
 

Sensors 2015, 15, 5344-5375; doi:10.3390/s150305344 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

A Framework for Mining Actionable Navigation Patterns from 

In-Store RFID Datasets via Indoor Mapping 

Bin Shen 1, Qiuhua Zheng 2, Xingsen Li 1 and Libo Xu 1,* 

1 Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China;  

E-Mails: tsingbin@nit.zju.edu.cn (B.S.); lixs@nit.zju.edu.cn (X.L.) 
2 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, 

China; E-Mail: zheng_qiuhua@163.com (Q.Z.) 

* Author to whom correspondence should be addressed; E-Mail: xu_libo@163.com;  

Tel./Fax: +86-574-8813-0015. 

External Editors: Kourosh Khoshelham and Sisi Zlatanova 

Received: 11 December 2014 / Accepted: 27 February 2015 / Published: 5 March 2015 

 

Abstract: With the quick development of RFID technology and the decreasing prices of 

RFID devices, RFID is becoming widely used in various intelligent services. Especially in 

the retail application domain, RFID is increasingly adopted to capture the shopping tracks 

and behavior of in-store customers. To further enhance the potential of this promising 

application, in this paper, we propose a unified framework for RFID-based path analytics, 

which uses both in-store shopping paths and RFID-based purchasing data to mine 

actionable navigation patterns. Four modules of this framework are discussed, which are: 

(1) mapping from the physical space to the cyber space, (2) data preprocessing, (3) pattern 

mining and (4) knowledge understanding and utilization. In the data preprocessing module, 

the critical problem of how to capture the mainstream shopping path sequences while wiping 

out unnecessary redundant and repeated details is addressed in detail. To solve this problem, 

two types of redundant patterns, i.e., loop repeat pattern and palindrome-contained pattern 

are recognized and the corresponding processing algorithms are proposed. The 

experimental results show that the redundant pattern filtering functions are effective and 

scalable. Overall, this work builds a bridge between indoor positioning and advanced data 

mining technologies, and provides a feasible way to study customers’ shopping behaviors 

via multi-source RFID data. 

OPEN ACCESS 



Sensors 2015, 15 5345 

 

 

Keywords: RFID; indoor mapping; shopping transaction path mining; data preprocessing; 

filtering redundant patterns; framework 

 

1. Introduction 

Nowadays, various types of sensors, such as Kinect sensor [1], inertial motion units [2], ultrasound 

range sensor [2], GPS [3], Radio Frequency Identification (RFID), laser scanners [4] and remote 

sensor networks [5], have been used to perceive the physical environment, and many promising 

solutions [2,6,7] have been proposed to realize the effective mapping from the physical world to the 

cyberspace. Among them, RFID technology is one of the most promising technologies. Based on 

geometric mapping, it has been increasingly used in various application scenarios, such as intelligent 

exhibition halls, goods tracking and congestion detection in logistics and distribution [8], abnormal 

activity detection and insecurity factor detection in access control, and so on. 

In the grocery industry, when various items, not only returnable transport carts, trolleys and kegs, 

but also valuable products, are equipped with RFID tags, item-level RFID infrastructures are 

established [9]. They can be utilized to realize a wide range of smart applications, e.g., auto check-outs [9], 

item-level valuable merchandise tracking [10], vendor managed inventory [11], smart price tags [9], 

etc. [12,13]. Among them, one of the more attractive applications is tracking customers’ shopping 

paths. These paths can be captured based on identifying the moving trajectories of smart shopping 

carts/trolleys/keys which are tagged with RFID [14]. Besides that, shopping carts/trolleys/keys 

featuring RFID readers can recognize valuable products put into the carts/trolleys/keys, if each 

valuable product is tagged with an RFID label. As a result, both the walking trajectories of customers 

and the corresponding purchase behaviors are automatically recorded in the RFID datasets, which are 

quite precious for mining in-depth knowledge about the shopping behaviors of customers.  

Clearly, in the competitive retail climate, discovering insights from the shopping behaviors of 

customers and then turning these insights into promotion and customer care actions are crucial for 

enhancing retail business and service quality [15]. Towards this vision, one fundamental work is to 

study customers’ shopping paths in conjunction with their purchasing behaviors. The quick 

development of in-door positioning [6,7,16–23] and data mining [24–32] technologies sheds light on 

the above problem, and motivates us to consider building a bridge between RFID-based indoor 

mapping and advanced data mining techniques to explore customer’s shopping behavior in depth. 

Consequently, in this study, we propose a framework for mining actionable navigation patterns using 

multi-source RFID data, i.e., shopping path data and RFID-supported customers’ purchasing behavior 

data. Actionable navigation pattern [24,25] is very useful for understanding behaviors of customers 

and can be applied to various applications, such as customer navigation, active advertising and 

recommendations, etc. In this framework, we first use the path graph to map the problem in the 

physical space to a problem in the cyber space, where shopping paths are represented by sequences of path 

segments. After the mapping between the physical space and the cyber space, the problem of RFID-based 

shopping path analytics is converted to sequential pattern analysis [26], which has plenty of research in 

data mining field [27–32] for further reference. 



Sensors 2015, 15 5346 

 

 

This paper is organized as follows: first, we introduce indoor mapping technologies and related 

terms in Sections 2 and 3, respectively. Then, in Section 4, the framework for mining multi-source  

in-door RFID data is presented, and four modules are discussed in detail, which are: (1) mapping from 

the physical space to the cyber space; (2) data preprocessing; (3) pattern mining and (4) knowledge 

understanding and utilization. In Section 5, we address a key problem existing in the data 

preprocessing module, which is how to identify the mainstream shopping transaction paths while 

wiping out unnecessary redundant and repeated details. An algorithm which can filter two types of 

redundant patterns is also proposed. Then, a simulated shopping path generator is discussed in Section 6, 

and the experimental evaluation of the algorithm is given in Section 7. Finally, we discuss the contributions 

towards a real supermarket scenario and conclude our work in Sections 8 and 9, respectively. 

2. Indoor Mapping 

To easily comprehend our proposed framework, we provide below a broad overview of indoor 

mapping technologies. 

2.1. Overview 

With the progress in sensor technology, many promising indoor-mapping solutions [1–3,6,7,16,17], 

which can provide precise (or proximity), reliable and robust positioning services, have been proposed. 

Commonly, an indoor-mapping solution contains two components: (1) a physical-layer for sensing and  

(2) a software-realized data processing and location positioning, where the sensing capability is based on 

various available technologies, such as ultra-wideband (UWB), RFID, wireless local area network 

(WLAN), Bluetooth, ultrasound and video cameras, or the combination of these technologies [6,16,17]. On 

the basis of sensing, location positioning can be achieved using positioning algorithms, which can be 

mainly divided into three categories: triangulation, scene analysis and proximity [17]. Triangulation 

schemes employ geometrical property-based techniques, which are typically time of arrival (TOA), 

time difference of arrival (TDOA), round-trip time-of-flight (RTOF), angle of arrival (AOA) and 

received signal strength (RSS) [6]. Scene analysis approaches commonly involve two phases: an 

offline phase of training and an online phase of positioning. In the offline phase, fingerprints of scenes 

are collected and stored; during the online recognition phase, machine learning methods (e.g., extreme 

learning machine [18]) are adopted to compare the observed fingerprints with pre-measured 

fingerprints for position determination [17].  

2.2. RFID-Based Indoor Positioning 

Among the above technologies, RFID is an attractive option for coarse grained localization which 

provides proximity position information, because it is relatively cost-effective and is quite suitable for 

tracking a large number of items. Therefore, RFID technology is selected in our application of tracking 

shopping carts and purchased items in a supermarket. 

Non-contact RFID positioning systems include three components: RFID readers, tags and servers, 

where tags can be active or passive. Active RFID tags equipped with internal batteries can broadcast 

their signals initiatively, and provide a much longer signal transmission range than passive tags; while 



Sensors 2015, 15 5347 

 

 

passive tags are powered by signals transmitted from RFID readers [19,22]. Several basic frequency 

bands are employed by RFID systems, which include low frequency (LF), high frequency (HF), very 

high frequency (VHF), ultra-high frequency (UHF) and microwave frequency. Different frequency 

bands offer different read ranges which normally vary from 10 cm to 12 m, and are suited for different 

applications [20]. Representative RFID-based precise location sensing systems are SpotON [21] and 

LANDMARC [22], where reference tags are employed as landmarks. Typical work towards  

RFID- based proximity positioning includes tracking materials on construction job sites by combining 

proximity reads from a discrete range [23].  

Fault tolerance is another important issue for RFID-based positioning system. The faults (false 

positive/negative readings) may be caused by many factors, such as hardware failures (e.g., 

malfunction, running out of battery energy), multipath interference, or complex radio propagation [33]. 

Countermeasures can be divided into two categories: physical solutions that are based on hardware 

performance improvement [34], and intelligent software solutions that are based on spatial-temporal 

correlations/redundancy [33,35]. 

3. Materials for the Study 

In this section, related concepts are defined, and the notations used in this study are summarized in 

Table 1. 

Definition 1. A path segment s is a directed edge associated with a direction symbol (s.dir), two 

terminal points (one is the start terminal point s.b and the other is the end terminal point s.e), and its 

length (s.l). The path segment only can be travelled from s.b to s.e. The reverse-order path segment of 

s is the path segment sharing the same edge with s but reverse direction, i.e., sreverse, where sreverse.dir 

and s.dir are reverse, sreverse.b equals s.e, sreverse.e equals s.b, and sreverse.l and s.l are equal. 

Definition 2. A path graph G is a directed graph, i.e., G = (V, E), where V is the set of terminal 

points of path segments, and E is the set of path segments. Path graph G is an abstraction of the 

connections of path segments in a real field. 

Definition 3. A shopping path SP is a sequence of path segments, SP = < 1 2, , , ns s s >, where si+1.b 

= si.e and sjE, ( 11  ni , nj 1 ). The beginning point and the ending point of SP can be 

represented as SP.b = s1.b and SP.e = sn.e.  

Definition 4. There are several concepts related to shopping paths as given below: 

(1) Given two shopping paths, i.e., SP = < 1 2, , , ns s s >
 
and

 
PS = < 1 2, , , ls s s  > (ln), if there exists 

i, such that 1s  = is , 2s  = 1is , …, ls  = 1lis , then SP is a super-sequence of PS  , and PS   is a 

subsequence of SP (denoted as PS  SP). We also call that PS   is contained in SP. 

(2) A navigation pattern NP means a subsequence of a shopping path. 
(3) For a shopping path SP = < nkk sssss ,...,,,...,, 121  >, the reverse-order path of SP is 

reverseSP =< reversereversereversekreversekreversen sssss ,1,2,,1, ,,...,,,,  >, where reverseis ,  ( ni 1 ) is the reverse-order 

path segment of is . 

(4) Given a shopping path SP = < nkk sssss ,...,,,...,, 121  >, 
prefixSP =< ksss ,...,, 21 >, is called a prefix of 

SP, and 
suffixSP  = < nk sss ,...,, 21 > is called a suffix of SP, where nk 1 .

  



Sensors 2015, 15 5348 

 

 

(5)
 
Given n shopping paths, i.e., SP1, SP2, …, SPn-1 and SPn, if SPi.e = SPi+1.b ( 11  ni ) is 

satisfied, these shopping paths can be connected one after another, and the connection can be marked 

as SP1→SP2→…→SPn. 

Table 1. Notations. 

Notation Description 

s, si A path segment 

sreverse The reverse-order path segment of s 

si.b, si.e The start terminal point, the end terminal point of si respectively 

ti Unit time per unit length spent in si  

vi A terminal point 

Ti The itemset purchased in si 

G A path graph 

SP, PS  , SQ A shopping path 

PS   SP SP is a super-sequence of PS  , and PS 
 is a subsequence of SP 

STP, STPprefix, STPsuffix A shopping transaction path 

Trans(STP) Transforming STP to a shopping path 

iitem An item 

iitem STP iitem is purchased in STP 

D A shopping transaction path database  

Sitem, |Sitem| A set of items, and the number of its elements respectively 

sΓ  The itemset sold in s 

SIT The Segment-Item Table 

itemE  The set of path segments that sell iitem 

IST, LT, PT The Item-segment table, the Length table, and the Path-set table respectively 

Definition 5. Given a shopping path SP, the connection between SP and its reverse-order path 

reverseSP  (i.e., SP→
reverseSP ) forms a symmetric pattern. If SP.b = SP.e, SP is called a loop pattern. Given 

a loop pattern SP, if SP repeats n (n ≥ 2) times successively, i.e., SP→SP→…→SP, we call it a  

loop repeat pattern. Given a shopping paths, i.e., SP, we call the pattern SP→SPreverse→SP a  

palindrome-contained pattern. 

Definition 6. A shopping transaction path is a sequence of triples, STP = <(s1,t1,T1), (s2,t2,T2), …, 

(sn,tn,Tn)>, where (si, ti, Ti) means that a shopper purchases the itemset Ti and spends ti unit time per 

unit length in the path segment si
 
( ni 1 ).  

Definition 7. Given a shopping transaction path, i.e., STP = <(s1,t1,T1), (s2,t2,T2), …, (sn,tn,Tn)>, 

there are several concepts, which are relevant to shopping transaction paths, are given below: 

(1) For simplicity, all si
 
( ni 1 ) are called the path segments of shopping transaction path STP.  

(2) For a given item iitem, if iitem   
nTTT  ...21
, we call iitem is purchased in STP, i.e., iitem STP. 

(3) Given a fragment of STP, i.e., PST   = <(sk,tk,Tk), (sk+1,tk+1,Tk+1), …, (sl,tl,Tl)>( nlk 1 ), we 

called PST   a subsequence of STP, and PST   is contained in STP.  

(4) 
prefixSTP = <(s1,t1,T1), (s2,t2,T2), …, (sk,tk,Tk)>, is called a prefix of STP, where nk 1 .  

suffixSTP  = <(sk+1,tk+1,Tk+1), (sk+2,tk+2,Tk+2), …, (sn,tn,Tn)> is called a suffix of STP.  



Sensors 2015, 15 5349 

 

 

(5) Given a shopping transaction path, STP = <(s1,t1,T1), (s2,t2,T2), …, (sn,tn,Tn)>, if only path 

segments appear in STP, we transform it to a shopping path, SP = <s1, s2,…, sn>, which is called the 

shopping path of STP and denoted as SP = Trans(STP).  

(6) Given n shopping transaction paths, i.e., STP1, STP2, …, STPn-1 and STPn, if Trans(STPi).e = 

Trans(STPi+1).b ( 11  ni ) is satisfied, these shopping transaction paths can be connected one after 

another, and the connection can be marked as STP1→STP2→…→STPn. 

For example, STP = <(s1,1,Ø),(s2,0.8,Ø),(s3,8,{i1,i2}),(s4,0.8,Ø),(s5,5,{i3})> denotes that when the 

shopper visits 521 ,...,, sss  consecutively, he/she spends 1, 0.8, …, 5 unit time per unit length in these 

path segments respectively. Meanwhile, the shopper purchases },{ 21 ii  in 3s  and purchases }{ 3i  in 5s . 

521 ,...,, sss  are all path segments of STP. Among them, s1 is the first path segment of STP, s2 is the 

second one, …, and s5 is the last one. Because 1i ØØ  },{ 21 ii Ø }{ 3i , we have 1i  STP. STP 

can be transformed to a shopping path, that is to say Trans(STP) = < 521 ,...,, sss >. 

Definition 8. A mainstream of shopping path is a shopping path without containing any loop repeat 

or palindrome-contained subsequence pattern. A shopping transaction path STP is a mainstream of 

shopping transaction path, if Trans(STP) is a mainstream of shopping path. 

Definition 9. A Segment-Item Table (SIT), maintaining the information of items sold in each path 

segment, is denoted as below: 

SIT = {(s1, 
1s

Γ ), (s2, 
2sΓ ), …, (sW, 

Ws
Γ )} (1) 

where si is a path segment, 
isΓ  is the itemset sold in si (1  i W), and W is the total number of  

path segments. 

Definition 10. An Item-Segment Table (IST), maintaining the information about the segments where 

each item is sold, is denoted as below: 

IST = {( iitem,1, 1,itemE ), (iitem,2, 2,itemE ), …, (iitem,U, 
UitemE ,

)} (2) 

where iitem,j is an item, 
jitemE ,
 is the set of path segments that sell iitem,j (1 jU), and U is the total 

number of items. 

Definition 11. A Length Table (LT), maintaining the length information of path segments, is 

denoted as below: 

LT = {(s1, s1.l), (s2, s2.l), …, (sW, sW.l)} (3) 

where si is a path segment, and si..l is the length of si which can be obtained according to the length of 

normal trajectory of si (1   i   W). 

4. System Framework of RFID Path Explorer 

In this section, we describe the framework of the RFID supported paths and behaviors mining, 

called RFID Path Explorer. 

The proposed framework consists of four modules: (1) mapping from the physical world to the 

cyber space; (2) data preprocessing; (3) a data mining mechanism; and (4) knowledge understanding 



Sensors 2015, 15 5350 

 

 

and utilization (see Figure 1). Table 2 shows an example of shopping transaction path database which 

contains five shopping transaction paths. Below, we explain them in detail. 

 

Figure 1. The framework for RFID based shopping transaction path mining. 

Table 2. An example of shopping transaction path database. 

STPid Shopping Transaction Path 

1 (AB, 0.8, Ø), (BC, 1, Ø), (CD, 4, {i1, i2}), (DE, 3, {i3}), (EF, 0.8, Ø), (FD, 0.8, Ø), (DK, 0.8, Ø) 

2 (AB, 0.9, Ø), (BC, 1, Ø), (CD, 5, {i1}), (DK, 0.8, Ø) 

3 (DK, 0.9, Ø), (KC, 0.8, Ø), (CD, 5, {i2}), (DE, 5, {i3}) 

4 (BC, 0.8, Ø), (CD, 4, {i1}), (DK, 1, Ø), (KA, 0.8, Ø), (AD, 1, Ø), (DE, 4, {i3}), (EF, 1, Ø) 

5 (DK, 0.9, Ø), (KC, 1, Ø), (CD, 6, {i2, i4}), (DK, 1, Ø) 

4.1. Indoor Mapping from the Physical World to the Cyberspace 

The module of indoor mapping from the physical world (PW) to the cyber space consists of two 

steps as shown in Figure 1. 

4.1.1. Step 1. RFID Deployment ( )( ) 

According to the task of application domain (i.e., finding actionable navigation patterns for 

purchasing an item), suitable RFID devices should be chosen and deployed in a real field (i.e., real 

supermarket). For instance, in our application, a RFID tag, which has a unique Electronic Product 

Code (EPC), is attached to each shopping trolley. RFID readers are located at various places of a 

supermarket, such as the entrance, the checkout, the gathering place for shopping carts, aisles and 

thoroughfares etc., and used to identify shopping trolleys passing by. At the same time, when valuable 

items attached with RFID tags are put into a shopping trolley, they also can be recognized by this 

RFID-reader-equipped shopping trolley. Thus, both shoppers’ path and behaviors can be captured ( )(C ) 

and recorded. For the sake of robust, redundant multiple readers/tags [23] and received signal strength 

functions of RFID devices [21] can be added to promote the reliability of proximity location determination. 



Sensors 2015, 15 5351 

 

 

4.1.2. Step 2. Mapping ( )( ) 

Recorded raw RFID data can’t be understood without the support of semantic information about 

these data. Therefore, attributes and features related to the analysis task should be abstracted from the 

physical world and mapped to the cyber-space. In the context of our application, a path graph G is used 

to abstract the connections of path segments, after RFID devices are deployed in a supermarket. An 

illustration of path graph is shown in Figure 2c, which is mapping from Figure 2b. A segment-item 

table (SIT) and an item-segment table (IST) are also extracted to reflect the items sold in each segment 

and the segments where each item is sold respectively. An example of SIT and IST is shown in Table 3. 

 

Figure 2. An illustration of path graph (a) A photo of Real supermarket. (b) An illustration 

of a part of supermarket after RFID deployment. (c) An illustration of a part of path graph 

after mapping. 

Table 3. An example of SIT and IST. 

Path Segment Itemset Itemset Path Segment 

AB NULL i1 {CD, PZ} 

BC NULL i2 {CD, DE} 

CD { i1, i2, i6, i11, i12} i3 {GH, PQ, PZ} 

DE {i2, i15} i4 {GJ} 

… … … … 

PZ { i1, i3, i20, i5000} i5000 {PZ} 

4.2. Preprocessing 

After the raw RFID path and behavior data is captured, the preprocessing is shown in Figure 3. 

4.2.1. Step 1. Data Ordering and Data Compression 

Raw RFID path data has the form (EPC, Loc, Time_stamp), where EPC is the Electronic Product 

Code of the tag that uniquely represent a shopping cart, Loc is the identification location whose reader 

finds the tag, and Time_stamp is the time when the RFID reading takes place [36]. These raw data 

firstly need to be sorted on EPC and time, and then be transformed to the form of stay record, i.e., 

(EPC, Loc, T_in, T_out), where T_in is the time when the RFID tag enters the identification area, and 

T_out is the leave time [37]. 



Sensors 2015, 15 5352 

 

 

 

Figure 3. RFID data preprocessing. 

When an item (i.e., iitem) is put into a shopping cart (i.e., Cart), a raw purchasing data (i.e., (Cart, 

iitem, Time_stamp)) is also generated, where Time_stamp is the time of detecting the item. And then, 

raw purchasing data is continuously produced, until the item is picked out of the shopping cart. 

Therefore, for an item, only the record of first reading needs to be saved, which marks purchasing of 

the item happens. 

4.2.2. Step 2. Data Merging and Anomaly Detection 

For a EPC, from the stay records, a whole trace record can be constructed, which has the form EPC: 

(Loc1, T_in1, T_out1), (Loc2, T_in2, T_out2), …, (Locw, T_inw, T_outw), where Loci is the location where 

the tag is detected, T_ini and T_outi are the entering time and the leaving time of Loci respectively, and 

(Loci, T_ini, T_outi) is ordered by T_ini (1  i   W) [38]. For a whole trace record, if there are two 

same successive locations (i.e., Loci = Loci+1), then (Loci, T_ini, T_outi) and (Loci+1, T_ini+1, T_outi+1) 

can be merged to (Loci, T_ini, T_outi+1). Thus we have a whole trace record where any two successive 

locations are different. 

Here, any two consecutive locations are required to meet spatial constraint [35] that these two locations 

should be directly connected in the path graph. Two successive locations which cannot satisfy this 

constraint are labelled as an anomaly, and the anomaly should be checked further to infer/determine 

whether missed readings or false positive readings occur. If permanent/intermittent/transient faults leading 

to this anomaly can be identified, missed readings are filled in and false positive readings are discarded 

to make the whole trace record smoothly connected; otherwise, suspicious readings are removed and 

the remaining parts of the trace record are kept separately. This prior-knowledge based validation 

mechanism can further promote the reliability of sensing. 

4.2.3. Step 3. Segment Extraction 

In the supermark scenario, shopping carts are recycled and used by different shoppers at different 

shopping times. Thus, the whole trace record of a certain EPC, which is the proxy of a cart, commonly 

contains multiple shopping trips of various shoppers. Besides, path sequences of supermarket staff 



Sensors 2015, 15 5353 

 

 

collecting shopping carts may also be contained. Therefore, in order to study customers’ shopping 

behavior, it is necessary to extract individual shopping trips from the whole trace records. 

For the above purpose, we develop a finite state machine model [39] for shopping carts (see Figure 4) 

by referring to the real situation in supermarkets. In Figure 4, there are four states for a shopping cart: 

“idle”, “shopping”, “discarded” and “end” states. The “idle” state implies that the cart stays in the 

gathering place for shopping carts and is currently available. The “shopping” state indicates that the 

cart is in use by a shopper. The “discarded” state means that the cart is discarded midway by a shopper, 

and the “end” state implies the cart arriving at the checkout and the end of a shopping trip. 

 

Figure 4. The finite state machine model for shopping carts. 

In the model, a state will be transformed to another one, if a certain event [40] is triggered. The 

initial state of a cart may be “idle”. If a “start” event happens, the “idle” state will become the 

“shopping” state, where the “start” event can be defined as the observation that a shopping cart leaving 

the gathering place and entering the main entrance. Then, the “shopping” state will be changed to the 

state of “discarded” if the “discarding” event happens or to the “end” state if the “end” event takes 

place. Both the “discarded” and the “end” states are followed by the “collection” event, and will be 

transformed to the “idle” state again. Here, the “discarding”, the “end” and the “collection” events also 

should be defined according to the real situation. For example, we may define the “discarding” and the 

followed “collection” events as a long stay in a certain location and then moving to the gathering place 

directly, and the “end” event as a cart arriving checkout with items taken out of the shopping cart. 

Thus trace record segments can be extracted from a whole trace record, where each segment represents 

a single shopping trip. 

4.2.4. Step 4. Assembling Segments into Shopping Transaction Paths  

In order to analyze shopping paths, terminal-points focused trace record segments need to be further 

transformed to path-segments focused shopping transaction paths, which also combine the information 

of purchased items. The transform process is shown below. 

First, given a trace record segment of a shopping cart (Cart), i.e., EPC_ID: (Loc1, T_in1, T_out1), 

(Loc2, T_in2, T_out2), …, (Locm, T_inm, T_outm), and a length table (LT), the trace record segment can 

be converted to a shopping path with time information in the form of EPC_ID: (s1, t1), (s2, t2), …, (sm-1, 

tm-1), where si is the path segment connecting two successive locations (i.e., Loci and Loci+1), and ti 

represents the time spent in si per unit length of si (1  i   m-1). That is to say, 
it  equals lstime ii . , 

where timei representing the time spent in si is assumed as (T_ini+1+T_outi+1)/2-(T_ini+T_outi)/2 for 



Sensors 2015, 15 5354 

 

 

simplicity (1   i   m-1), and si.l is the length of si. Second, suppose the corresponding set of 

purchasing records of Cart is {(Cart, iitem,1, Time_stampitem,1), …, (Cart, iitem,n, Time_stampitem,n)}, 

where T_in1   Time_stampitem,j   T_outm (1 jn). Then for each (Cart, iitem,j, Time_stampitem,j), given 

IST = {(iitem,1, Eitem,1),…,(iitem,U, Eitem,U)}, there are four cases to decide which path segment iitem,j is 

purchased in.  

Case 1. If  2   i   m-1, T_outi   Time_stampitem,j   T_ini+1, then obviously iitem,j is purchased in si. 

Case 2. If T_in1   Time_stampitem,j < T_out1, then obviously iitem,j is purchased in s1; if 

T_inm<Time_stampitem,j   T_outm, clearly, iitem,j is purchased in sm-1. 

Case 3. If  2   i   m-1, T_ini<Time_stampitem,j<T_outi, siEitem,j and si-1Eitem,j, then it can be 

deduced that iitem,j is purchased in si. If  2 im-1, T_ini<Time_stampitem,j < T_outi, siEitem,j and  

si-1Eitem,j, then it can be derived that iitem,j is purchased in si-1.  

Case 4. If  2   i   m-1, T_ini < Time_stampitem,j < T_outi, siEitem,j and si-1Eitem,j, we can’t judge 

which path segment iitem,j is purchased in among si-1 and si. In this case, besides the above conditions 

are met, if T_ini < Time_stampitem,j  (T_ini + T_outi)/2, iitem,j is most probably purchased in si-1; 

otherwise, if (T_ini+T_outi)/2 < Time_stampitem,j < T_out, iitem,j is most likely purchased in si. 

Thus, after all items (i.e., iitem,j (1   j   n)) are added to the corresponding item set of path segment 

where this item is purchased, we can obtain a shopping transaction path, i.e., EPC_ID: <(s1, t1, T1), (s2, 

t2, T2), …, (sm-1, tm-1, Tm-1)>, where Ti (1   I   m-1) is the item set purchased in si. 

4.2.5. Step 5. Extracting Mainstreams of Shopping Transaction Paths 

In the context of web browsing, Chen et al. [27] first introduced the concept of maximal forward 

reference, and proposed a method of breaking a user session down into several maximal forward 

references if backward references appear in this session. However, several limitations still exist in the 

scheme of extracting maximal forward reference.  

First, their extraction method assumes that backward references are all for easy of travelling, and 

not for browsing. But this assumption fails in the context of a real supermarket. There are two 

intentions for a shopper choosing to go backward. One is trying to explore and purchase in the 

backward reference, and the other is going through the backward reference to other interested sections, 

so the method of Chen et al. [27] can’t be applied here.  

Second, their method throws away all backward references, which might provide important clues on 

shoppers’ purchasing and navigation behaviors.  

Third, after applying their method, the frequency of prefix sequence in front of symmetric pattern is 

increased unexpectedly. For instance, suppose there is a shopping path < AB, BC, CD, DC, CE, EF, 

FG, GH, HG, GI > shown in Figure 5, where two symmetric patterns exist, i.e., < CD, DC > and < GH, 

HG >. After applying the method of Chen et al. [27], the set of maximal forward shopping path is  

< AB, BC, CD >, < AB, BC, CE, EF, FG, GH >, < AB, BC, CE, EF, FG, GI >. We can find that the 

frequency of prefix sequence < AB, BC > unexpectedly becomes 3, while it is 1 in the original 

shopping path. The frequency of prefix sequence < AB, BC, CE, EF, FG > is converted to 2, while it is 1 

in the original shopping path. 



Sensors 2015, 15 5355 

 

 

Fourth, a maximal forward reference terminates if a backward reference appears. Thus, a maximal 

forward reference will not contain any symmetric pattern. This may lead to an unexpected loss of 

important knowledge on symmetric pattern. For example, from the shopping path < AB, BC, CD, DC, 

CE, EF, FG, GH, HG, GI > shown in Figure 5, we know that this customer would like to go to the aisle 

of CD first, turn back to the main thoroughfare of EF, go forward to the aisle of GH, and then be back 

to the main thoroughfare again. The knowledge on customer’s turning back disappears in the set of 

maximal forward shopping path. 

Therefore, instead of finding maximal forward references, we present another new scheme called 

extracting mainstream of shopping transaction path, which reserves necessary symmetric patterns, but 

discards redundant and repeated details. This scheme is discussed in the next subsection in detail. 

 

Figure 5. An example for identifying maximal forward reference. 

4.3. Mainstreams of Shopping Transaction Paths 

In the environment of a real supermarket, in order to choose items of interest, shoppers are inclined 

to push/pull shopping carts forward and backward. Symmetric patterns, loop patterns and redundant 

details may appear in shopping paths. In order to catch the mainstream of path sequences while 

discarding unnecessary redundant and repeated details, we put forward a scheme for identifying 

mainstream shopping transaction paths. In this scheme, we recognize that two types of redundant 

patterns need to be simplified, i.e., loop repeat patterns and palindrome-contained patterns. . 

4.3.1. Processing of Loop Repeat Patterns 

Successive repeated path sequence loops actually reflect the same shopping interest and share the 

same behavior pattern, so these loops can be combined into one loop. For a shopping path, we can 

compress several repeat loops into one directly. For a shopping transaction path with a loop repeat 

pattern, i.e., STPprefix→STP1→STP2→…→STPn→STPsuffix, where STPi (i = 1,…,n) shares the same 

navigation pattern, these STPi (i = 1,…,n) also can be combined into a single STPcombine = <(s1, t1, T1), 

(s2, t2, T2),…, (sm, tm, Tm)>, so we also need to consider specifying values of tj and Tj in STPcombine  

(j = 1,…,m). The time spent in a path segment is normally comprised of two parts: walking time and 

time for exploring and purchasing. We consider that if a shopper tries to complete the task of exploring 

and purchasing in one loop (say STPcombine), which is previously done in multiple loops (say STPi  

(i = 1,…,n)), time spent in the same path segment of loop should be cumulated, and itemsets purchased 

in the same path segment but in different loops also should be combined. 

Therefore, we have the following definition for simplification of loop repeat pattern: 



Sensors 2015, 15 5356 

 

 

Definition 12. A shopping path containing loop repeat pattern, i.e., SPprefix→SP n SP→SPsuffix, 

can be simplified as SPprefix→SP→ SPsuffix. A shopping transaction path containing loop repeat pattern, 

i.e., STPprefix→STP1→STP2→…→STPn→ STPsuffix, where STPi = <(s1, t1,i, T1,i), (s2, t2,i, T2,i),…, (sm, 

tm,i, Tm,i)>, all STPi share the same navigation pattern (say Trans(TSP) = <s1, s2, …, sm>), and m is the 

number of path segments in STPi (i = 1,…,n), can be simplified as STPprefix→STPcombine→ STPsuffix, 

where STPcombine = <(s1, t1, T1), (s2, t2, T2),…, (sm, tm, Tm)>, twalking is the smallest value of time spent 

per unit length in this shopping transaction path, tj and Tj (j = 1,…,m) are defined as below: 

tj = twalking + 


n

i

ijt
1

purchasing ),(  (j = 1,…,m) 
(4) 

tpurchasing(j,i) = tj,i − twalking (i = 1,…,n, j = 1,…,m) (5) 

Tj = 
m

i

ijT
1

,



 (j = 1,…,m) 
(6) 

For instance, for the shopping path <AB, BC, CD, DE, EB, BC, CD, DE, EB, BC, CF> shown in 

Figure 6, loop <BC, CD, DE, EB> appears two times continuously and forms a loop repeat pattern, so 

this shopping path can be simplified as a mainstream of shopping path <AB, BC, CD, DE, EB, BC, CF>. 

 

Figure 6. An illustrative example of loop repeat pattern. 

For a shopping transaction path <(AB, 1, Ø), (BC, 2, Ø), (CD, 3, {i1}), (DE, 2, Ø), (EB, 6, {i2, i3}, 

(BC, 2, {i4}), (CD, 5, {i6, i7}), (DE, 1, Ø), (EB, 1, Ø), (BC, 1.1, Ø), (CF, 1, Ø)>, a loop repeat pattern 

<BC, CD, DE, EB>→<BC, CD, DE, EB> appears. Triple elements having the same path segment but 

different loops should be combined, i.e., (BC, 2, Ø) and (BC, 2, {i4}), (CD, 3, {i1}) and (CD, 5,  

{i6, i7}), etc. We take the combination of (BC, 2, Ø) and (BC, 2, {i4}) as an example. First, we obtain 

that twalking equals 1, which is the smallest one in the set of time spent per unit length in this shopping 

transaction path. Then, time spent in BC per unit length (tBC) is computed as 1 + (2−1) + (2−1) = 3, and 

itemset in BC (TBC) is Ø∪{i4} = {i4}. Therefore, the result of the combination of (BC, 2, Ø) and (BC, 

2, {i4}) is (BC, 3, {i4}). Thus this shopping transaction path can be simplified as a mainstream of 

shopping transaction path < (AB, 1, Ø), (BC, 3, {i4}), (CD, 7, {i1, i6, i7}), (DE, 2, Ø), (EB, 6, {i2, i3}), 

(BC, 1.1, Ø), (CF, 1, Ø) >. This mainstream shopping transaction path retains the main movement of a 

shopper and prunes unnecessary details. 

4.3.2. Handling Palindrome-Contained Pattern 

A palindrome-contained pattern, i.e., SP→SPreverse→SP, is easily formed when a shopper compares 

the same kind of items in front of a shelf, and shows that shoppers hover in a SP navigation pattern. 

These three segments, i.e., SP, SPreverse and the second SP, actually show the same shopping interest 



Sensors 2015, 15 5357 

 

 

and share the same behavior pattern, so these successive segments can be simplified as SP. Thus, we 

have the following simplification method of palindrome-contained pattern 1: 

Definition 13. A shopping path containing a palindrome-contained pattern, i.e., SP→SPreverse→SP, 

can be simplified as SP. A shopping transaction path containing a palindrome-contained pattern, i.e., 

STPprefix→STP1→STP2→STP3→STPsuffix, where STPi = <(s1, t1,i, T1,i), (s2, t2,i, T2,i),…, (sm, tm,i, Tm,i)>  

(i = 1, 3), STP2 = <(sm,reverse, tm,2, Tm,2), (sm-1,reverse, tm-1,2, Tm-1,2), …, (s1,reverse, t1,2, T1,2)>, can be 

simplified as STPprefix→STPcombine→STPsuffix, where STPcombine = <(s1, t1, T1), (s2, t2, T2),…, (sm, tm, 

Tm)>, twalking is the smallest value of time spent per unit length in this shopping transaction path, tj and 

Tj (j = 1,…,m) are defined as below: 

tj = twalking + 


3

1

purchasing ),(
i

ijt  (j = 1,…,m) 
(7) 

tpurchasing(j,i) = tj,i − twalking (i=1,2,3, j = 1,…,m) (8) 

Tj = 
3

1

,

i

ijT  (j = 1,…,m) 
(9) 

For example, for the shopping path <AB, BC, CD, DE, ED, DC, CD, DE, EF> shown in Figure 7, 

there is a palindrome-contained pattern <CD, DE>→<ED, DC>→<CD, DE>, so this shopping path 

can be simplified as a mainstream of shopping path <AB, BC, CD, DE, EF>. 

 

Figure 7. An illustrative example for palindrome-contained pattern. 

In a shopping transaction path <(AB, 1, Ø), (BC, 1, Ø), (CD, 3, Ø), (DE, 2, { i1}), (ED, 4, {i2, i3}), 

(DC, 6, { i4, i5, i6}), (CD, 5, {i7}), (DE, 1, Ø), (EF, 1, Ø)>, a palindrome-contained pattern <CD, 

DE>→<ED, DC>→<CD, DE> appears. Triple elements sharing the same edge (without considering 

the direction of path segments) in this palindrome-contained pattern can be combined, i.e., (CD, 3, Ø), 

(DC, 6, { i4, i5, i6}) and (CD, 5, {i7}) can be combined into a single triple, and (DE, 2, { i1}), (ED, 4, 

{i2, i3}) and (DE, 1, Ø) also can be merged into one. Take the combination process of (CD, 3, Ø), (DC, 6, 

{i4, i5, i6}) and (CD, 5, {i7}) as an example. First, we know that twalking is 1, which equals the smallest 

of time spent per unit length in this shopping transaction path. tCD is computed as 1 + (3 − 1) + (6 − 1) 

+ (5 − 1) = 12, and TCD is Ø∪ {i4, i5, i6}∪ {i7} = {i4, i5, i6, i7}, so the result of the merging is (CD, 12, 

{i4, i5, i6, i7}). Thus, this shopping transaction path can be simplified as <(AB, 1, Ø), (BC, 1, Ø), (CD, 

12, {i4, i5, i6, i7}), (DE, 5, {i1, i2, i3}), (EF, 1, Ø) >. 



Sensors 2015, 15 5358 

 

 

5. Algorithm for Identifying Mainstreams of Shopping Transaction Paths 

The algorithm is an iterative process of filtering loop repeat patterns (i.e., Function 

LRP_Filtering(STP)) and palindrome-contained patterns (i.e., Function PCP_Filtering(STP)) for 

identifying mainstreams of shopping transaction path from shopping transaction paths, as shown in 

Algorithm 1. 

Algorithm 1 Identifying mainstreams of shopping transaction paths 

Input: Shopping transaction paths DSTP 

Output: Mainstreams of shopping transaction paths DMSTP 

Method: 

1. For each shopping transaction path STP in DSTP do {  

2.    while (loop repeat patterns and palindrome-contained patterns exist in STP) do { 

3.       Call LRP_Filtering(STP) to filter loop repeat patterns 

4.       Call PCP_Filtering(STP) to filter palindrome-contained patterns } 

5.    Add STP to DMSTP } 

6. Return DMSTP. 

5.1. Function LRP_Filtering(STP) 

Given a shopping transaction path STP = <(s0, t0, T0), (s1, t1, T1),…, (sn, tn, Tn)>, the process of 

filtering loop repeat patterns is an iterative procedure to find the start position of the loop (say µ) and 

the number of path segments in the loop (say λ), such that sµ+i = sµ+λ+i (i = 0,1,…, λ − 1; µ+λ+i ≤ n). If 

µ and λ satisfying the above conditions are found, the fragments <(sµ, tµ, Tµ),…, (sµ+λ-1, tµ+λ-1, Tµ+λ-1)> 

and <(sµ+λ, tµ+λ, Tµ+λ),…, (sµ+2λ-1, tµ+2λ-1, Tµ+2λ-1)> in STP form a loop repeat pattern. This procedure is 

given in sub-function Find_RepeatLoops(STP), and three data structures (i.e., path vector, hash table, 

and list of loop candidates) are used: 

Definition 14. A path vector (say PV) is a vector of pair (s, pos), where s is a path segment and pos 

is the previous position of s in PV. A hash table (say HT) stores the current position (i.e., cur_pos_seg) 

for each path segment (i.e., s), and a hash function f is defined in HT, such that HT[f(s)] = cur_pos_seg. 

A list of loop candidates (say List) is a list of triple (b_pos, e_pos, cur_pos) representing a loop 

candidate (i.e., the fragment <PV[b_pos].s, PV[b_pos+1].s, …, PV[e_pos].s>), where cur_pos is the 

current matching position between b_pos and e_pos. Based on these definitions, we have the following 

Function LRP_Filtering(STP), where the key part is the sub-function Find_RepeatLoops(SP). 

Function. LRP_Filtering(STP)  

Method: 

1.  While repeat loop pattern is found, do{ 

2.     (µ, λ, n_loops)Find_RepeatLoops(trans(STP)) 

3.     If repeat loop pattern is found, do { 

4. For STP, combine n_loops fragments, i.e., <(sµ, tµ, Tµ),…, (sµ+λ-1, tµ+λ-1, Tµ+λ-1)>, <(sµ+λ, tµ+λ, Tµ+λ),…, 

(sµ+2λ-1, tµ+2λ-1, Tµ+2λ-1)>, …, <(sµ + (n_loops-1) × λ, tµ+(n_loops-1)×λ, Tµ+(n_loops-1)×λ),…, (sµ+n_loops×λ-1, tµ+n_loops×λ-1, 

Tµ+n_loops×λ-1)>, to form a new STP according to Definition 12.} } 

5.  Return STP 

Sub-Function. Find_RepeatLoops(SP) 



Sensors 2015, 15 5359 

 

 

1.  Initialize PV, HT and List as empty 

2.  Suppose SP = <s0, s1, …, sn>. For each path segment si in SP, do { 

3. If si is a key in HT, let cur_pos_seg = HT[f(si)]; otherwise, insert a key-value pair (si, “null”) to HT and 

let cur_pos_seg=“null”. Push the pair (si, cur_pos_seg) onto PV, and get the position of this pair in PV 

(say new_cur_pos_seg). Set HT[f(si)] to be new_cur_pos_seg in HT.  

4.  For each triple (b_pos, e_pos, cur_pos) in List, do { 

5.         If PV[cur_pos+1].s equals to si, do { 

6.     If (cur_pos+1) equals to e_pos, repeat loops are found. Let µ be b_pos, λ be e_pos-b_pos+1. Call 

n_loopsTest_RepeatLoops(SP, µ, λ, 2). Return the triple (µ, λ, n_loops) and exit this sub-

function. Otherwise, let cur_pos++ and update this triple in List. } 

7.          Else delete this triple from List. } 

8. If cur_pos_seg equals to new_cur_pos_seg-1, repeat loops are found. Let µ be cur_pos_seg and λ be 1. 

Call n_loopsTest_RepeatLoops(SP, µ, λ, 2). Return the triple (µ, λ, n_loops) and exit this sub-

function. 

9.  While cur_pos_seg isn’t “null”, do { 

10.  Generate a candidate triple (cur_pos_seg, new_cur_pos_seg-1, cur_pos_seg) and add it to List. Let 

cur_pos_seg = PV[cur_pos_seg].pos.}} 

11.  No repeat loop pattern is found. Return the triple (“null”, “null”, “null”).  

Sub-Function. Test_RepeatLoops(SP, µ, λ, n_loops)  

1. If μ + (n_loops + 1) × λ − 1   n and <sμ, sμ+1, …, sμ+λ-1> = <sμ+n_loops×λ, sμ+n_loops×λ+1, …, sμ+(n_loops+1)×λ-1>, 

n_loops++ and then call n_loopsTest_RepeatLoops(SP, µ, λ, n_loops). 

2.  Return n_loops. 

We use a running example to explain the running process of sub-function Find_RepeatLoops(SP). 

Given a shopping path SP = <EA, AB, BC, CD, DE, EA, AB, BE, EA, AB, BE, EG, GD, DK>,  

the function reads path segments in SP one by one, and the process of finding loop repeat pattern is 

shown below. 

For the first path segment EA, EA cannot be found as a key in empty HT, so the key-value pair (EA, 

“null”) is inserted to HT, and the pair (EA, “null”) is pushed onto an empty PV. The position of this 

pair in PV is 0. Therefore, the value associated with EA is changed to 0 in HT. cur_pos_seg (which is 

“null”) doesn’t equal to new_cur_pos_seg-1 (which is -1). List still remains empty. 

For the second path segment AB, similar operations are done. After operations, the key-value pair 

(AB, 1) is added in HT, and the pair (AB, “null”) is pushed onto PV.  

Similarly, after reading the third path segment BC, the fourth CD, and the fifth DE, pairs (BC, 2), 

(CD, 3), (DE, 4) are inserted into HT, and pairs (BC, “null”), (CD, “null”), (DE, “null”) are pushed 

onto PV sequentially. Because cur_pos_seg keeps “null”, no candidate is generated. 

For the sixth path segment EA, it is found as a key in HT and cur_pos_seg is 0, which is the 

position of previous EA in PV. Push the pair (EA, 0) onto PV and set the value associated with EA 

(i.e., HT[f(EA)]) to be 5 in HT. Because cur_pos_seg is not “null”, a candidate (0, 4, 0) is generated 

and added to List. And then, cur_pos_seg = PV[0].pos = “null”, so no candidate is generated here. 

For the seventh path segment AB, the pair (AB, 1) is pushed onto PV and HT[f(AB)] is set as 6. 

Since there is a loop candidate (i.e., triple (0, 4, 0)) in List, we need to compare AB with the next path 

segment of this candidate (i.e., PV[0+1].s). Both of them are AB and they are matching, so we set this 



Sensors 2015, 15 5360 

 

 

triple to be (0, 4, 1). Because cur_pos_seg is 1, a new candidate (1, 5, 1) is produced and there are two 

candidates in List now. 

When reading the eighth one BE, the pair (BE, 7) is pushed onto PV and HT[f(BE)] is 7. For the 

candidate (0, 4, 1), the next path segment is PV[1+1].s=BC, which does not match BE. So this 

candidate should be deleted from List. For the candidate (1, 5, 1), the next path segment, i.e., 

PV[1+1].s=BC, does not match BE, so this candidate also needs to be pruned. No new candidate is 

generated, since cur_pos_seg equals to “null”. 

For the ninth one EA, the pair (EA, 5) is added at the end of PV and the value associated with EA is 

set as 8 in HT. Similarly, two new candidates (5, 7, 5) and (0, 7, 0) are obtained and added to List. 

Similarly, when reading the tenth path segment AB, the pair (AB, 6) is pushed onto PV and 

HT[f(AB)] is set as 9. For candidates, triple (5, 7, 5) becomes (5, 7, 6), and triple (0, 7, 0) is converted 

to (0, 7, 1). And two new candidates, i.e., triple (6, 8, 6) and triple (1, 8, 1), are generated. 

When reading the eleventh one BE, the pair (BE, 7) is added at the end of PV and HT[f(BE)] is set 

as 10. For the candidate (5, 7, 6), the next path segment PV[6+1].s equals to BE, and is the last one in 

this candidate. Thus repeat loops are found, and µ, λ are 5, 3 respectively. And then, we call 

Test_RepeatLoops(SP, 5, 3, 2). Since <s5, s6, s7> (i.e., <EA, AB, BE>) are not equal to <s11, s12, s13> 

(i.e., <EG, GD, DK>), n_loops which equals 2 is returned. Thus, we have n_loops equals 2.  

5.2. Function PCP_Filtering (STP) 

Given a shopping transaction path STP = <(s0, t0, T0), (s1, t1, T1),…, (sn, tn, Tn)>, the procedure of 

filtering palindrome-contained patterns (i.e., STP1→STP2→STP3, where Trans(STP1), the reverse-order 

path of Trans(STP2), and Trans(STP3) are equal (say SP)) is an iterative process of finding the start 

position of palindrome-contained pattern (say µ), and the number of path segments of SP (say λ), such 

that sµ+i = sµ+2λ-i-1,reverse = sµ+2λ+i (i = 0,1,…, λ − 1; µ + 2λ + i ≤ n), where sµ+2λ-i-1,reverse is the reverse-order 

path segment of sµ+2λ-i-1. If µ and λ satisfying the above conditions are found, the connections of three 

fragments <(sµ, tµ, Tµ),…, (sµ+λ-1, tµ+λ-1, Tµ+λ-1)>, <(sµ+λ, tµ+λ, Tµ+λ),…, (sµ+2λ-1, tµ+2λ-1, Tµ+2λ-1)> and 

<(sµ+2λ, tµ+2λ, Tµ+2λ),…, (sµ+3λ-1, tµ+3λ-1, Tµ+3λ-1)> in STP form a palindrome-contained pattern. This 

procedure is presented in the sub-function Find_PCP(STP), and three data structures (i.e., vector of 

path segment, list of candidate, and list of candidate suffix) are adopted.  

Definition 15. A vector of path segment (say V) stores path segments. Suppose a potential 

palindrome-contained pattern is SP→SPreverse→SP. A list of candidate (say LC) is a list of triple 

(b_pos, e_pos, cur_pos), and each triple represents a candidate SP (i.e., the fragment <V[b_pos], 

V[b_pos+1], …, V[e_pos]>), where cur_pos is the current matching position between b_pos and e_pos. 

A list of candidate suffix (say LCS) is a list of pair (inter_posi, e_posi), and each pair represents a 

candidate suffix of SP (i.e., the fragment <V[inter_posi], V[inter_posi+1], …, V[e_posi]> ). 

Based on the above definition, we have the following Function PCP_Filtering (STP): 



Sensors 2015, 15 5361 

 

 

 

Function. PCP_Filtering(STP) 

Method: 

1. While palindrome-contained pattern is found, do{ 

2.    (µ, λ)Find_PCP(trans(STP)) 

3.    If palindrome-contained pattern is found, do { 

4. For STP, combine fragments <(sµ, tµ, Tµ),…, (sµ+λ-1, tµ+λ-1, Tµ+λ-1)>, <(sµ+λ, tµ+λ, Tµ+λ),…, (sµ+2λ-1, 

tµ+2λ-1, Tµ+2λ-1)> and <(sµ+2λ, tµ+2λ, Tµ+2λ),…, (sµ+3λ-1, tµ+3λ-1, Tµ+3λ-1)> to form a new STP according to 

Definition 13.} } 

5. Return STP 

Sub-Function. Find_PCP(SP) 

1. Initialize V, LC and LCS as empty 

2. Suppose SP = <s0, s1, …, sn>. For each path segment si in SP, do { 

3.    If V is not empty, do { 

4. Get the position of the last element of V (say cur_pos_seg), and compare the last element of V 

with si. If they are reverse-order, let variable reverse-order be true. Otherwise, let variable reverse-

order be false. } 

5.    Else let reverse-order be false.  

6.    Push si onto V.  

7.    For each candidate triple (b_pos, e_pos, cur_pos) in LC, do { 

8.       If cur_pos is “null”, let cur_pos be b_pos; otherwise, let cur_pos be added by 1. 

9.       Compare V[cur_pos] with si. If they are same, do { 

10.    Let this triple be (b_pos, e_pos, cur_pos) and update it in LC. If cur_pos equals to e_pos, then a 

palindrome-contained pattern is found. Let µ be b_pos, λ be e_pos-b_pos+1, return the pair of µ 

and λ, and exit this sub-function. } 

11.       Else delete this candidate triple from LC. } 

12.    For each pair (inter_posi, e_posi) in LCS, do { 

13. If inter_posi-1   0, and V[inter_posi-1] and si are reverse-order, set this pair as (inter_posi-1, 

e_posi) in LCS, and generate a new candidate (inter_posi-1, e_posi, “null”) in LC. Otherwise, 

delete this pair from LCS. } 

14.    If reverse-order is true, do { 

15.       Produce a candidate (cur_pos_seg, cur_pos_seg, “null”) and insert it to LC. 

16.       Generate a candidate suffix (cur_pos_seg, cur_pos_seg) and add it to LCS. } }  

17. No palindrome-contained pattern is found. Return the pair of “null” and “null”.  

In the following, we illustrate a running example to show the running procedure of sub-function 

Find_PCP(SP). For instance, given a shopping path SP = <AB, BC, CD, DE, EF, FE, ED, DC, CD, 

DE, EF, FG>, its process of finding palindrome-contained pattern is as described below:  

For the first path segment AB, simply let reverse-order be false and push AB onto V. When reading 

the second path segment BC, we compare the last element of V, which is AB, with BC. Because they 

are not reverse-order, reverse-order is false. Then, we push BC onto V. 

Similarly, we push CD, DE, EF onto V. And no candidate or candidate suffix is generated. 



Sensors 2015, 15 5362 

 

 

For the sixth path segment FE, since the last element of V (EF) and FE are reverse-order, reverse-order 

is true. We push FE onto V. A candidate (4, 4, “null”) and a candidate suffix (4, 4) are generated. 

When reading the seventh path segment ED, reverse-order is false, and ED is pushed onto V. For 

candidate (4, 4, “null”), we compare V[4] (EF) with ED and they do not match, so we delete this 

candidate from LC. For candidate suffix (4, 4), since V[3] (DE) is reverse-order path segment of ED, 

this candidate suffix becomes (3, 4) and a new candidate (3, 4, “null”) is generated.  

When reading the eighth path segment DC, reverse-order is also false, and DC is pushed onto V. 

For candidate (3, 4, “null”), since V[3] (DE) and DC do not match we also prune this candidate from 

LC. For candidate suffix (3, 4), V[2] (CD) and DC are reverse-order, so this candidate suffix turns to 

(2, 4) and a new candidate (2, 4, “null”) is produced.  

When reading the ninth path segment CD, reverse-order is true and CD is pushed onto V. For 

candidate (2, 4, “null”), since V[2] (CD) and CD match, this candidate turns to (2, 4, 2). For candidate 

suffix (2, 4), since V[1] (BC) and CD are not reverse-order, we delete this candidate suffix from LCS. 

Because reverse-order is true, a candidate (7, 7, “null”) and a candidate suffix (7, 7) are produced. 

When reading the tenth one DE, reverse-order is false and DE is pushed onto V. For candidate (2, 4, 2), 

since V[3] (DE) and DE are matching, it turns to (2, 4, 3). For candidate (7, 7, “null”), it is deleted for 

mismatch. For candidate suffix (7, 7), since V[6] (ED) and DE are reverse-order, this candidate suffix 

becomes (6, 7) and a new candidate (6, 7, “null”) is added to LC. 

Then for the eleventh one EF, reverse-order is also false and EF is pushed onto V. For candidate  

(2, 4, 3), since V[4] (EF) and EF are matching, this candidate becomes (2, 4, 4). Thus, a palindrome-

contained pattern is found, and µ, λ are 2, 3 respectively. 

6. Generation of Synthetic Shopping Transaction Paths 

In order to generate a synthetic workload, we build an agent [41]-based simulator to simulate the 

scenario of an individual shopping trip. The complete flow diagram for this simulator is shown in Figure 8, 

which mainly includes four steps: construction of a path graph, initialization of customer agents, generating 

a shopping transaction path, and attaching extra loop repeat patterns and palindrome-contained patterns. 

Among them, Step 4 is optional for testing. Steps 2, 3 and 4 can be performed repeatedly for |D| times 

and then a database of shopping transaction paths D will be produced. In the following, we discuss 

these four steps in detail. For the sake of easy reference, the meanings of various variables used in our 

simulator are summarized in Table 4. 



Sensors 2015, 15 5363 

 

 

 

Figure 8. Flow diagram for generating a shopping transaction path. 

Table 4. Meaning of various variables in our simulations. 

Notation Description 

nterminal_points, npath_segments The number of terminal points, path segments in path graph G respectively 

nitems The number of different items 

ShoppingTime(iitem) The shopping time for iitem 

j A shopper 

speednormal, j, speed j  The normal, actual moving speed for j respectively 

nplan, j The number of different planned-purchasing items for j 

ninterest, j The number of different items that j feels interested in  

Lplan, j A set of planned-purchasing items for j 

Linterest, j A set of items that j feels interested in 

Splan, j
 A set of path segments that j plans to visit 

Sinterest, j A set of path segments that j feels interested in 

normalspeed _
, normalspeed _  The mean, the standard deviation of the Gaussian distribution of speednormal,j 

lower_boundnplan,j, 

upper_boundnplan,j 

The lower bound, the upper bound of the uniform distribution  

of nplan, j on integers respectively 

nextra_interest, j 
The number of additional items (besides items in Lplan, j) that  

j feels interests in 



Sensors 2015, 15 5364 

 

 

Table 4. Cont. 

Notation Description 

lower_boundnextra_interest, j, 

upper_boundnextra_interest, j 

The lower bound, the upper bound of the uniform distribution  

of nextra_interest,j on integers respectively 

)(
k,itemmeShoppingTi i

,

)(
k,itemmeShoppingTi i  

The mean, the standard deviation of the Gaussian distribution of 

ShoppingTime(iitem,k) respectively 

PerceivedTimePressurej The perceived time pressure for j 

eimePressurPerceivedT  
The standard deviation of the Gaussian distribution of 

PerceivedTimePressurej 

times, j Time spent in path segment s for j 

timewalking, s, j, timeshopping, s, j Time spent for walking, shopping in path segment s for j respectively 

Distance(j, s) The distance between j and path segment s 

|D| The number of shopping transaction paths in D 

L  The average number of path segments in shopping transaction paths 

nLRP, nPCP 
The number of loop repeat patterns,  

palindrome-contained patterns respectively 

6.1. Step 1. Construction of Path Graph G 

A path graph, the container for customer agents moving in, is constructed in this step. We need to 

specify the components of a path graph: the set of terminal points of path segments, and the set of path 

segments. A length table LT and a segment-item table SIT are also needed to be produced. And then, 

an item-segment table IST can be derived. 

6.2. Step 2. Initialization of a Shopper Agent 

This step includes the following two sub-steps. 

6.2.1. Shopper Agent Initialization 

In this sub-step, a shopper agent representing an in-store shopper (say j) is initialized. Each shopper 

agent has the following parameters, which need to be specified: 

(1) Normal moving speed speednormal, j 

speednormal, j means the normal moving speed of j, which is derived from a Gaussian distribution 

with mean normalspeed _  and standard deviation normal_speed .  

(2) Number of different planned-purchasing items nplan, j 

nplan, j represents the number of different items that are planned to be purchased by j, and is derived 

from an uniform distribution on the integers lower_boundnplan, j, lower_boundnplan, j + 1, …, 

upper_boundnplan, j. 

(3) A set of planned-purchasing items Lplan, j 



Sensors 2015, 15 5365 

 

 

Lplan, j means the set of different items that are planned to be purchased, and can be written as {iitem,1, 

iitem,2, …, iitem,nplan, j}. 

(4) Number of different items that j feels interested in (say ninterest, j) 

ninterest, j is the sum of nplan,j and the number of additional items (besides items in Lplan, j) that j feels 

interests in (say nextra_interest, j). The latter is derived from an uniform distribution on the integers 

lower_boundnextra_interest, j, lower_boundnextra_interest, j + 1, …, upper_boundnextra_interest, j. 

(5) A set of items that j feels interested in (say Linterest, j) 

Linterest, j has the form {iitem,1, iitem,2, …, iitem,ninterest, j}, and each item iitem,k is associated with its 

shopping time ShoppingTime(iitem,k) (k = 1, 2,…, ninterest, j). ShoppingTime(iitem,k) is derived from a 

Gaussian distribution with mean )( ,kitemmeShoppingTi i  and standard deviation )( ,kitemmeShoppingTi i .  

(6) Perceived time pressure [42] PerceivedTimePressurej  

PerceivedTimePressurej represents j’s perceived time pressure during a shopping trip, and 

significantly affects j’s moving speed. PerceivedTimePressurej is also derived from a Gaussian 

distribution with mean 1 and standard deviation essurePrimePerceivedT . 

For j, his/her actual moving speed speedj can be simply computed as below: 

speedj = PerceivedTimePressurej   speednormal, j. (10) 

6.2.2. Generating Splan, j and Sinterest, j, and Choosing the Current Visit Target 

In order to decide which direction a shopper agent would like to go, we need to know which path 

segments j plans to visit. These path segments are visit targets for j, and j will visit these path segments 

one by one. Here we use Splan, j to represent the set of path segments that j plans to visit, and use Sinterest,j 

to represent the set of path segments that j feels interested in. According to the item-segment table IST, 

we can derive Splan, j by mapping each item in Lplan,j to path segments where this item is sold. Similarly, 

Sinterest, j also can be derived according to IST and Linterest,j.  

Definition 16. Given a path graph G, suppose a shopper j is at terminal point v, and the start 

terminal point and the end terminal point of path segment s are s.b and s.e respectively. Then the 

distance between the shopper j and the segment s is defined as below: 

Distance(j, s) = min(shortest_path_length(j, s.b), shortest_path_length(j, s.e)) (11) 

where function shortest_path_length(·, •) means length of the shortest path between two terminal 

points in G, and function min(·, •) represents the minimal one of two values. In the above definition, 

length of the shortest path between two terminal points in G can be obtained using well-known 

Dijkstra’s algorithm [43,44]. Thus, based on the definition of distance between a shopper and a path 

segment, we simply use the following method to decide the current visit target.  

Method 1 (deciding the visiting target). For a shopper j, among the elements of Splan, j, the nearest path 

segment is regarded as the current visit target. If Splan, j is empty, “checkout” becomes the moving target. 

The current visit target remains unchanged until the current visit target has been visited and Splan, j  

is updated. 



Sensors 2015, 15 5366 

 

 

6.3. Step 3. Generation of a Shopping Transaction Path 

The production of a shopping transaction path can be regarded as a repetitive process of deciding 

which path segment si (i = 1,2,…,n) should be chosen as the next step, and generating unit time per 

unit length spent in si (say ti) and the itemset purchased in si (say Ti). 

6.3.1. Decision on the Next Path Segment 

For simplicity, we suppose the walking process of a shopper j is as follows: first, j selects a visit 

target, and then he/she walks along the shortest path to the visit target. When he/she reaches the current 

visit target, he/she needs to decide the next visit target. The process is repeated, until he/she finishes 

his/her shopping and arrives at “checkout”. Thus, we have the following method for deciding the next 

path segment. 

Method 2 (deciding the next path segment). Given a path graph G, if a shopper j hasn’t reached the 

current visit target, the next section along the shortest path to the current visit target is selected as  

the next path segment for j. If j arrives at the current visit target, he/she considers and decides the next 

visit target. Then, the next path segment along the shortest path to the next visit target is chosen as the 

next section.  

In this method, the shortest path to a visit target can be obtained by popular Dijkstra’s  

algorithm [43,44]. 

6.3.2. Sub-Step 3.2 Generating ti and Ti, and Updating Lplan, j, Linterest, j, Splan, j, Sinterest, j and Visiting Target 

(1) Generating ti and Ti 

For a shopper j, ti is the quotient of time spent in si (say timesi, j) divided by the length of si (say si.l). 

timesi, j consists two parts: time spent for walking in si (say timewalking, si, j) and time spent for shopping 

in si (say timeshopping, si, j). timewalking, si, j can be computed as below: 

timewalking, si, j = si.l/speedj = si.l/(PerceivedTimePressurej   speednormal, j) (12) 

where speedj is j’s actual moving speed. 

For simplicity, the value of timeshopping, si, j depends on whether j feels interested in si (that is  

si   Sinterest, j) or not, and is computed as below: 

timeshopping, si, j =













jinteresti

jinteresti

ΓiLii

item

ss

ssimeShoppingTi

iSitemjinterestitemitem

,

,

 ,

 if                               0                             

 if   )(         
,  (13) 

where 
isΓ  is the itemset sold in si and can be obtained from SIT. 

For si, Ti simply equals to the set of items that belong to both Lplan, j and 
isΓ . 

(2) Updating Lplan, j, Linterest, j, Splan, j, Sinterest, j and visiting target 

If si Sinterest, j, nothing needs to be updated. Otherwise, since si has been visited, it should be 

deleted from Sinterest, j. For the reason that Ti has been purchased at si, items in Ti need to be removed 



Sensors 2015, 15 5367 

 

 

from Lplan,j and Linterest. If si Splan, j, si also should be pruned from Splan, j, and the visiting target should 

be updated further using Method 1, which is given in Section 6.2.2. 

6.4. Step 4. Attaching Extra Loop Repeat Patterns and Palindrome-Contained Patterns 

Producing extra loop repeat patterns and palindrome-contained patterns are exactly the reverse 

processes of simplifying these two patterns which are presented in Definitions 12 and 13. The methods 

for producing a loop repeat pattern and a palindrome-contained pattern are described below: 

Method 3 (producing a loop repeat pattern). A shopping transaction path, i.e., 

STPprefix→STPcombine→STPsuffix, can be transformed to any STPprefix→STP1→STP2→…→ 

STPn→STPsuffix, where STPcombine=<(s1, t1, T1), (s2, t2, T2),…, (sλ, tλ, Tλ)>, STPi = <(s1, t1,i, T1,i), (s2, t2,i, 

T2,i),…, (sλ, tλ,i, Tλ,i)>, STPcombine and all STPi (i = 1,…,n) share the same navigation pattern (say 

Trans(TSP) = <s1, s2, …, sλ>), only if the following equations are satisfied: 

tj = twalking + 


n

i

ijt
1

purchasing ),(  (j = 1,…,λ) 
(14) 

tpurchasing(j,i) = tj,i − twalking (i = 1,…,n, j = 1,…,λ) (15) 

Tj = 
m

i

ijT
1

,



 (j = 1,…,λ) 
(16) 

where twalking is the smallest value of time spent per unit length in this shopping transaction path. 

Method 4 (producing a palindrome-contained pattern). A shopping transaction path, i.e., 

STPprefix→STPcombine→STPsuffix, can be transformed to any STPprefix→STP1→STP2→STP3→STPsuffix, 

where STPcombine = <(s1, t1, T1), (s2, t2, T2),…, (sλ, tλ, Tλ)>, STPi = <(s1, t1,i, T1,i), (s2, t2,i, T2,i),…, (sλ, tλ,i, 

Tλ,i)> (i = 1, 3), STP2 = <(sλ,reverse, tλ,2, Tλ,2), (sλ-1,reverse, tλ-1,2, Tλ-1,2), …, (s1,reverse, t1,2, T1,2)>, only if the 

following equations are satisfied: 

tj = twalking + 


3

1

purchasing ),(
i

ijt  (j=1,…,λ) 
(17) 

tpurchasing(j,i) = tj,i − twalking (i=1,2,3, j=1,…,λ) (18) 

Tj = 
3

1

,

i

ijT  (j=1,…,λ) 
(19) 

where twalking is the smallest value of time spent per unit length in this shopping transaction path. 

Therefore, in order to produce a loop repeat pattern or palindrome-contained pattern, firstly, we 

randomly choose a fragment of shopping transaction path as STPcombine. And then, transform STPcombine 

according to Method 3 or Method 4. Multiple loop repeat patterns and palindrome-contained patterns 

can be produced after executing the above process multiple times. 

For a database of shopping transaction paths D, five parameters are introduced here: the number of 

loop repeat patterns (say nLRP), the number of palindrome-contained patterns (say nPCP), the average 

number of path segments in STPcombine for loop repeat patterns (say LRP ), the average number of path 

segments in STPcombine for palindrome-contained patterns (say PCP ), the average repeat times in loop 

repeat patterns (say repeatn ). 



Sensors 2015, 15 5368 

 

 

7. Experimental Results 

To assess the performance of the algorithm of identifying the mainstream shopping transaction 

paths and PFNP-forest algorithm, we conducted several experiments on a PC with a 3.00GHz Intel 

Core™ 2 Duo E8400 CPU (Santa Clara, CA, USA) and 4GB main memory, running Windows 7 

Enterprise Edition. All algorithms are implemented using VC++ 2010. In these experiments, we 

establish a path graph, which has 159 terminal points and 554 path segments, as an example to 

generate shopping transaction paths. Without specific explanations, Default values of various 

parameters used in our simulations are summarized in Table 5. Since the kernel parts of identifying 

mainstreams are Function LRP_Filtering() (which is used for filtering loop repeat patterns) and Function 

PCP_Filtering() (which is for filtering palindrome-contained patterns), we test the performance of these 

two functions. 

Table 5. Default values of various parameters used in our simulations.  

Parameter Value Parameter Value Parameter Value 

nterminal_points 159 lower_boundnplan, j 1 |D| 1000 

npath_segments 554 upper_boundnplan, j 20 repeatn  3 

nitems 3000 lower_boundnextra_interest, j 0 nLRP  1000 

normalspeed _  0.6 upper_boundnextra_interest, j 8 nPCP 1000 

normal_speed  0.1 )(
k,itemmeShoppingTi i  1 LRP  3 

essurePrimePerceivedT  0.1 )(
k,itemmeShoppingTi i  0.5 PCP  3 

7.1. Variations of nLRP (or nPCP) 

Firstly, variations of different execution times with different values of nLRP (or nPCP) are evaluated 

and compared. We run the simulation (without Step 4) 1000 times and obtain an original database of 

shopping transaction paths with |D| = 1000 and L  = 57.4. And then, extra 1000, 2000, 3000, 4000, 

5000 and 6000 loop repeat patterns (or palindrome-contained patterns) are attached to the original 

database with LRP  = 3, PCP  = 3, and repeatn  = 3, respectively, using Step 4 in simulation. The execution 

time of Function LRP_Filtering() and Function PCP_Filtering() in response to different nLRP (or nPCP) 

are shown in Figure 9.  

 

Figure 9. Execution time in response to changes in different nLRP (or nPCP). 



Sensors 2015, 15 5369 

 

 

We can find that the execution time of Function LRP_Filtering() is about three times that of 

Function PCP_Filtering() for the same nLRP (or nPCP). Both of them increase linearly with the increase 

of nLRP (or nPCP) and have a good scalability. 

7.2. Variations of LRP  (or PCP ) 

Secondly, we test the scalability of these two functions with the increasing of parameter LRP  (or 

PCP ). Similarly, we obtain the original database of shopping transaction paths with |D| = 1000 and  

L  = 57.4 by running the simulation (without Step 4) 1000 times. Then extra 1000 loop repeat patterns 

(or palindrome-contained patterns), whose LRP  (or PCP ) is 2, 3, 4, 5, 6, 7 and 8, are attached to the 

original database respectively. The impact of LRP  and PCP  to the execute time is shown in Figure 10. 

We can find that both these two functions have a relatively stable execution time with the increase of 

LRP  (or PCP ).  

 

Figure 10. Execution time in response to changes in different LRP  (or PCP ). 

7.3. Variations of |D| 

Thirdly, the impact of Variations of |D| on the execution time is examined. We run the simulation 

(without Step 4) 500, 1000, 1500, 2000, 2500, 3000 times, respectively, and obtain the corresponding 

databases of shopping transaction paths. The values of L  of these databases are 57.7, 57.4, 57.0, 56.9, 

56.9 and 57.0, respectively, which are approximately 57. Then, an extra one loop repeat pattern  

(or palindrome-contained pattern) with LRP  = PCP  = 3 and repeatn  = 3 is attached to each shopping 

transaction path of these databases by using Step 4 in the simulator. The experimental results are shown 

in Figure 11. It is obvious that the execution time of these two functions increases with the increase of 

|D|, and both of them have a good scalability.  



Sensors 2015, 15 5370 

 

 

 

Figure 11. Execution time in response to changes in different |D|. 

7.4. Variations of L  

The fourth test examines the execution performance of these two functions with varying L . To 

obtain different databases of shopping transaction paths with different L , we set the value of the pair 

(lower_boundnplan, j, upper_boundnplan, j) to (1, 1), (1, 8), (1, 18), (5, 25), (12, 30) and (20, 36), and 

running the simulation (without Step 4) 1000 times respectively. Thus we generate six databases of 

shopping transaction paths whose L  is 17.4, 35.7, 53.1, 71.1, 89.5 and 105.0, respectively. The 

difference between successive values of these L  is approximately 18. Then, we test Function 

LRP_Filtering() and Function PCP_Filtering() on these databases, and the experimental results are 

given in Figure 12. We can find that the execution time of these two functions increases in a linear 

manner, and both of these two functions show a good scalability with the increase of L . 

 

Figure 12. Execution time in response to changes in different L . 

7.5. Variations of repeatn  

Since only Function LRP_Filtering() has the parameter repeatn , here we test the impact of variations 

of repeatn  on the execution time of Function LRP_Filtering(). After obtaining the original database of 

shopping transaction paths with |D| = 1000 and L  = 57.4, 1000 loop repeat patterns with varying repeatn  

(which are 2, 3, 4, 5, 6) are attached to the original database respectively, and then the corresponding 

databases with varying repeatn  are obtained. We test the varying execution time for these databases and 



Sensors 2015, 15 5371 

 

 

show the experimental results in Figure 13. We find that the execution time is almost stable with 

different repeatn . This result also can be obtained by analysing Function LRP_Filtering(). Since varying 

repeatn  will not change the number of repeat loop patterns that are found, the execution times will not 

change too much for different repeatn . 

 

Figure 13. Execution time in response to changes in different repeatn . 

8. Contributions toward a Real Supermarket Scenario 

The contributions of the framework towards a real supermarket scenario include the following 

aspects: (1) It provides a feasible way for retail practitioners to record customers’ shopping trajectories 

associated with their purchasing behaviors using RFID technology; (2) It designs a path graph schema 

with the support of a segment-item table and item-segment table, which can be used for the mapping 

between the physical world and the semantic cyber space. After the mapping, the data semantics can 

be understood by retail practitioners; (3) It offers a practical approach for preprocessing raw in-store 

RFID data, which contains five steps: data ordering and compression, data merging and anomaly 

detection, segment extraction, segment reassembling and extracting mainstream shopping transaction 

paths. Based on this approach, the raw data will become reliable and clean for retail practitioners;  

(4) It aims at mining actionable navigation patterns from a combination of customers’ shopping paths 

and their purchasing behavior data. Actionable knowledge is quite useful for decision making [24,25]. 

For example, we firstly cluster trajectories according to the duration of customers’ stays in the store. 

Then, practitioners can intuitively explore long “stock-up” trajectories where a long time is spent and 

many different types of products are purchased by customers. Some interesting patterns may be 

discovered by data mining algorithms, e.g., shoppers of these “stock-up” trajectories tend to frequently 

walk through a certain popular spot. Thus, decision-makers may consider offering active services, such 

as product recommendations and advertising, in that spot. 

9. Conclusions 

In this paper, we use the retail industry as an example to explore the potential of RFID technology 

for indoor mapping and navigation. In a supermarket scenario, RFID provides the ability to interact 

with items (i.e., transport carts, trolleys, kegs and valuable products) without physical contact. Thus, 

item-level RFID infrastructures not only provide item handling efficiency, but also offer a promising 



Sensors 2015, 15 5372 

 

 

way to capture customers’ in-store behavior data and then gain insight into these data using data 

mining technology.  

In this context, we provide a framework for mining actionable navigation patterns by combining 

RFID in-door mapping and data mining techniques. In the framework, multi-source in-door RFID data 

(i.e., shopping path data and RFID-supported customers’ purchasing behavior data) is integrated 

together for in-depth customers’ behavior analytics. The framework consists of four modules: (1) mapping 

from the physical space to the cyber space; (2) data preprocessing; (3) data mining mechanism; and  

(4) knowledge understanding and utilization. Among them, the kernel part, i.e., the scheme of 

extracting mainstream shopping transaction paths, is discussed in detail. The scheme of identifying 

mainstreams aims at catching the mainstream path sequences while discarding unnecessary redundant 

and repeated details, and is quite different from the scheme of extracting maximal forward reference. 

Two types of redundant patterns, i.e., loop repeat pattern and palindrome-contained pattern, are 

recognized, and the corresponding algorithms are proposed and evaluated. Experimental results show 

that the algorithm is efficient and scalable for filtering these redundant patterns. On the whole, this 

work builds a bridge between indoor positioning and advanced data mining technologies, and provides 

a feasible way to study customers’ shopping behaviors via multi-source RFID data. 

Acknowledgments 

We would like to thank Longbing Cao (University of Technology, Sydney) for helpful suggestions. 

This work is supported by National Natural Science Foundation of China (No. 71271191), the National 

Science & Technology Pillar Program during the 12th Five-year Plan Period of China 

(2012BAF12B11), Zhejiang Provincial Natural Science Foundation of China (No. Y1110960) and 

Scientific Research Foundation for the Returned Overseas Chinese Scholars (Ministry of Human 

Resources and Social Security of China, 2013). 

Author Contributions 

Bin Shen has initiated the idea of the work, conducted the research design and implemented the 

research. Qiuhua Zheng, Xingsen Li and Libo Xu have participated in concept, algorithm design and 

implementation and commented on the manuscript. Bin Shen has written the manuscript. The final 

manuscript has been approved by all authors. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Khoshelham, K.; Elberink, S.O. Accuracy and Resolution of Kinect Depth Data for Indoor 

Mapping Applications. Sensors 2012, 12, 1437–1454. 

2. Girard, G.; Cote, S.; Zlatanova, S.; Barette, Y.; St-Pierre, J.; van Oosterom, P. Indoor Pedestrian 

Navigation Using Foot-Mounted IMU and Portable Ultrasound Range Sensors. Sensors 2011, 11, 

7606–7624. 



Sensors 2015, 15 5373 

 

 

3. Ogawa, K.; Verbree, E.; Zlatanova, S.; Kohtake, N.; Ohkami, Y. Toward Seamless Indoor-Outdoor 

Applications: Developing Stakeholder-Oriented Location-Based Services. Geo-Spat. Inf. Sci. 

2011, 14, 109–118. 

4. Khoshelham, K.; Altundag, D.; Ngan-Tillard, D.; Menenti, M. Influence of Range Measurement 

Noise on Roughness Characterization of Rock Surfaces Using Terrestrial Laser Scanning. Int. J. 

Rock Mech. Min. Sci. 2011, 48, 1215–1223. 

5. Gu, T.; Wang, L.; Wu, Z.Q.; Tao, X.P.; Lu, J. A Pattern Mining Approach to Sensor-Based 

Human Activity Recognition. IEEE Trans. Knowl. Data Eng. 2011, 23, 1359–1372. 

6. Gu, Y.; Lo, A.; Niemegeers, I. A survey of Indoor Positioning Systems for Wireless Personal 

Networks. IEEE Commun. Surv. Tutor. 2009, 11, 13–32. 

7. Isikdag, U.; Zlatanova, S.; Underwood, J. A BIM-Oriented Model for Supporting Indoor 

Navigation Requirements. Comput. Environ. Urban Syst. 2013, 41, 112–123. 

8. Angeles, R. RFID Technologies: Supply-Chain Applications and Implementation Issues.  

Inform. Syst. Manag. 2005, 22, 51–65. 

9. RFID Arena. Available online: http://www.rfidarena.com/2013/4/11/grocery-industry-operations-

are-facing-a-real-paradigm-shift.aspx (accessed on 7 December 2014). 

10. Prater, E.; Frazier, G.V.; Reyes, P.M. Future Impacts of RFID on E-Supply Chains in Grocery 

Retailing. Supply Chain Manag. Int. J. 2005, 10, 134–142. 

11. Roussos, G. Enabling RFID in Retail. Computer 2006, 39, 25–30. 

12. Loebbecke, C. Emerging Information System Applications in Brick-and-Mortar Supermarkets:  

A Case Study of Content Provision Devices and RFID-Based Implementations. In Proceedings of 

the 9th Pacific Asia Conference on Information Systems, Bangkok, Thailand, 7–10 July 2005. 

13. Larson, J.S.; Bradlow, E.T.; Fader, P.S. An Exploratory Look at Supermarket Shopping Paths.  

Int. J. Res. Mark. 2005, 22, 395–414. 

14. Sorensen, H. The Science of Shopping. Mark. Res. 2003, 15, 30–35. 

15. Sorensen, H. Inside the Mind of the Shopper: The Science of Retailing. Pearson Prentice Hall: 

Upper Saddle River, NJ, USA, 2009. 

16. Díaz-Vilariño, L.; Martínez-Sánchez, J.; Lagüela, S.; Armesto, J.; Khoshelham, K. Door 

Recognition in Cluttered Building Interiors Using Imagery and Lidar Data. In Proceedings of ISPRS 

Technical Commission V Symposium, Riva del Garda, Italy, 23–25 June 2014; Volume XL-5,  

pp. 203–209. 

17. Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of Wireless Indoor Positioning Techniques and 

Systems. IEEE Trans. Syst. Man Cybern. 2007, 37, 1067–1080. 

18. Zou, H.; Lu, X.; Jiang, H.; Xie, L. A Fast and Precise Indoor Localization Algorithm Based on an 

Online Sequential Extreme Learning Machine. Sensors 2015, 15, 1804–1824. 

19. RFIDinsider. Available online: http://blog.atlasrfidstore.com/active-rfid-vs-passive-rfid  

(accessed on 21 February 2015). 

20. Wikipedia. Available online: http://en.wikipedia.org/wiki/Radio-frequency_identification 

(accessed on 21 February 2015). 

21. Hightower, J.; Borriello, G.; Want, R. SpotON: An Indoor 3D Location Sensing Technology Based 

on RF Signal Strength; UW CSE Technical Report #2000-02-02: Univ. Washington, Seattle, WA, 

USA, 18 February 2000. 



Sensors 2015, 15 5374 

 

 

22. Ni, L.M.; Liu, Y.; Lau, Y.C.; Patil, A.P. LANDMARC: Indoor Location Sensing Using Active 

RFID. Wirel. Netw. 2004, 10, 701–710. 

23. Song J.; Haas, C.T.; Caldas, C.H. Tracking the Location of Materials on Construction Job Sites.  

J. Construct. Eng. Manag. 2006, 132, 911–918. 

24. Cao, L. Actionable Knowledge Discovery and Delivery. Wiley Interdiscip. Rev. Data Min.  

Knowl. Discov. 2012, 2, 149–163. 

25. Cao, L.; Zhang, C. Domain-Driven Actionable Knowledge Discovery in the Real World. In 

Lecture Notes in Artificial Intelligence; Ng, W.K., Kitsuregawa, M., Li, J., Eds.; Springer-Verlag: 

Berlin, Germany, 2006; Volume 3918, pp. 821–830. 

26. Mabroukeh, N.R.; Ezeife, C.I. A Taxonomy of Sequential Pattern Mining Algorithms. ACM Comput. 

Surv. (CSUR) 2010, 43, 3. 

27. Chen, M.-S.; Park, J.S.; Yu, P.S. Efficient Data Mining for Path Traversal Patterns. IEEE Trans. 

Knowl. Data Eng. 1998, 10, 209–221. 

28. Wang, Y.-T.; Lee, A.J. Mining Web Navigation Patterns With a Path Traversal Graph.  

Expert Syst. Appl. 2011, 38, 7112–7122. 

29. Borges, J.; Levene, M. Data Mining of User Navigation Patterns. In Web Usage Analysis and 

User Profiling; Springer: Berlin, Germany, 2000; pp. 92–112. 

30. Pei, J.; Han, J.; Mortazavi-Asl, B.; Zhu, H. Mining Access Patterns Efficiently from Web Logs.  

In Knowledge Discovery and Data Mining Current Issues and New Applications, Springer: Berlin, 

Germany, 2000; pp. 396–407. 

31. Shahabi, C.; Zarkesh, A.M.; Adibi, J.; Shah, V. Knowledge discovery from users web-page 

navigation. In Proceedings of the 7th International Workshop on Research Issues in Data 

Engineering (RIDE), Birmingham, UK, 7–8 April 1997; pp. 20–29. 

32. Xing, D.; Shen, J. Efficient Data Mining for Web Navigation Patterns. Inf. Softw. Technol. 2004, 

46, 55–63. 

33. Zhu, W.; Cao, J.; Xu, Y.; Yang, L.; Kong, J. Fault-Tolerant RFID Reader Localization Based on 

Passive RFID Tags. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 2065–2076. 

34. Trotter, M.S.; Durgin, G.D. Survey of Range Improvement of Commercial RFID Tags with Power 

Optimized Waveforms. In Proceedings of IEEE International Conference on RFID, Orlando, FL, 

USA, 14–16 April 2010; pp. 195–202. 

35. Jeffery, S.R.; Alonso, G.; Franklin, M.J.; Hong W.; Widom, J. Declarative Support for Sensor 

Data Cleaning. In Proceedings of the International Conference on Pervasive, Dublin, Ireland,  

7–10 May 2006; pp. 83–100. 

36. Gonzalez, H.; Han, J.; Li, X. Mining Compressed Commodity Workflows From Massive RFID 

Data Sets. In Proceedings of the 15th ACM International Conference on Information and 

Knowledge Management, Arlington, VA, USA, 5–11 November 2006; pp 162–171. 

37. Gonzalez, H.; Han, J.; Cheng, H.; Li, X.; Klabjan, D.; Wu, T. Modeling Massive RFID Data Sets: 

A Gateway-Based Movement Graph Approach. IEEE Trans. Knowl. Data Eng. 2010, 22, 90–104. 

38. Lee, C.-H.; Chung, C.-W. RFID Data Processing in Supply Chain Management Using a Path 

Encoding Scheme. IEEE Trans. Knowl. Data Eng. 2011, 23, 742–758. 



Sensors 2015, 15 5375 

 

 

39. Johnson, R.; Tsouri, G.R.; Walsh, E. Continuous and Automated Measuring of Compliance of 

Hand-Hygiene Procedures Using Finite State Machines and RFID. IEEE Instrum. Meas. Mag. 

2012, 15, 8–12. 

40. Wang, F.; Liu, S.; Liu, P. Complex RFID Event Processing. VLDB J. Int. J. Very Large  

Data Bases 2009, 18, 913–931. 

41. Terano, T.; Kishimoto, A.; Takahashi, T.; Yamada, T.; Takahashi, M. Agent-Based In-Store 

Simulator for Analyzing Customer Behaviors in a Super-Market. In Knowledge-Based and 

Intelligent Information and Engineering Systems; Springer: Berlin, Germany, 2009; pp. 244–251. 

42. Dhar, R.; Nowlis, S.M. The Effect of Time Pressure on Consumer Choice Deferral. J. Consum. Res. 

1999, 25, 369–384. 

43. Dijkstra, E.W. A Note on Two Problems in Connexion With Graphs. Numer. Math. 1959, 1, 269–271. 

44. Skiena, S. Dijkstra’s Algorithm. In Implementing Discrete Mathematics: Combinatorics and 

Graph Theory With Mathematica; Addison-Wesley: Reading, MA, USA, 1990; pp. 225–227. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 

http://creativecommons.org/licenses/by/4.0/

