.2. Statistical Disclosure Attacks

In [10], Danezis presents the statistical disclosure attack, maintaining some of the assumptions
made in [9]. In the statistical disclosure attack, recipients are ordered in terms of probability. Alice
must demonstrate consistent behavior patterns in the long term to obtain good results. The Statistical
Disclosure Attack (SDA) requires less computational effort by the attacker and gets the same results.
The method tries to reveal the most likely set of Alice’s friends using statistical operations and
approximations.

Statistical disclosure attacks when threshold mixing or pool mixing are used are treated also in [11],
maintaining the assumptions of precedent articles, that is, focusing on one user, Alice, and supposing
that the number of recipients of Alice is known. Besides, the threshold parameter B is also supposed to
be known. One of the main characteristics of intersection attacks counts on a fairly consistent sending
pattern or a specific behavior of anonymous network users.
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Mathewson and Dingledine in [12] make an extension of the original SDA. One of the more significant
differences is that they regard real social networks to have scale-free network behavior and also consider
that such behavior changes slowly over time. The results show that increasing message variability makes
the attack slow by increasing the number of output messages; assuming all senders choose with the same
probability all mixes as entry and exit points and the attacker is a partial observer of the mixes.

Two-sided statistical disclosure attacks [13] use the possibilities of replies between users to make the
attack stronger. This attack assumes a more realistic scenario, taking into account the user behavior on
an email system. Its aim is to estimate the distribution of contacts of Alice and to deduce the receivers
of all of the messages sent by her. The model considers N as the number of users in the system that send
and receive messages. Each user n has a probability distribution Dn of sending a message to other users.
At first, the target, Alice, is the only user that will be modeled as replying to messages with a probability
r. An inconvenient detail for applications on real data is the assumption that all users have the same
number of friends and send messages with uniform probability.

Perfect matching disclosure attacks [14] try to use simultaneous information about all users to obtain
better results related to the disclosing of the Alice set of recipients. This attack is based on graph theory,
and it does not consider the possibility that users send messages with different frequencies. An extension
proposal considers a normalized SDA.

Danezis and Troncoso [15] present a new modeling approach, called Vida, for anonymous
communication systems. These are modeled probabilistically, and Bayesian inference is applied to
extract patterns of communications and user profiles. The authors developed a model to represent
long-term attacks against anonymity systems. Assume each user has a sending profile, sampled when
a message is to be sent to determine the most likely receiver. Their proposal includes: (1) the Vida
black-box model representing long-term attacks against any anonymity systems. Bayesian techniques are
used to select the candidate sender of each message: the sender with the highest a posteriori probability
is chosen as the best candidate. The evaluation includes a very specific scenario considering the same
number of senders and receivers. Each sender is assigned to five contacts randomly, and everyone sends
messages with the same probability.

In [16], a new method to improve the statistical disclosure attack, called the hitting set attack,
is introduced. Frequency analysis is used to enhance the applicability of the attack, and duality
checking algorithms are also used to resolve the problem of improving the space of solutions.
Mallesh and Wright [17] introduces the reverse statistical disclosure attack. This attack uses observations
of all users sending patterns to estimate both the targeted user’s sending pattern and her receiving pattern.
The estimated patterns are combined to find a set of the targeted user’s most likely contacts.

In [18], an extension to the statistical disclosure attack, called SDA-2H, is presented, considering the
situation where cover traffic, in the form of fake or dummy messages, is employed as a defense.

Perez-Gonzalez et al. [19] presents a least squares approximation to the SDA, to recover users’
profiles in the context of pool mixes. The attack estimates the communication user partners in a mix
network. The aim is to estimate the probability of Alice sending a message to Bob; this will derive
sender and receiver profiles applicable for all users. The assumptions are: the probability of sending a
message from a user to a specific receiver is independent of previous messages; the behavior of all users
are independent from one other; any incoming message in the mix is considered a priori sent by any
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user with a uniform probability; and the parameters used to model the statistical behavior do not change
over time.

In [20], a timed binomial pool mix is used, and two privacy criteria to develop dummy traffic strategies
are taken into account: (i) increasing the estimation error for all relationships by a constant factor; and
(ii) guaranteeing a minimum estimation error for any relationship. The model consists of a set of N
senders exchanging messages with a set of M receivers. To simulate the system, consider the same
number of senders and receivers and assume users send messages with the same probability. Other work
also based on dummy or cover traffic is presented in [21]. This assumes users are not permanently online
so, so they cannot send cover traffic uniformly. They introduce a method to reveal Alice’s contacts with
high probability, addressing two techniques: sending dummy traffic and increasing random delays for
messages in the system.

Each one of the previous works has assumed very specific scenarios, but none of them solves
the problems that are presented by real-world data. In order to develop an effective attack, the
special properties of network human communications must be taken into account. Researchers have
hypothesized that some of these attacks can be extremely effective in many real-world contexts.
Nevertheless, it is still an open problem under which circumstances and for how long of an observation
these attacks would be successful.

4. Framework and Assumptions

This work addresses the problem of retrieving information about relationships or communications
between users in a network system, where partial information is obtained. The information used is the
number of messages sent and received by each user. This information is obtained in rounds that can be
determined by equally-sized batches of messages, in the context of a threshold mix, or alternatively by
equal length intervals of time, in the case that the mix method consists of keeping all of the messages
retrieved at each time interval and then relaying them to their receivers, randomly reordered.

The basic framework and assumptions needed to develop our method are the following:

• The attacker knows the number of messages sent and received by each user in each round.
• The round can be determined by the system (batches) in a threshold mix context or can be based

on regular intervals of time, where the attacker gets the aggregated information about messages
sent and received, in the case of a timed mix, where all messages are reordered and sent each
period of time.
• The method is restricted, at this moment, to threshold mixing with a fixed batch size or,

alternatively, to a timed mix, where all messages received in a fixed time period are relayed
randomly, reordered with respect to their receivers.
• No restriction is made from before about the number of friends any user has nor about the

distribution of messages sent. Both are considered unknown.
• The attacker controls all users in the system. In our real data application, we aim at all email users

of a domain sent and received within this domain.

The method introduced in this work allows one to address these general settings in order to derive
conclusions about the relationships between users. Contrary to other methods in the literature, there are
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no restrictions about user relationships (number of friends, distribution of messages), and therefore, it
can be used in a wider context. Furthermore, our proposition is new in the methodological sense: this is
a novel approach to the problem, by means of contingency table setting and the extraction of solutions
by sampling.

In an email context, this attack can be used if the attacker has access, at regular time intervals, to the
information represented by the number of messages received and the number of messages sent for each
user, in a closed domain or intranet, where all users are controlled. This situation can also be extended to
mobile communications or social networks and could be used, for example, in the framework of police
communication investigations.

5. Marginal Information and Feasible Tables

The attacker obtains, in each round, information about how many messages each user sends and
receives. Usually, the sender and receiver set is not the same, even if some users are senders and also
receivers in some rounds. Furthermore, the total number of users of the system N is not present in each
round, since only a fraction of them are sending or receiving messages. Figure 2 represents a round with
only six users.

Figure 2. Graphical representation of one round.

The information of this round can be represented in a contingency table (see Table 1), where the
element (i, j) represents the number of messages sent from user i to user j:
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Table 1. Example of a contingency table.

Senders\Receivers U1 U6 U7 Total Sent

U1 0 2 1 3
U3 1 0 1 2
U5 0 2 0 2

Total received 1 4 2 7

The attacker only sees the information present in the aggregated marginals, which means, in rows, the
number of messages sent by each user, and in columns, the number of messages received by each user.
In our example, only the sending pairs of vectors (U1 U3 U5) (3 2 2) and receiver pairs of vectors (U1
U6 U7) (1 4 2) are known.

There are many possible tables that can lead to the table with the given marginals that the attacker is
seeing, making it impossible, in most cases, to derive direct conclusions about relationships. The feasible
space of the tables’ solution of the integer programming problem can be very large. In the example, there
are only 16 possible different solutions and only one true solution.

Solutions (feasible tables) can be obtained via algorithms, such as the branch and bound algorithm
or other integer programming algorithms. In general they do not guarantee covering evenly all
possible tables/solutions, since they are primarily designed to converge to one solution. The simulation
framework presented in this article allows us to obtain a large quantity of feasible tables (in the most
problematic rounds, it takes approximately three minutes to obtain one million feasible tables). In many
of the rounds with a moderate batch size, all feasible tables are obtained.

An algorithm that takes into account the information contained over all of the rounds retrieved is
developed in the next section.

6. Statistical Disclosure Attack Based on Partial Information

The main objective of the algorithm we propose is to derive relevant information about the relationship
(or not) between each pair of users. The information obtained by the attacker is the marginal sums, by
rows and columns, of each of the rounds 1, ..., T , where T is the total number of rounds. Note that in
each round, the dimension of the table is different, since we do not take into account users that are not
senders (row marginal = 0), nor users that are not receivers (column marginal = 0). We say element (i, j)
is “present” at one round if the i and j corresponding marginals are not zero. That means that user i is
present in this round as the sender and user j is present as the receiver.

A final aggregated matrix A can be built, summing up all of the rounds and obtaining a table with all
messages sent and received from each user for the whole time interval considered for the attack. Each
element (i, j) of this final table would represent the number of messages sent by i to j in total. Although
the information obtained in each round is more precise and relevant (because of the lower dimension
and combinatoric possibilities), an accurate estimate of the final table is the principal objective, because
a zero in elements (i, j) and (j, i) would mean no relationship between these users (no messages sent
from i to j nor from j to i). A positive number in an element of the estimated final table would mean
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that some message is sent in some round, while a zero would mean no messages are sent in any round,
that is, no relationship.

We consider all rounds as independent events. The first step is to obtain the higher number of feasible
tables that is possible for each round, taking into account time restrictions. This will be the basis of our
attack. In order to obtain feasible tables we use Algorithm 1, based on [22]. It consists of filling the table
column by column and computing the new bounds for each element before it is generated.

Algorithm 1
1 Begin with column one, row one:

Generate n11 from an integer uniform distribution in the bounds according to Equation (1), where
i = 1, j = 1.
Let r be the number of rows.

2 For each row element nk1 in this column, if row elements until k−1 have been obtained, new bounds
for nk1 are according to Equation (1):

max(0, (n+1 −
k−1∑
i=1

ni1)−
r∑

i=k+1

ni+) ≤ nk1 ≤ min(nk+, n+1 −
k−1∑
i=1

ni1) (1)

The element nk1 is then generated by an integer uniform in the fixed bounds.
3 The last row element is automatically filled, since the lower and upper bounds coincide, letting
n(k+1)+ = 0 by convenience.

4 Once this first column is filled, the row margins ni+ and total count n are actualized by subtraction
of the already fixed elements, and the rest of the table is treated as a new table with one less column.

The algorithm fixes column by column until the whole table is filled.
The time employed depends on the complexity of the problem (number of elements, mean number

of messages). In our email data, even for a large number of elements, this has not been a problem. For
large table sizes in our applications, it takes approximately 3 min to obtain one million feasible tables in
rounds with 100 cells and 10 on a PC with Intel processor 2.3 GHz and 2 GB RAM.

Repeating the algorithm as it is written for each generated table does not lead to uniform solutions, that
is some tables are more probable than others due to the order used when filling columns and rows. Since
we must consider a priori all solutions for a determined round equally possible, two further modifications
are made: (i) random reordering of rows and columns before a table is generated; and (ii) once all tables
are generated, only distinct tables are kept to make inferences. These two modifications have resulted in
an important improvement of the performance of our attack, lowering the mean misclassification rate to
about a 20% in our simulation framework.

Deciding the number of tables to be generated poses an interesting problem. Computing the number
of distinct feasible tables for a contingency table with fixed marginals is still an open problem that
has been addressed via algebraic methods [23] and by asymptotic approximations [24], but in our our
case, the margin totals are small and depend on the batch size; therefore, it is not guaranteed that
asymptotic approximations hold. The best approximation so far to count the feasible tables is to use
the generated tables.
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Chen et al. [22] show that an estimate of the number of tables can be obtained by averaging over all
of the generated tables the value 1

q(T )
according to the Algorithm 2.

Algorithm 2
1 q(T ) is the probability of obtaining the table T and is computed iteratively, imitating the simulation

process according to Equation (2).
2 q(t1) is the probability of the actual values obtained for Column 1, obtained by multiplying the

uniform probability for each row element in its bounds. q(t2 | t1) and subsequent terms are obtained
in the same way, within the new bounds restricted to the precedent columns fixed values:

q(T ) = q(t1)q(t2 | t1)q(t3 | t1,t2)...q(tc | t1,t2, ..., tc−1) (2)

The number of feasible tables goes from moderate values, such as 100,000, that can be easily
addressed, getting all possible tables via simulation, to very high numbers, such as 1013. Generating
all possible tables for this last example would take, with the computer we are using, a Windows 7 PC
with 2.3 GHz and 4 GB RAM, at least 51 days. The quantity of feasible tables is the main reason
why it is difficult for any deterministic intersection-type attack to work, even with low or moderate user
dimensions. Statistical attacks need to consider the relationships between all users to be efficient, because
the space of solutions for any individual user is dependent on all other users’ marginals. Exact trivial
solutions can be, however, found at some time in the long run, if a large number of rounds are obtained.

In our setting, we try to obtain the largest number of tables that we can, given our time restrictions,
obtaining a previous estimate of the number of feasible tables and fixing the highest number of tables that
can be obtained for the most problematic rounds. However, an important issue is that once a somewhat
large number of tables is obtained, good solutions depend more on the number of rounds treated (time
horizon or total number of batches considered) than on generating more tables. In our simulations,
there is generally a performance plateau in the curve that represents the misclassification rate versus the
number of tables generated, since a sufficiently high number of tables is reached. This minimum number
of tables to be generated depends on the complexity of the application framework.

The final information obtained consists of a fixed number of generated feasible tables for each round.
In order to obtain relevant information about relationships, there is a need to fix the most probable zero
elements. For each element, the sample likelihood function at zero f̂(X | pij = 0) is estimated. This
is done by computing the percent of tables with that element being zero in each round that the element
is present and multiplying the estimated likelihood obtained in all of these rounds (the element will be
zero for the final table if it is zero for all rounds).

If we are estimating the likelihood for the element (i, j) and are generating M tables per round, we
use the following expressions:
n
(i,j)
t = the number of tables with element (i, j) = 0 in round t.
Npresent = the number of rounds with element (i, j) present.
X = the sample data, given by marginal counts for each round.

log(f̂(X | pij = 0)) = −Npresent log(M) +
T∑

t=1,(i,j)present

log(n
(i,j)
t ) (3)
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Final table elements are then ordered by the estimated likelihood at zero, with the exception of
elements that were already trivial zeros (elements that represent pair of users that have never been present
at any round).

Elements with the lowest likelihood are then considered candidates to insert as a “relationship”. The
main objective of the method is to detect accurately:

1 cells that are zero with a high likelihood (no relationship i→ j);
2 cells that are positive with high likelihood (relationship i→ j).

In our settings the likelihood values at pij = 0 are bounded in the interval [0, 1]. Once these elements
are ordered by most likely to be zero to less, a classification method can be derived based on this measure.
A theoretical justification of the consistency of the ordering method is given below.

Proposition 1. Let us consider, a priori, that for any given round k, all feasible tables, given the
marginals, are equiprobable.

Let pij be the probability of element (i, j) being zero at the final matrix A, which is the aggregated
matrix of sent and received messages over all rounds. Then, the product of the proportion of feasible
tables with xij = 0 at each round, Qij leads to an ordering between elements, such that if Qij > Qi′j′;
then, the likelihood of data for pij = 0 is bigger than the likelihood of data for pi′j′ = 0.

Proof. If all feasible tables for round k are equiprobable, the probability of any feasible table is
pk =

1
#[X]k

, where #[X]k is the total number of feasible tables in round k.
For elements with pij = 0, it is necessary that xij = 0 for any feasible table. The likelihood for

pij = 0 is then:

P ([X]k | pij = 0) =
#[X | xij = 0]k

#[X]k

where #[X | xij = 0]k denotes the number of feasible tables with the element xij = 0.

Let k = 1, ..., t independent rounds. The likelihood at pij = 0, considering all rounds, is:

Qij =
t∏

k=1

P ([X]k | pij = 0) =
t∏

k=1

#[X | xij = 0]k
#[X]k

and the log likelihood:

log(Qij) =
t∑

k=1

log(#[X | xij = 0]k)−
t∑

k=1

log(#[X]k)

Then, the proportion of elements with xij = 0 at each round leads to an ordering between elements,
such that if Qij > Qi′j′ , then the likelihood of data for pij = 0 is bigger than the likelihood of data for
pi′j′ = 0.

Our method is not based on all of the table solutions, but on a consistent estimator of Qij. For
simplicity, let us consider a fixed number of M sampled tables at every round.
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Proposition 2. Let [X]1k ,...,[X]Mk be a random sample of size M of the total #[X]k of feasible tables for
round k. Let w(i,j)

k =
#[X|xij=0]Mk

M
be the sample proportion of feasible tables with xij = 0 at round k.

Then, the statistic qij =
t∏

k=1

#[X|xij=0]Mk
M

is such that, for any pair of elements (i, j) and (i′, j′) , qij > qi
′j′

implies, in convergence, a higher likelihood for pij = 0 than for pi′j′ = 0.

Proof. (1) Let #[X]k be the number of feasible tables at round k. Let [X]1k ,...,[X]Mk be a random
sample of size M of the total #[X]k. Random reordering of columns and rows in Algorithm 1, together
with the elimination of equal tables, assures that it is a random sample. Let #[X | xij = 0]Mk be the
number of sample tables with element xij = 0. Then, the proportion w(i,j)

k =
#[X|xij=0]Mk

M
is a consistent

and unbiased estimator of the true proportion W (i,j)
k =

#[X|xij=0]k
#[X]k

. This is a known result from finite

population sampling. As M → #[X]k, w(i,j)
k → W

(i,j)
k .

(2) Let k = 1, ..., t independent rounds. Then, given a sample of proportion estimators w(i,j)
1 , ..., w

(i,j)
t

of W (i,j)
1 , ...,W

(i,j)
t , consider the function

f(w
(i,j)
1 , ..., w

(i,j)
t ) =

t∑
k=1

log(w
(i,j)
k ) and f(W (i,j)

1 , ...,W
(i,j)
t ) =

t∑
k=1

log(W
(i,j)
k ).

Given the almost sure convergence of each w
(i,j)
k to each W

(i,j)
k and the continuity of the

logarithm and sum functions, the continuous mapping theorem assures convergence in probability,
f(w

(i,j)
1 , ..., w

(i,j)
t )

P−→ f(W
(i,j)
1 , ...,W

(i,j)
t ). Then, log(qij) = f(w

(i,j)
1 , ..., w

(i,j)
t ) converges to log(Qij) =

f(W
(i,j)
1 , ...,W

(i,j)
t ). Since the exponential function is continuous and monotonically increasing,

applying the exponential function to both sides leads to the convergence of qij to Qij , so that qij > qi
′j′

implies, in convergence, Qij > Qi′j′ and, then, higher likelihood for pij = 0 than for pi′j′ = 0.

Given all pairs of senders and receivers (i, j) ordered by the statistic qij , it is necessary to select a cut
point in order to complete the classification scheme and to decide whether a pair communicates (pij > 0)
or not (pij = 0). That is, it is needed to establish a value c, such that qij > c implies pij = 0 and qij ≤ c

implies pij > 0.The defined statistic qij is bounded in [0, 1], but this is not strictly a probability, so fixing
a priori a cut-point, such as 0.5, is not an issue. Instead, there are some approaches that can be used:

1. In some contexts (email, social networks), the proportion of pairs of users that communicate is
approximately known . This information can be used to select the cut point from the ordering.
That is, if about 20% of pairs of users are known to communicate, the classifier would give a value
“0” (no communication) to the upper 80% elements (i, j), ordered by the statistic qij , and a value
“1” (communication) to the lower 20% of elements.

2. If the proportion of zeros is unknown, it can be estimated, using the algorithm for obtaining feasible
tables over the known marginals of the matrix A and estimating the proportion of zeros by the mean
proportion of zeros over all of the simulated feasible tables.

7. Performance of the Attack

In this section, simulations are used to study the performance of the attack.
Each element (i, j) of the matrix A can be zero (no communication) or strictly positive. The

percentage of zeroes in this matrix is a parameter, set a priori to observe its influence. In a closed-center
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email communications, this number can be between 70% and 99% . However, intervals from 0.1
(high communication density) to 0.9 (low communication density) are used here for different practical
situations. Once this percentage is set, a randomly chosen percent of elements are set to zero and then
are zero for all of the rounds.

The mean number of messages per round for each positive element (i, j) is also set a priori. This
number is related, in practice, to the batch size that the attacker can obtain. As the batch size (or time
length interval of the attack) decreases, the mean number of messages per round decreases, making the
attack more efficient.

Once the mean number of messages per round is determined for each positive element (λij), a Poisson
distribution with mean λij , P (λij), is used to generate the number of messages for each element, for each
of the rounds.

External factors, given by the context (email, social networks, etc.) that have an effect on the
performance of the method are monitored to observe their influence:

1. The number of users: In a network communication context with N users, there exist N potential
senders and N receivers in total, so that the maximum dimension of the aggregated matrix A is
N2. As the number of users increases, the complexity of round tables and the number of feasible
tables increases, so that it could negatively affect the performance of the attack.

2. The percent of zero elements in the matrix A: These zero elements represent no communication
between users. As will be seen, this influences the performance of the method.

3. The mean frequency of messages per round for positive elements: This is directly related to the
batch size, and when it increases, the performance is supposed to be affected negatively.

4. The number of rounds: As the number of rounds increases, this is supposed to improve the
performance of the attack, since more information is available. One factor related to the settings
of the attack method is also studied.

5. The number of feasible tables generated by round: This affects computing time, and it is necessary
to study to what extent it is useful to obtain too many tables. This number can be variable,
depending on the estimated number of feasible tables for each round .

The algorithm results in a binary classification, where zero in an element (i, j) means no relationship
of sender-receiver from i to j and one means a positive relationship of sender-receiver.

Characteristic measures for binary classification tests include the sensitivity, specificity, positive
predictive value and negative predictive value. Letting TP be true positives, FP false positives, TN
true negatives and FN false negatives:

Sensitivity= TN
TN+FP

measures the capacity of the test to recognize true negatives.
Specificity= TP

TP+FN
measures the capacity of the test to recognize true positives.

Positive predictive value= TP
TP+FP

measures the precision of the test to predict positive values.
Negative predictive value = TN

TN+FN
measures the precision of the test to predict positive values.

Classification rate= TN+TP
TN+TP+FN+FP

measures the percent of elements well classified.

Figures 3 and 4 show the simulation results. When it is not declared, values of p0 = 0.7, λ = 2,
N = 50 users and the number of rounds = 100 are used as base values.
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Figure 3 shows that as the number of cells (N2, where N is the number of users) increases and the
percent of cells that are zero decreases, the number of feasible tables per round increases. For a moderate
number of users, such as 50, the number of feasible tables is already very high, greater than 1020. This
does not have a strong effect on the main results, except for lower values. As can be seen in Figure 4,
once a sufficiently high number of tables per round is generated, increasing this number does not lead to
significant improvement of the correct classification rate.
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Figure 3. Number of feasible tables per round, depending on % of cells of zero and the total
number of cells.
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Figure 4. Classification rate as function of the number of feasible tables generated per round.

Figure 5 shows that the minimum classification rate is attained at a percent of cells of zero (users that
do not communicate) near 0.5. As this percent increases, the true positive rate decreases, and the true
negative rate increases.
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As the attacker gets more information, that is more rounds are retrieved, the classification rate gets
better. Once a high number of rounds is obtained, there is no further significant improvement, as is
shown in Figure 6.
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Figure 5. Classification rate, true positive rate and true negative rate vs. the percent of
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Figure 6. Classification rate vs. the number of rounds obtained.

In Figure 7, it is shown that as the number of messages per round (λ) for users that communicate
increases, the classification rates decrease. This is a consequence of the complexity of the tables involved
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(more feasible tables). This number is directly related to the batch size, so it is convenient for the attacker
to obtain data in small batch sizes and for the defender to group data in large batch sizes, leading to
lower latency.
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Figure 7. Classification rates vs. the mean number of messages per round.

The complexity of the problem is also related to the number of users, as can be seen in Figure 8,
where the classification rate decreases as the number of users increases.
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Figure 8. Classification rate vs. the number of users.
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8. Conclusions

This work presents a method to detect relationships (or non-existent relationships) between users in a
communication framework, when the retrieved information is incomplete. The method can be extended
to other settings, such as pool mixes, or situations where additional information can be used. Parallel
computing has also been successfully used in order to obtain faster results. The method can also be
used for other communication frameworks, such as social networks or peer-to-peer protocols, and for
real de-anonymization problems not belonging to the communications domain, such as disclosing public
statistical tables or forensic research. More research has to be done involving the selection of optimal cut
points, the optimal number of generated tables or further refinements of the final solution, which may be
through the iterative filling of cells and cycling the algorithm.
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