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Abstract: We present a small, compact and portable device for point-of-care instantaneous 

early detection of anemia. The method used is based on direct hematocrit measurement 

from whole blood samples by means of impedance analysis. This device consists of a 

custom electronic instrumentation and a plug-and-play disposable sensor. The designed 

electronics rely on straightforward standards for low power consumption, resulting in a 

robust and low consumption device making it completely mobile with a long battery life. 

Another approach could be powering the system based on other solutions like indoor solar 

cells, or applying energy-harvesting solutions in order to remove the batteries. The sensing 

system is based on a disposable low-cost label-free three gold electrode commercial sensor 

for 50 µL blood samples. The device capability for anemia detection has been validated 

through 24 blood samples, obtained from four hospitalized patients at Hospital Clínic. As a 

result, the response, effectiveness and robustness of the portable point-of-care device to 

detect anemia has been proved with an accuracy error of 2.83% and a mean coefficient of 

variation of 2.57% without any particular case above 5%. 
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1. Introduction 

According to the World Health Organization (WHO), anemia is defined as a condition in which  

the number of red blood cells (RBCs) or their oxygen-carrying capacity is insufficient to meet 

physiological needs [1]. Anemia affects about two billion people, or 30% of the world’s population. 

Pregnant women and children are the most vulnerable segment, and it is considered a worldwide health 

issue affecting both developed and developing countries [2,3]. The highest prevalence is in Africa 

(67.6%) and South-East Asia (65.5%). In the Eastern Mediterranean, the prevalence is 46% and around 

20% in the other WHO regions, the Americas, Europe and Western Pacific [3]. The major health 

consequences in severe cases are pregnancy disorders, poor physical and cognitive development, and 

increased risk of morbidity, while less severe cases provoke weakness, fatigue and dizziness [3,4]. The 

most common cause of anemia is nutritional deficiencies, especially in developing countries due to 

severe malnutrition [5], or diseases like colon cancer or gastrointestinal lesions [6,7]. Other conditions 

causing anemia are inherited hematologic diseases such as sickle cell anemia or thalassemia causing 

hemolytic anemia [8,9], cancer treatments (chemotherapy and radiation) [10], and indirect causes, such 

as lower erythropoietin (EPO) production due to kidney disease [11]. Also, frequent blood donations 

may induce anemia in blood donors, especially females [12].  

Evaluation of hemoglobin (Hb) concentration is the most reliable indicator for anemia detection; 

being a required condition in possible blood donors in most countries of the world, generically the only 

laboratory control test performed before donation [13]. Hematocrit (HTC) screening is also a reliable 

indicator for anemia, which is the proportion of blood volume occupied by RBCs, and is determined 

by cell number and size. HTC numbers below a certain reference range may indicate anemia or 

abnormal cell development [14]. Automated hematology analyzers provide the necessary information 

about HTC and Hb with a high degree of precision by means of a complete blood count (CBC), which 

represents an extremely useful tool for evaluating anemia [4]. However, hematology analyzers are 

huge and expensive devices which need to be operated by skilled technicians using venous blood 

sample, requiring a phlebotomy practiced by a specialist. Access to electricity to power the 

instrumentation is also required [15,16]. These different factors make the access to these devices very 

limited and often incompatible with the constraints of resource-limited settings [15]. Furthermore, 

access to this equipment is an issue in developing countries, where less reliable equipment and 

evaluation techniques are available [17]. These different factors push towards the development of 

point-of-care (PoC) anemia detecting devices that provide an easy to use, reliable and economic test 

for patients, the general public and first aid personnel screening for anemia. Detection of anemia with a 

short response time in a portable PoC device relying on a blood drop (50 µL sample that can be 

capillary collected [18]), provides reduced disposition decision time [19], improving patient 

satisfaction [20], and avoids inducing anemia or making it worse (phlebotomy is reported to induce 

anemia [21]). 
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Electrical impedance has been reported as an accurate solution for cellular detection, quantification 

and monitoring in different environments both in-vivo and ex-vivo [22–26]. Pop et al., [24] presented a 

continuous in-vivo hematocrit monitoring in the human right atrium by venous catheter equipped with 

an impedance-measuring device. On the other hand, Pradhan et al., [25] studied the electrical 

properties of blood and its constituents using Electrochemical Impedance Spectroscopy (EIS). 

Ramaswamy et al., [26] performed a blood coagulation test based on a custom microfluidic device and 

the electrical impedance detection of whole blood samples. Our group has previously studied this 

technique and has used it in the design of a novel anemia detection device [27]. The device presented 

reliable, sensitive and robust hematocrit detection, relying on low-cost straightforward electronic 

equipment and sensing systems. Moreover, the impedance measurement technique provided an actual 

hematocrit instantaneous measurement, with a wide measuring range oscillating from 0% to 100%, 

while other techniques, such as optical photometry, a slower hemoglobin measurement for a 

subsequent hematocrit indirect calculation. Additionally, considering a truly PoC device, the 

impedance measurement technique is a much less complex technique that does not require any optical 

measurement or chemical agent, resulting in a more economic, longer battery life and environmentally 

safe device. 

This work presents an improvement on the previously reported device [27], as a compact, economic 

and portable PoC solution, for instantaneous detection of hematocrit through whole blood samples. 

The previously developed device relied on full spectrum analysis of blood samples by means of a 

Digital Lock-In Amplifier (DLIA) based on a Frequency Response Analyzer (FRA) approach. Full 

spectrum analysis involved a microprocessor for system control and data processing, and further 

electronics for signal conditioning, such as an SPI controlled oscillator AD9833 from Analog Devices 

(Norwood, MA, USA), and a 12-bit dual ADC ADC12D040 from Texas Instruments (Dallas, TX, 

USA) capable of converting simultaneously two analogue input signals at 40 MSPS. Moreover, a  

real-time platform sbRIO9632 from National Instruments (Austin, TX, USA) was used for fast 

software prototype development and versatility. All these electronics were a major drawback in terms 

of power consumption, size and price, when aiming for a specific PoC device. 

The system is composed of an economic and reusable low-cost electronic device and a  

plug-and-play disposable commercial sensor. This sensor is based on three screen-printed electrodes 

for an envisaged sample of 50 µL. In order to validate the instantaneous hematocrit detection system, 

different blood samples, which came from the manipulation and dilution of whole blood samples 

extracted from 4 healthy donors, have been studied. These samples were randomly obtained from 

hospitalized patients of Hospital Clínic located in Barcelona, Spain. 

2. Materials and Methods 

2.1. Hematocrit, Electrodes, Impedance Measurement and Sensing System 

A typical cellular electrical model for dilute cell suspensions can be described as a network of 

electrical passive components, so the biological electrical impedance is the response to applying an 

electrical stimulus to a biological material through a sensing system and measuring its electrical 

response as defined by Ohm’s law [28] (Equation (1)): 
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ܼ஼ா௅௅ = ஼ܸா௅௅ܫ஼ா௅௅  (1)

In this work we have adopted a configuration of three electrodes, which are defined as follows: the 

working electrode (WE), where electrical response of the object under investigation is measured; the 

reference electrode (RE), which tracks the electric signal and the counter or auxiliary electrode (CE), 

which supplies the current required. With this electrode configuration, the problematic behavior of the 

simpler two electrodes topology is avoided [27]. This configuration is defined by the WE, where the 

sample is placed and the electrical signal is applied, and the CE, which tracks the solution potential and 

supplies the current required for experience, creating a polarization effect causing a distortion of the 

applied electrical signal. With this sensing system topology, the electrical stimulus applied is an ac 

voltage (VCELL), while the electrical response is the current flow through the WE electrode (ICELL). 

Hence, electrical properties can be described as a passive electrical components network [29] 

(Figure 1a), so the current related to the electrical stimulus (ICELL) can flow through an external cellular 

path (RE) or across the cell membrane (RM║CM) and go through the intra-cellular medium (RI). Hill 

and Thompson [30] confirmed the close relation between hematocrit and impedance at low frequencies 

(up to 100 kHz), where ICELL flow path is located outside the RBCs across RE impedance. This 

phenomenon implies a correlation of impedance and hematocrit, so that an increment in RBCs makes 

the current flow path larger between the reference and working electrodes, becoming an increment on 

ZCELL impedance due to an increment of RE impedance (Figure 1b). 

 

Figure 1. (a) Red Blood Cell (RBC) electrical model. Three electrodes topology for RBC 

sample; (b) Current flow path through different blood samples with different hematocrit. 

(Reproduced from [27] with kind permission from IEEE Publishers). 

This phenomenon has been studied previously [27], demonstrating the feasibility of the impedance 

measurement technique to perform an easy, fast and sensitive hematocrit detection, evaluated through 

comparison with complete blood count (CBC) by using a clinical hematology analyzer, the Advia 2120 

from Siemens AG (Munich, Germany). This sensing system is a low-cost disposable three-electrode 

sensor that works with 50 µL blood samples. This is the standard volume for a whole blood drop, 

which is easy to manipulate by clinical laboratory technicians using standard clinical laboratory tools. 

Furthermore, the sensor electrodes must be made of gold, an acknowledged bio-compatible material. 

Different commercial sensors have been evaluated, such as AC1 sensor from BVT Technologies 
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(Brno, Czech Republic), or the G-AUG sensor series from Bio-Logic SAS (Claix, France). The 

commercial sensor that best reaches the defined specifications is the C223AT from Dropsens  

(Llanera, Spain). This sensor is specifically designed to work with 50 µL drop samples and has gold  

screen-printed electrodes of 1.6 mm diameter. Blood samples were easily put on top of the sensor 

electrodes with an automatic pipette. 

2.2. Blood Samples 

Four blood samples were obtained in 4-mL tubes containing ethylenediaminetetraacetic acid 

(EDTA 7.2 mg from BD Vacutainer, (Franklin Lakes, NJ, USA) from four random hospitalized 

patients in Hospital Clinic. To obtain a larger sample collection, the initial four whole blood samples 

were centrifuged (Jouan CR412 from DJB Labcare, Newport Pagnell, UK) at 2200 rpm for 15 min in 

order to separate blood plasma from RBCs. Finally, 24 blood samples were obtained diluting obtained 

RBCs in different volumes of blood plasma using a Labopette Manual 10–100 µL automatic pipette 

from Hirschmann Laborgeräte (Louisville, KY, USA). We performed a complete blood count (CBC) 

of the 24 blood samples with an ABX Micros 60 haematology analyzer (Horiba, Kyoto, Japan) which 

reported the hemoglobin and hematocrit results as g/dL and percentage (%), respectively. This 

analyzer used electrical impedance technology to perform the CBC. With this methodology, whole 

blood is aspirated into the system, the sample stream is split, one portion is used for hemoglobinometry 

and one portion is used for RBC counting and size. Hemoglobinometry is based on RBC analysis and 

measurement of hemoglobin concentration by absorbance of spectrophotometry. RBC counting and 

size analyses are performed by passing the RBCs singly through a small direct current. The temporary 

increase in impedance caused by the passage of the cell provides information about RBC number and 

RBC volume. Hematocrit is calculated from the measured hemoglobin, RBC number and RBC  

volume [31]. Therefore, the obtained hematocrit (HCT (%)) and hemoglobin (Hb (g/dL)) for the 

different blood samples are shown in Table 1. 

Table 1. Twenty four blood samples obtained in Hospital Clínic from four random 

hospitalized patients. Blood samples were obtained diluting RBCs in different volumes of 

blood plasma. Hematocrit (HCT (%)) and hemoglobin (Hb (g/dL)) values for the different 

blood samples were obtained by means of a complete blood count (CBC). 

HCT (%) Hb (g/dL) HCT (%) Hb (g/dL) HCT (%) Hb (g/dL) 

14.2 5.0 25.5 9.0 34.7 12.4 
18.5 6.7 28.4 9.7 37.8 12.5 
18.9 6.6 29.0 9.8 40.0 12.8 
19.3 7.0 29.2 9.7 40.4 14.0 
20.4 6.9 30.0 10.5 40.8 14.0 
23.2 7.8 33.7 11.5 44.5 14.9 
23.4 8.1 33.9 11.8 45.0 15.2 
24.0 8.1 34.5 11.5 50.6 18.0 
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2.3. System Description 

A full custom electronic circuit was specifically designed to carry out impedance measurements 

using a disposable three-electrode C223AT sensor. The electronic system was designed based on the 

specifications found in the study previously reported [27]. The architecture of the device is divided in 

three parts: an oscillator that provides the ac voltage signal (VCELL), a sensor driving instrumentation 

and a rms-to-dc converter (Figure 2a). The oscillator is a Wien bridge oscillator, a stable output 

amplitude with low distortion. The operational amplifier (OSC in Figure 2a) is the AD8066 from 

Analog Devices, which is a low-cost, high speed Junction Gate Field Effect Transistor (JFET) 

amplifier dual supply with low leakage current and distortion, in order to provide a stable sinus voltage 

signal with low offset (VOSC).  

 

Figure 2. (a) Custom electronic instrumentation; (b) Commercial C223AT disposable 

sensor with a 50 µL whole blood drop; (c) Device prototype electronics and different 

suitable and functional user readout interfaces (the reference coin has a diameter of  

25.75 mm); (d) Actual user-friendly front-end user interface develop with Labview©. 

(Reproduced from [27] with kind permission from IEEE Publishers). 

The oscillator has been configured to provide a voltage sinus signal of 33 kHz, a well-suited 

frequency for hematocrit detection using the C223AT [28]. Moreover, as the AD8066 commercial 

integrated circuit provides two isolated amplifiers, the second amplifier has been used as a voltage 
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follower (AB in Figure 2a), due to its high speed and low distortion specifications for isolating the 

oscillator from the potentiostat. The sensor driving instrumentation is based on a potentiostat with a 

transimpedance amplifier current readout stage [32], composed of an operational amplifier to bias the 

sensor and an operational amplifier in transimpedance configuration as a sensing system current 

readout. The operational amplifier (OA in Figure 2a) is the AD8066 from Analog Devices, which is 

perfectly designed for singly driving the electrodes and track the voltage-biasing signal (VIN) to the 

electrodes (2).  

The JFET high input impedance avoids RE electrode voltage distortion, considering the low load 

impedance on the sensing system [27], and the high bandwidth and slew-rate provides stability to the 

system. The second amplifier included on the integrated circuit package has been configured as the 

transimpedance amplifier (AT in Figure 2a). The transimpedance amplifier converts the current 

through the electrodes (3) into a voltage signal (VOUT) by means of a sensing resistor (RSENSE in  

Figure 2a). The main drawback of this configuration, an amplifier with low input impedance [capitol 

intech antic], is avoided with the JFET input of the AD8066: ܼ஼ா௅௅ = ூܸேܫ஼ா௅௅ (2)

ைܸ௎் = −ܴௌாேௌா · ஼ா௅௅ܫ = −ܴௌாேௌா ூܸேܼ஼ா௅௅ (3)

Finally, the rms-to-dc converter is the AD8436 from Analog Devices, which computes a precise dc 

equivalent (VRMS) of the transimpedance amplifier ac signal (VOUT). It is a low cost, low power device, 

with wide dynamic input range and wide bandwidth that provides low distortion with a Zero 

subthreshold swing Field Effect Transistor (ZFET) input buffer for electronic isolation from the 

instrumentation stage. Considering that the electrodes voltage biasing signal (VIN) and the sensing 

resistor (RSENSE) are stable and well known, the rms dc variations of VOUT are only related to the 

variations of ZCELL. The device dc output voltage (VRMS) is inverse compared to the hematocrit values, 

so as the hematocrit increases, VRMS decreases. The device usage is very simple not requiring any 

qualified users. A blood sample is placed on top of the sensor electrodes and, once the power supply is 

connected, the device dc output voltage (VRMS) is ready for reading on the output pin. On the presented 

manuscript, a software interface on an external computer with Labview©, from National Instruments, 

controlled an electric switch to enable the power supply (an external source at ±5 V), and presents the 

resultant data on a user-friendly user interface (Figure 2d). The electronics and the computer were 

connected by means of a NI USB-6361 data acquisition (DAQ) device from National Instruments. 

However, the presented device readout stage can be greatly improved to address different applications 

and user skills (Figure 2c), such as an integrated Liquid Crystal Display (LCD) for an untrained user 

self-screening, a remote computer connected to the electronics by means of an standardized protocol 

(USB, ethernet, etc.), or a wireless communication protocol for self-monitoring device in telemedicine 

applications. Additionally, the presence of an electrical signal directly correlated to hematocrit allows 

the device implementation as a controller of other clinical actuators in different environments and 

situations increasing functionality.  

The overall low cost and low power system composed of optimized straightforward standards for 

instrumentation electronics, results in a reusable, robust and low consumption device (300 mWh) 
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making it completely mobile with a long battery life time. Moreover, it is important to highlight  

that it is an easy to manipulate and economic electronics (less than 10 € per device), providing an 

instantaneous impedance measurement. 

3. Results 

A small, compact and portable device for point-of-care early instantaneous detection of anemia was 

prototyped. For its validation, we analysed 24 consecutive blood samples from patients hospitalized at 

Hospital Clínic in Barcelona. We performed a complete blood count (CBC) of the blood samples with 

a haematology analyser, the Advia 2120 from Siemens AG, which reported the hemoglobin and 

hematocrit results as g/dL and percentage (%), respectively. We tested all samples with the prototype 

within 2 h of blood collection and CBC. As it is an instantaneous detector with a time response of 

several milliseconds, to evaluate system precision and accuracy, every whole blood sample was tested 

5 times consecutively using fresh sensors and fresh sub-samples. Figure 3 depicts the output dc  

voltage (VRMS) of the device and compares it with the different whole blood samples hematocrit 

(Hematocrit (%)). 

 

Figure 3. Measured output dc voltage (VRMS (mV)) mean value (n = 5) as a function of 

blood samples hematocrit (Hematocrit (%)). 

We used the Linear Regression (LR) analysis to measure the Pearson’s correlation coefficient (r) 

and coefficient of determination (r2) between the reference method (CBC method) and the custom 

electronic device method, where the output voltage (VRMS) mean value (n = 5) has been compared with 

whole blood samples CBC hematocrit. The LR slope (β) defines the sensitivity, in terms of mV per 

hematocrit percentage (mV/%). Meanwhile the hematocrit detection accuracy (%) is the relation (4) 

between r2 and β:  

ோܸெௌሺܸ݉ሻ = ߙ ൅ ߚ · ሺ%ሻ (4)ݐ݅ݎܿ݋ݐܽ݉݁ܪ

In Table 2 the experimental results of whole blood samples hematocrit (HCT (%)), the output 

voltage mean value (VRMS (mV)) of the five measurements performed with each whole blood sample 

and its standard deviation (SD (mV)) are shown. Precision was evaluated with the coefficient of 

variation: the standard deviation (SD (mV)) divided by the mean value (VRMS (mV).  
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Table 2. Device validation with whole blood samples. 

HCT (%) VRMS (mV) SD (mV) HCT (%) VRMS (mV) SD (mV) HCT (%) VRMS (mV) SD (mV) 

14.2 1725.92337 31.28 25.5 1152.10028 21.24 34.7 845.70887 25.20 

16.9 1598.31218 24.08 28.4 1043.23605 32.28 37.8 820.04855 10.32 

18.5 1498.75603 8.12 29.0 934.82407 13.08 40.0 816.04674 25.08 

19.3 1491.64678 32.4 30.0 1035.4325 33.88 40.4 773.16798 25.20 

20.4 1358.14206 34.56 32.2 968.69188 20.04 40.8 766.09567 30.36 

23.2 1268.13432 33.00 33.7 869.14198 26.44 44.5 671.69091 18.52 

23.4 1233.56278 34.16 33.9 832.33453 31.32 45.0 707.49377 8.76 

24.0 1109.21312 23.28 34.5 856.91271 30.12 50.6 490.1229 6.32 

The proposed anemia detector device presented great accuracy at detecting hematocrit, with a 

Pearson’s correlation coefficient of −0.96, an accuracy error of 2.83% hematocrit, and a coefficient of 

determination of 92.72%. The mean coefficient of variation is 2.57% without any particular case above 

5%. Acceptable values in quality control procedures in clinical haematology measurements show a 

coefficient of variation less than 5% [30]. The device presents reliable, sensitive and robust anemia 

detection compared with other commercial PoC devices for anemia detection, such as AnemiaCheck 

from Express Diagnostics (Blue Earth, MN, USA), STAT-Site from Stanbio Laboratory (Boerne, TX, 

USA), or HemoPoint H2 from Alere (Waltham, MA, USA), where its detection performance is similar 

to the proposed prototype but with much slower response.  

Recently, other PoC anemia devices have been published, such as a color-based diagnostic  

test for self-screening/self-monitoring of anemia presented by Tybursky et al., [33], a novel PoC 

diagnostic test for self-screening, self-monitoring of anemia. The device measures hemoglobin (Hgb) 

levels, which are estimated via visual interpretation by the user using a color scale. This system 

presents several performance drawbacks when compared with our device. First of all, the readout 

stage, based on a color scale, relies on the visual interpretation of the user, which could introduce 

errors on the Hgb levels data interpretation, and reduces considerably the system resolution. 

Furthermore, the principle of operation of the color-based POC device is based on biochemical 

reactions, where the blood comes into contact with a reagent solution initiating a redox reaction, which 

is a slow and destructive procedure. 

4. Market and Technology Transfer Challenges 

Commercialization of biosensors technology is still delayed compared with research in academia. 

This reduced technology transfer activity could be attributed to technical barriers or cost 

considerations. Therefore, devices must be versatile to allow automation at a competitive cost [34]. 

Additionally, to ensure success in the development, innovation and technology transfer, it is necessary 

to foster a particular scenario typified by the convergence of technologies and disciplines [35]. In this 

context, one of the main characteristics of the proposed device is its multidisciplinarity: in an effort to 

integrate knowledge from various dimensions, main actors and activities. The cross-disciplinary 

interaction must be examined in the way scientific knowledge flows between engineers, researchers 

and physicians. Currently, there are huge opportunities to be exploited by researchers and innovation 

managers in the development of high-tech products, above all in the field of medical devices. As such, 
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the University–Hospital–Industry–Administration (plus Citizens) system should emerge as an essential 

five-helix leading to a successful technology transfer and commercialization of public-funded  

medical devices [36]. 

In biomedical research, there is a great need for multipurpose and reliable telemetric tools. By using 

sensor inputs, such devices allow the automated gathering of information on physiological parameters 

minimizing adverse effects for the patients [35]. In this context the proposed device could improve the 

diagnosis especially in countries where clinics are often many miles away from villages, where there is 

absence of laboratory facilities and trained staff, or there are hostile environmental conditions [15]. 

Additionally, this device could overcome some of the complications related to blood extractions used 

in conventional methods, including hematoma formations, nerve damage, pain, hemoconcentration, 

extra-vasation, iatrogenic anemia, arterial puncture, petechiaes, allergies, infection, syncope and 

fainting, excessive bleeding, edema or thrombus [37]. 

PoC testing promotes a shift away from traditional diagnostic tests in the clinical laboratory  

setting to near-patient situations, improving the timely diagnostic information so as to make informed 

decisions regarding diagnosis and treatment. Rapid advances are already being achieved at remarkably 

low cost with modest investments; therefore there is a high growth rate market [38]. PoC devices 

represent 31% of the diagnostics market, 18% glucose testing, 11% professional PoC products, and 2% 

over-the-counter [39]. It is expected that the global market will increase to US$16.5 billion by 2016 

and $34.6 billion by 2021 [40]. Additionally, the total LoC-based biochip market was US$2.4 billion 

in 2009 and was projected to increase to US$5.9 billion in 2014. This should be a powerful incentive 

for commercial efforts to move toward true global health solutions [15].  

5. Conclusions 

In this work, a novel point-of-care (PoC) device for instantaneous anemia detection based on 

custom instrumentation electronics, impedance measurement technique and a disposable low-cost 

sensor has been designed, fabricated and tested. The device has been proved to exhibit reliable, robust 

and effective results using disposable commercial sensors with 50 µL whole blood samples. 

Advantages of the proposed device include: (i) the facility of use; (ii) compactness and small size;  

(iii) portability; (iv) less invasive and less quantity of blood; (v) rapidity and accuracy of results; and 

(vi) low-cost accessibility. These characteristics are valuable for anemia-risk patients, especially for 

pregnant women, neo-nates, pediatric patients and elderly, but also for chronically anemic patients, such as 

cancer patients receiving chemotherapy, patients with renal failure, patients with chronic 

inflammatory/immunologic disorders, or patients with primary hematologic disorders. Low 

manufacturing cost and the accessible price are important advantages, especially in disadvantaged 

regions where the health domain is undervalued. Commercial devices for PoC anemia detection, based 

on microfluidic manipulator devices, such as AnemiaCheck from Express Diagnostics, or on 

photometry hemoglobin detection, such as STAT-Site from Stanbio Laboratory, or HemoPoint H2 

from Alere, relay on slower hemoglobin measurement for a subsequent hematocrit indirect calculation, 

with results open to user interpretation as the readout stages are optically represented. The presented 

device outputs instantaneous reliable results based on electric voltage data directly correlated to 

hematocrit, the system have further versatility in terms of applications compared with other 
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commercial devices, such as a point-of-care hematocrit detector, a monitoring device for telemedicine 

applications, or as a controller of other clinical actuators. Furthermore, unlike actual clinical equipment 

for blood analysis, whole blood samples are not destroyed in the measurement process and the adverse 

effects for patients and blood samples are being mitigated.  

PoC anemia diagnostic devices recently published, such as a color-based diagnostic test by 

Tybursky et al., [40], present severalby of the user, which could introduce errors on the data 

interpretation, and reduces the system resolution, being a slower and destructive technique, with less 

functionalities in Point-of-Care and Lab-on-a-Chip devices for medical and research applications. 

Twenty four blood samples, obtained from four patients hospitalized at Hospital Clínic, were used 

to demonstrate the feasibility of the impedance measurement technique to perform an easy, fast and  

low-cost hematocrit study using disposable commercial sensors. The system has been evaluated 

through comparison with complete blood count (CBC) using a clinical haematology analyser. The 

anemia detection device has a Pearson’s correlation coefficient of −0.96 and a coefficient of 

determination of 92.72% hematocrit. Coefficient of variation is below 5%, with a worst-case accuracy 

error of 2.83%. Additionally, as the system is based on straightforward low cost and low power 

standards on instrumentation electronics and sensing, it represents an economic, portable, safe and 

reliable system of anemia detection with a high degree of integration for the clinical environment, 

driving the development of a truly autonomous, portable and versatile device relying on the presented 

work. In Table 3 is presented a performance comparison table with different commercial and published 

anemia PoC diagnostic test. 

Table 3. Comparison table with different commercial and published anemia PoC diagnostic test. 

Device 
Test Time  

(s) 
Range (HCT (%)  
and Hb (g/dL)) 

Standard Deviation 
(%) 

Coefficient Variation 
(%) 

Presented 
device. 

Instantaneous  HCT: 0%–100% 2.83% 2.57% 

STAT-Site. 900 HCT: 12%–42% 0.74% 4.10% 

Alere 
HemoPoint  
H2 System. 

120 Hb: 5.6 g/dL–20.6 g/dL NA 4.20% 

Anemia Check. 60 
Hb: 0 g/dL–25.6 g/dL 

HCT: 36%–54% 
NA 1.5% 

Tybursky et al.,  
(2014) [40] 

60 Hb: <9 g/dL–>12 g/dL NA NA 

Once again, this demonstrates the importance of a multidisciplinary team that integrates the clinical 

research with the university, in an effort to obtain a cross-fertilization development that aims to satisfy 

medical but also social needs through R + D + i. With this combined effort and symbiosis, it is 

possible to obtain innovative products and also reduce the time-to-market in medical research settings.  

In summary, this paper describes the design, development and test of a novel instantaneous anemia 

detection PoC device with low cost disposable commercial sensors and instrumentation electronics. 

The device presents reliable, sensitive and robust anemia detection, relying on low power 

straightforward electronic equipment and sensing systems for hematocrit monitoring. 
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