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Abstract: The Wireless Sensor Network similarity search problem has received considerable 

research attention due to sensor hardware imprecision and environmental parameter variations. 

Most of the state-of-the-art distributed data centric storage (DCS) schemes lack 

optimization for similarity queries of events. In this paper, a DCS scheme with metric 

based similarity searching (DCSMSS) is proposed. DCSMSS takes motivation from vector 

distance index, called iDistance, in order to transform the issue of similarity searching into 

the problem of an interval search in one dimension. In addition, a sector based distance 

routing algorithm is used to efficiently route messages. Extensive simulation results reveal 

that DCSMSS is highly efficient and significantly outperforms previous approaches in 

processing similarity search queries. 

Keywords: Wireless Sensor Networks; distributed data centric storage; similarity search; 

range query; K-nearest neighbor query; sector based distance routing 

 

1. Introduction 

This paper considers a distributed information delivery and search service for one or more 

applications in a Wireless Sensor Network (WSN) that utilizes in-network storage, which is known as 

Data Centric Storage (DCS) [1]. The applications consist of a set of producer and consumer nodes that 
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can exchange information by relaying packets through neighboring sectors. Nodes have no explicit 

knowledge of each other but are aware of the applications. The distributed information delivery and 

search service is used to implement an information delivery and search layer between applications and 

nodes that provides enhanced reliability and improved flexibility. This paper introduces Data Centric 

Storage with Metric based Similarity Searching (DCSMSS), which is a highly scalable distributed 

information service based on Disk Based Data Centric Storage (DBDCS) [2] that incorporates similarity 

searching. A data query search for an exact match or for data within a specified similarity range is called 

similarity searching. Similarity searching is particularly useful where users seek data within a WSN that is 

either a match or close to a match. 

The member nodes in a sector or zone report the sensed event to their associated Sector Head (SH), 

which aggregates the received events at the end of each epoch (length of a Time Division Multiple 

Access (TDMA) slot assigned to each sector). The aggregated event is hashed to produce a hash key, 

which is mapped from a one dimensional domain into a metric space utilizing a normalized and 

adapted variant of iDistance [3]. The distance between a data point and its closest reference point plus 

a scaling value is called the point’s iDistance. In this paper distances between data points and reference 

points in the multi-dimensional space have been mapped to one-dimensional values. 

The DCSMSS scheme presented is used to balance information transfer loads across the network, 

enhance reliability and provide efficient similarity searching within a distributed network for two types 

of queries—range query and k-query. DCSMSS uses a lightweight Sector Based Distance (SBD) 

routing algorithm, presented in [2,4], to route inter-sector storage, intra-sector storage and query traffic. 

The domain of the derived hash key of an aggregated sensed event, denoted by HD, is mapped into the 

metric space of the DBDCS architecture. In order to balance the load among the sectors, a pivot point 

generation procedure is used dividing HD into almost equally populated sub-intervals, denoted by hDi, 

where hDi ≠ hDj and 0 ≤ i ≤ j ≤ S; S refers to the total number of sectors. In order to store an event, the 

target sector is mapped based on the derived hash key and pivot points. Furthermore, the target  

SH distributes the load among the member nodes based on the hash key value and distance to the  

member nodes. 

The remainder of this paper is structured as follows: Section 2 provides an overview of the related 

work in the literature. Network architecture, data processing and mapping, SBD routing, insertion and 

querying are illustrated in Section 3. Section 4 describes the SBD analytical model. This is followed by 

the simulation results and performance evaluation of DCSMSS and SBD presented in Section 5. The 

paper is concluded in Section 6. 

2. Related Work 

A detailed literature survey that discusses key research on DCS techniques is presented in [1,5]. 

This section mentions researches, which are closely related to the research reported on in this paper.  

In order to process similarity search queries efficiently, Chung, et al. [6] propose a novel framework 

over a data-centric storage structure, referred to as the Similarity Search Algorithm (SSA), based on 

the concept of a Hilbert Curve. The lack of global knowledge about the entire sensor database is 

identified as one of the major challenges in processing a sensor network similarity search query. 

However, in order to overcome this constraint, SSA presents a network layout based on a Hilbert 
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Curve, and hence, successfully avoids the need to collect data from all sensors when searching for the 

most similar data item. SSA divides the whole network recursively into 4l square quadrants where l 

denotes the number of levels. The center (referred to indexing node and denoted by I) of each square 

quadrant (cell) is responsible for storing a sub-range of the entire range of an event denoted by R where 

RL and RU denotes the lower bound and upper bound, respectively. The data sub-range for which IID  

(IDth indexing node) is responsible is denoted by (RL
ID, RU

ID) = (RL + (IID − 1) × r, RL + IID × r), where 

n × r = R, n is the number of indexing nodes. However, SSA is not applicable in multi-dimensional 

range queries or similarity searching. Furthermore, statistically 80%~90% of the reported sensed data 

points tend to be very close to the mean range. But, SSA divides the domain of an attribute into equal 

sub-ranges and maps each sub-range to a square quadrant. This design leads to an unbalanced load 

distribution across the network leaving most of the quadrants empty or lightly loaded compared to few 

heavily loaded quadrants. Finally, storing data only in the index node is highly inefficient due to its 

single point of failure and quicker depletion of storage space and energy than other nodes inside  

the cell. 

Shen, et al. [7] propose an efficient spatial-temporal Similarity Data Storage (SDS) scheme for both 

static and dynamic WSN. In SDS, a deployed large scale WSN field is considered as a rectangular 

field. The entire field is divided into smaller rectangular zones (number of zones—horizontally nx and 

vertically ny). A node in the zone with IDi can calculate its Euclidean distance from another zone IDj 

using, with δxi,j = (IDi − IDj)%nx
 

and δyi,j = (IDj − IDi)/nx. A WSN application data item is 

characterized by attributes referred to by d, and therefore, SDS uses Locality Sensitive Hashing  

(LSH) [8] to transform d to a series of hash values. For example, if a data item is characterized by  

d1 > d2 > d3, then their hash values conform to hd1 > hd2 > hd3, where hd is the hash value of d. In the 

mapping between data and zones, the ID differences between zones indicate the similarity between the 

data stored in the zones.  

Apart from the research mentioned above, a few other research contributions [9–11] provide current 

state-of-the-art implementations of range query mechanisms.  

In Multidimensional Attribute (MDA) [9], a data storage and range query method for  

multi-dimensional attributes in WSN is proposed. MDA is built on top of three assumptions: (1) The 

sensors are uniformly and densely deployed; (2) each node can sense multiple events; and (3) each node 

maintains a neighbor table via periodic beacon message exchanges and knows its own geographic 

location. After a source node detects an event E of k dimension, a k-bit referred to as a “B” code is 

assigned to it. E is then mapped to a range space R according to code B. In the data retrieval phase, a 

range query is split into a k-dimension range of multiple sub-queries. After splitting, each attribute  

sub-query is assigned with a bit code and tuples of k-bit codes, referred to as code “B”, are produced. The 

codes “B” are then mapped to range space and data is retrieved from nodes located in the mapped R. 

Distributed Index for Features (DIFS) [10], performs a data fusion based on data conveyance through 

the network. The routing in DIFS is designed on top of a quad tree in a manner that balances the 

communication load across the index, and the range is maintained along the sensor node hierarchy. 

Unlike traditional binary and quaternary trees, DIFS constructs a multiply rooted hierarchical index, 

where a non-root node might have multiple parents. Information for a specific range within a particular 

geographic region is stored in corresponding nodes of that region. A node covering a large area stores 

a smaller range of values while a node covering a small area stores a wider range of values. 
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Li, et al. [11] proposed a method called Distributed Index for Multi-dimensional Data (DIM), which 

includes both a point and a range query in a multidimensional DCS model. In DIM, each sensor is linked 

as a node in a tree structure where each node represents a range of values. A root node represents the 

entire range of values and splits into two equal parts for left and right child nodes. This process 

continues for each non-leaf node until leaf nodes are reached. Table 1 summarizes related work with 

corresponding features. 

Table 1. Summary of relevant DCS schemes.  

 Mechanisms Schemes 

Range Query 

Bit Code Mapping MDA [9] 

Tree Structure 
Multiply Rooted Hierarchical Index DIFS [10] 

Binary Tree DIM [12] 

 Dimension (attribute) Range Query vs. Point Query Load Balancing Data Aggregation  

Similarity Searching 
Single Both Yes No SSA [6] 

Multi Range Yes No SDS [7] 

3. Basic System Operation 

3.1. Network Architecture 

The surface/platter of a magnetic disk storage device consisting of tracks and sectors provides an 

interesting approach that may be applied to a large scale WSN. This assumption led to a Disk Based 

Data Centric Storage (DBDCS) architecture, as shown in Figure 1a, dividing the rectangular field into 

a matrix of storage cells (referred to as a sector) where row and column represent track (Ti) and  

sector (Sj), respectively. In DBDCS, the covered network is considered as one of the storage surface 

and sector is considered as the core cell of storage. However, unlike magnetic storage disk, in DBDCS, 

the header file for data mapping is not located in one single particular location rather a dynamic 

mapping algorithm is used using hashing. Hence, each SH could calculate the target sector to 

read/write corresponding data. The physical deployment is mapped to an m x n matrix, where m is the 

number of tracks and n is the number sectors for each track. Hence, the nodes in the network are 

divided into S (mxn) sectors, each comprising a Sector Head (SH) and sector members that communicate 

via one hop to the SH (see Figure 1c), where SHi ϵ [1…S]. Each node is configured to be aware of the 

deployment layout by knowing: (1) All SHs are assigned with the sector number as a virtual address 

and node id, and (2) All member nodes know their own node id and number of tracks (m) and sectors 

(n) of the network field. As shown in Figure 1b, the intra-sector communication (i.e., communication 

from sector members to SH or vice-versa) is constrained to one hop while inter-sector transmission is 

multi-hop. For simplification, the sensor nodes inside each sector are not shown explicitly in Figure 1b. 

Instead, an aggregated link (see Figure 1c) is shown to represent the total traffic from member nodes to 

head node.  
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Figure 1. (a) DBS mapping; (b) inter-sector communication; and (c) intra-sector member 

node to head node communication.  

3.2. Metric-Based Searching 

Metric space M can be defined as a pair M = (D, d), where D is the domain of objects and d is the 

distance function—d: D × D → R satisfying the following constraints for all objects a, b, c ϵ D: 

d(a, b) ≥ 0 (non-negativity)  

d(a, b) = 0 if a = b (identity)  

d(a, b) = d(b, a) (symmetry)  

d(a, c) ≤ d(a, b) + d(b, c) (triangle inequality) 

(1) 

In this metric space, two types of similarity queries can be defined including range query  

Range(q, r) and K-nearest neighbor search KNN(q, k) by the resultant set X, considering DI  to be a 

finite set of indexed objects:  

Range(q, r):  

X = {a ϵ I|d(q, a) ≤ r} 
(2) 

KNN(q, k):  

),(),(:\,,: bqdaqdXIXkXIX ba   
(3) 

The data space can be divided into S segments (S is the total number of sectors) with a pivot point, 

denoted by Pi, for each sector Si. The iDistance key for an object x ϵ D can be defined as (Figure 2a): 

iDist(x) = d(Pi, x) + i·c (4) 

In Equation (4), c is the separating constant for individual sectors. Given q ϵ D, the range query for 

q with the range of r can be defined as (Figure 2b): 
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[d(P, q) + i·c − r, d(P, q) + i·c + r] (5) 

In Equation (5), q denotes the query point and Pi denotes the pivot point for SHi where Pi ≤ q ≤ Pi+1. 

Therefore, after locating the target sector (SHi), the conceptual range can be defined by Equation (5) 

and is illustrated in Figure 2b. The axis showed in Figure 2 represents the one dimensional data space 

that has been divided into S segments, where each sector is mapped to a segment. 

 

Figure 2. (a) Data mapping; and (b) range query example. 

3.3. Data Processing and Mapping 

A sensed event E can be defined by an l-dimensional tuple, (A1, A2, A3, …, Al) where  lA gg ,1,   

denotes the gth attribute and DAg is the domain of attribute Ag. Each member node of a sector transmits 

the sensed event as an l-dimensional tuple 
kilii vvv ,......,, 21 , where 1 ≤ i ≤ Mk, Mk is the total number of 

member nodes in the kth sector and vij denotes the value of the jth attribute received from ith member 

node of the kth sector. The corresponding SH, after collecting tuples from all the member nodes, 

aggregates them at the end of each epoch before finding the target SH mapping. Hence, after 

aggregation at epoch t 

 


kM

ilii
tvvv

1iAgg
21k
,......,,  (Agg(t))E  

                 t
l

 ,.......,,
21

  

(6) 

 
   Skljhere

vavgvv
ij

M

iij

M

iij

M

ij

kkk

,1,,1,

,,min,max
111








 (7) 

Here, it is assumed that the attribute’s aggregated values of ψi have been normalized to be between 

the range of 0 and 1. From Figure 1a, lets consider 6th (k = 6) sector, where M6 = 3. If the total number 

of attribute is 3 then for any particular round (for example t = 2), Equation (6) can be illustrated as 

shown in Table 2. 
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Table 2. Illustration of Equations (6) and (7). 

Member Node First Attribute Second Attribute Third Attribute 

1 v11 v12 v13 

2 v21 v22 v23 

3 v31 v32 v33 

After applying Equations (6) and (7) 

 

max (v11, v21, v31) max (v12, v22, v32) max (v13, v23, v33) 

min (v11, v21, v31) min (v12, v22, v32) min (v13, v23, v33) 

avg (v11, v21, v31) avg (v12, v22, v32) avg (v13, v23, v33) 

As shown in Table 3, weights have been assigned to different attributes based on their importance 

in the event description. Hence, an attribute with higher weight has greater influence on the similarity 

among events. 

Table 3. Weight settings. 

Attribute Weight 

A1 W1 

A2 W2 

.... .... 

Al wl 

3.3.1. Pivot Point Generation 

The domain of the one dimensional derived hash key HD of an aggregated l-dimensional sensed event 

can be defined by α (αmin, αmax) as illustrated in Figure 3. In Equations (8)–(11), Ai(min), Ai(max), Ai(avg) and 

Ai(θ) denote the minimum, maximum, average and threshold value of ith attribute. The center of mass 

(COM), denoted by β, is derived in Equation (10) to find the normalized center point of the domain of 

the hash key HD whereas δ is the separating factor between two pivot point. However, in order to 

balance the load among sectors, it is important to find the range where the concentration of the data 

points is high. Hence, β and δ can be used to find this COM range, denoted by β (βrange-min, βrange-max) as 

shown in Equation (12): 

 

 

min

min
max1

l
i

i
ii

w


   
    

  
  (8) 

 

 

max

max
max1

l
i

i
ii

w


   
    

  
  (9) 

 

 max1

l
i avg

i
ii

w


   
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  (11) 
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minrange   

maxrange   
(12) 

Thus, the separating step, denoted by η, between two pivot points in the COM range can be  

defined by: 

 max min

1
range range

S
  

 


 (13) 

Thus the pivot points for S sectors can be defined in each sector head by (Algorithm 1): 

min

min

max

, 0

, 0

,

i range

i

i i S

i S



 


      
 

 (14) 

 

Figure 3. Pivot point generation example. 

3.3.2. Mapping 

Given l attributes in an attribute list associated with weight wj (1 ≤ j ≤ l) in a WSN application, the 

source SHk generates the hash value by: 

   




l

j
jjij

M

i
wAvavgh k

1
(max)1  (15) 

Hence, after each epoch, SHk forwards the aggregated event     ,,,,,,
21

htE
lk

  where t denotes 

the epoch number, to the destination sector head denoted by SHi where, Pi ≤ h ≤ Pi+1 and Pi and Pi+1 is 

the lower and upper limit of ith sub-interval, respectively. 

3.4. SBD Routing 

In order to relay aggregated packets from SHk to SHi, DCSMSS uses the Sector Based Distance 

(SBD) routing algorithm [4]. Each round of SBD consists of two phases: (a) Learning phase and  

(b) Relaying phase. The learning phase is again divided into three stages: (I) Sector head TDMA slot 

assignment stage using the grid coloring algorithm (GCA); (II) Member-SH association stage; and  

(III) Intra-sector TDMA slot assignment stage for member nodes managed by the SH. In the first stage 

of the learning phase, each SH finds the non-overlapping operating slot for corresponding sectors using 
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Algorithm 2. It is assumed that each SH is configured to be aware of the number of sectors in the 

deployment layout. Using Algorithm 2, all sectors of any grid size could be assigned with conflict-free 

TDMA slot by reusing only four time slots. For example, Algorithm 2 has been applied to a grid of  

30 sectors (see Figure 4). Each sector of the grid is assigned with conflict free time slot by reusing only 

four time slots (C0~C3). Sectors with similar time slot can perform concurrently without any interference.  

Algorithm 1. Pivot Point Generation Algorithm (implemented at each SH node).  

Input: attrRangeTable (containing minimum, maximum, average and theta of each attribute), W 

(weights to different attributes based on their importance in the event description). 

Output: P (derived pivot point for each sector) 

1: mapRec.minRange ← 0; mapRec.maxRange ← 0 

2: m ← lengthof(attrRangeTable) 

3: for each i from 1 to m do 

4: mapRec.minRange ← mapRec.minRange + (attrRangeTable[i].min/attrRangeTable[i].max) × W[i] 

5: mapRec.maxRange ← mapRec.maxRange + (attrRangeTable[i].max/attrRangeTable[i].max) × W[i] 

6: mapRec.com ← mapRec.com + (attrRangeTable[i].avg)/attrRangeTable[i].max) × W[i] 

7: mapRec.theta ← mapRec.theta + (attrRangeTable.theta)/attrRangeTable[i].max) × W[i] 

8: i ← i + 1 

9: end for 

10: comLowerLimit ← mapRec.com − mapRec.theta 

11: comUpperLimit ← mapRec.com + mapRec.theta 

12: // S is the total number of sectors 

13: η ← (comUpperLimit − comLowerLimit)/(S − 1) 

14: for each j from 0 to S do 

15:  if j = 0 

16: then P[j] ← mapRec.minRange 

17: else if j = S 

18: then P[j] ← mapRec.maxRange 

19: else 

20: P[j] ← comLowerLimit + j × η 

21: end if 

22: j ← j + 1 

23: end for 

Hence, the frame length, denoted by L, of a round can be defined as:  

L = 4 × ∆t (16.a) 

∆t = |Ci|, 0 ≤ i ≤ 3 (16.b) 

Here, ∆t is the length of the TDMA time slot assigned to each sector. 
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Figure 4. Slot assignment using algorithm 2 (GCA). 

Algorithm 2. Conflict free TDMA frame slot assignment GCA (implemented at each SH node). 

Input: HD = 2 (circular hop distance between two sectors), m, n (total number of tracks (or rows) 

and sectors (or columns) in the grid, respectively) 

Output: Conflict-free time-slot (Ci) with frame length L = 4 × epoch (length of the slot assigned to  

a sector) 

1: for each j from 1 to m do 

2: for each i from (j − 1) × n to (j × n − 1) do 

3: if i < n × j 

4: then SHi ← C0 

5: end if 

6: if i +1 < n × j 

7: then SHi+1 ← C1 

8: end if 

9: if i + n < m × n 

10: then SHi+n ← C2 

11: end if 

12: if i + n + 1 < m × n  

13: then SHi+n+1 ← C3 

14: end if 

15: i = i + HD 

16: end for 

17: j = j + HD 

16: end for 

In the Member-SH association stage, SH broadcasts a beacon frame and a member could receive beacon 

messages from more than one SH. Each member node then sorts the received beacon frames that come 

from more than one SH node based on Received Signal Strength Indicator (RSSI) into vector  
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ν(SHi, RSSIi), where RSSIi ≥ RSSIi+1. In the presence of channel noise, fading and attenuation, it is not 

always possible to estimate the closest SH using RSSI only. Hence, in order to accurately find the closest 

SH, the round trip time (RTT) method has been used as well. According to this method, each Member 

Node (MN) sends a packet request to all candidate SHs in the list and waits for an immediate 

acknowledgment. After receiving the acknowledgment the MN calculates the distance of the 

corresponding SH from time of flight (TOF). It then calculates a ranking number for each candidate 

SH based on both RSSI and TOF and selects a SH from the candidate list that has highest ranking  

(see Algorithm 3). 

According to this method, the time of flight, referred to as TTOF is calculated as follows 

2

TCPRTT

TOF

TT
T


  (17) 

Here, TRTT = Round Trip Time of Flight. TTCP = Time to Compute Packet. 

The distance between two nodes can be calculated as  

dRTT = TTOF × c (18) 

Here, c = Speed of Light 

The Equation (18) can further be rewritten after adding the faultiness as [13]: 

LOS NLOS

RTT RTT RTTd d    (19) 

Here, ε
LOS 

RTT  = Error occurs for ranging in a line of sight setting. ε
NLOS 

RTT  = Error due to ranging in a non-line 

of sight environment. 

The negative impacts of multipath effects, a big factor, in ε
LOS 

RTT  can be minimized using an empirical 

approach [14]. Uncertainties and noise in the hardware especially jitter effects play a key role in ε
NLOS 

RTT . 

Considering the jitter component TTOF can be calculated as [15] 

1 1 2 2( )

2

RTT TCP t c TCP c t
TOF

T T J J T J J
T

     
  (20) 

TCPctARctRTT
TJJTOFTOFJJT 

3300
 (21) 

In Equations (20) and (21), TOFR = TOF for the request packet. TOFA = TOF for the 

acknowledgment packet. JtN = jitter caused by the clock of transceiver. JcN = jitter caused by the clock 

of microcontroller. 

The timestamps that are used to calculate the time between sending a request packet and receiving an 

acknowledge packet contain the jitter values Jt0, Jc0, Jt3 and Jc3. Another two timestamps that are 

considered in calculating the computation time between receiving a packet and sending the first bit of the 

ACK packet contain the jitter values Jt1, Jc1, Jt2 and Jc2. 

The MNs then calculate the rank matrix for each candidate SH as 

   
iRTT

M

i

iRTT

i

M

i

i

i

d

d

RSSI

RSSI
rank

NN

11
maxmax

















  (22) 

In Equation (22), MN is the total number of member nodes in Nth sector. 

The MNs, then send an association request to the SH, which has the highest rank in its list. This 

ensures the association of a member node to its closest head node (see Algorithm 3). 
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Algorithm 3. Head_Selection (), implemented in member nodes, selects the closest SH based on 

the rank calculated using Equation (22). 

Input: rank, SHInfo 

1: sort SHInfo in descending order based on rank 

2: create network layer packet joinCntrlPacket 

3: SHD ← pop top element from SHInfo.SHS 

4: set SELF_NET_ADDR as source, SHD as destination and Packet Type = 4 to joinCntrlPacket 

5: //Unicast joining request to the closest head node. 

6: toMacLayer (joinCntrlPacket, SHD) 

The SHs create a child table listing all the member nodes from which they receive association request. 

In the third stage of the learning phase, SHs broadcast a packet containing Ck (0 ≤ k ≤3), ∆t and an array 

γ, where γ = {m1, m2, m3, …, mi} and |γ| = Mk. In γ, mi and i denote the member node ID and index of 

this member node in the array, respectively. Each member node then calculates the intra-sector 

transmission slot based on their position in the array γ by: 

     },|)(){(
1

jiMitCit
IDSki

 


  (23) 

In Equation (23),  and MS-ID are the length of the intra-sector TDMA time slot and the node’s  

self-network address, i.e., node’s self-ID, respectively. The number of member nodes in a sector varies 

due to the dynamic nature of the Member-SH association procedure. Hence, the length of an  

intra-sector TDMA time slot can be defined by: 

( ( ) 1)
t

sizeof


 
 (24) 

In the relaying phase, all member nodes report their buffered or aggregated sensed data to their 

associated SH during their allocated intra-sector TDMA transmission slot. A SH, after each epoch, i.e., 

after collecting data from all member nodes, forwards the mapped event data (according to Section 3.2) 

in a multi-hop fashion to the corresponding sector for storage. In this inter-sector communication, SHs 

continue forwarding their packets to their immediate neighbor SH, which lies on the same row in the 

virtual grid (Figure 1a) until the packet reaches the SH that is on the same column as the destination 

sector. The packet is then forwarded vertically up or down until it reaches the destination (Figure 1b). 

The same process of routing is followed for query request and response. A description of the next hop 

selection process or algorithm during the relaying phase is given in Algorithm 4, which facilitates the 

selection of next hop in inter-sector communication. SHs continue forwarding their packets to their 

immediate neighbor in the same track until the packet reaches the same column where the destination 

sector lies. The packet is then routed vertically up or down until it reaches the destination. 

A SH calls Algorithm 4 while acting as either: (I) a relaying node (receives a packet from MAC 

layer) or (II) a source node (receives packet from application layer). 
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Algorithm 4. Search_Next_Hop (SHi), implemented at each sector head node. 

Input: Target SHi, where  ,1 SSH
i

  m- number of tracks (rows) and n- number of sectors per  

track (columns) 

Output: Next Hop SHk, where  ,1 SSH
k

  

1: //Finding the row and column position of //destination sector head and current head in the //grid 

2: destCol ← SHi%n; 

3: destRow ← SHi/n; 

4: curCol ← nextHopCol ← (SELF_NET_ADDR)%n 

5: curRow ← nextHopRow ← (SELF_NET_ADDR)/n 

6: SHk ← −1 

7: //Moving the packet to the same column where //destination sector lies 

8: if curCol < destcol 

9: /*Move toward right */ 

10: then nextHopCol ← nextHopCol + 1  

11:  else if curCol > destcol 

12: /*Move toward left */ 

13:  then nextHopCol ← nextHopCol − 1 

14: //It is in same column so move toward up or down 

15: else if curCol = destCol 

16: then if curRow < destRow 

17: /*Move vertically up*/ 

18: then nextHopRow ← nextHopRow + 1 

19: else if curRow > destRow 

20: /*Move vertically down*/ 

21: then nextHopRow ← nextHopRow − 1 

22: end if 

23: end if 

24: /*convert to sector number*/ 

25: SHk ← nextHopRow × n + nextHopCol 

26: Return SHk 

Alternate Route 

In the case of any primary route failure (first travels toward a track and then a sector), SBD 

switches to recovery mode of operation. In recovery mode, SHs follow alternate route:  

Case 1: Route interruption along track path 

(a) The last relay SHR forwards the packet one hop up or down along sector path. 

(b) SBD returns to its normal mode of operation.  

Case 2: Route interruption along Sector 

(a) The last relay SHR forwards the packet one hop left or right along the track path 
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(I) The recipient SHR forwards the packet up or down along sector path 

(b) SBD returns to its normal mode of operation. 

For example, Figure 5, the source of the packet is SH0 and destination is SH23. Hence the primary 

and possible routes of transmission are: 

1. (0) →(1) → (2) → (3) → (8) → (13) → (18) → (23) 

2.  (7) → (8) → (13) → (18) → (23) 

3.  (1) → (6) → (7) → (8)→(13) → (18) → (23) 

4.  (11) → (12) → (13) → (18) → (23) and so on. 

 

Figure 5. Some of the possible alternate routes from SHs → SHD. 

3.5. Insertion 

Within a sector, data is further distributed among nodes according to their distance from the SH. To 

do this, a sector is divided into segments. Figures 6, 7 and Table 4 illustrate the idea of sector 

segmentation. Given a kth sector containing Mk member nodes, the SHk first sorts all member nodes 

based on RSSI in ascending order. The member nodes are then divided into r segments. Each segment 

forms a ball, denoted by B(X,Y) (ri), where the ball centered in (X, Y) of radius ri. (X, Y) is the geographic 

co-ordinates for SHk. The number of segments depends on the WSN application, the size of a sector 

and the number of member nodes in each sector. Thus the set of sensors that are within a Euclidean 

distance ri from (X, Y) form the segment defined by: 

      
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Figure 6. Formation of balls or segments inside a sector. 

 

Figure 7. Segmentation architecture of member nodes inside a sector.  

Table 4. Member table of a SH node.  

Member Node Id Received Signal  

Strength Indicator 

m1 RSSI1 

m2 RSSI2 

m3 RSSI3 

m4 RSSI4 

.. .. 

.. .. 

mi RSSIi 

.. .. 

.. .. 

.. .. 

.. .. 

MK RSSIk 

By Equations (26) and (27), the pivot points for r segments within the kth sector are calculated.  

An event with hash value, denoted by h, is stored in a member sensor node of ith segment where 

)1()( 


iMiM KK

h . In order to balance the load, data is distributed among the nodes inside a segment in a 

round robin fashion (see Algorithm 5). 

  

r1 

r2 

r3 

r4 
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Algorithm 5. Search_Target_Node (segment[i]), implemented at each SH node. 

Input: segment[i] (a data structure containing member node ID and tally to count the number of 

packets stored in the corresponding member node) 

Output: return the target Member Node ID. 

1: sort segment[i] in ascending order based on segment[i].tally 

2: segment[i].tally ← segment[i].tally + 1 

3: memberNodeId ← segment[i].ID 

4: return memberNodeId 

3.6. Querying 

3.6.1. Range Query 

Range query, issued by the query nodes from a sector of the network, denoted by Range (q, r), 

where q can be defined by an l-dimensional tuple, (q1, q2, q3, …, ql) where  lq gg ,1,  , denotes the 

query value of the gth attribute and r is the weighted range to be considered. Hence, the query node 

first calculates 

   


l

i
iiiq

wAqh
1

(max)
 (28) 

where, hq denotes an aggregated query hash. The query range can be defined by [hq − r, hq + r]. The 

target head nodes where the query is to be forwarded are SHj, SHj+1, …, SHk where  

Pj ≤ hq-r ≤ Pj+1, Pk ≤ hq+r ≤ Pk+1 and j ≤ k. 

SHj pulls data from the member nodes belonging to the segments: 

        rYXtYXtYX rBrBrB ,1,, ,...,,  of the jth sector, where )1()(   tMrqtM jj
h . In contrast, 

SHk pulls packets from the member nodes belonging to the segments:         tYXYXYX rBrBrB ,1,0, ,...,,
 

where )1()(   tMrqtM jj
h . The rest of the head nodes: SHj+1, SHj+2, …, SHk−1 pull data from all of 

their member nodes. 

 

Figure 8. Range query example. 
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Suppose, Figure 8, hq is the hash value of the query (q, r). Hence, the range of the hash is  

[hq − r, hq + r], where hq − r belongs to (i − 1)th sector and hq + r belongs to i + 1th sector. Thus the 

target head nodes are (i − 1)th, ith, (i + 1)th sectors. Furthermore, within (i − 1)th sector, data is fetched 

from the member nodes of 
r

ti

th

ir }{ segments, where )1()( 11  
 tMrqM iti

h . On the other hand, 

within (i + 1)th sector data is fetched from the sensor nodes of 
t

i

th

ir 1}{  segments, where 

)1()( 11  
 tMrqtM ii

h . Finally, within ith segment, data is fetched from the whole sector. 

3.6.2. K-Nearest Neighbor Query 

Like range query, a query node first calculates hash hq using Equation (28) for K-nearest Neighbor 

Query denoted by KNN (q, k). Here, q is defined by an l-dimensional tuple (q1, q2, q3, …, ql) where

 lq gg ,1,  , denotes the query value of gth attribute and k is the number of nearest neighbor nodes 

containing similar data to q. Thus the KNN (q, k) is first forwarded to the target sector head node, 

denoted by SHi, where Pi ≤ hq ≤ Pi+1.  

The KNN retrieval protocol is iterative. The SH scans through its segmentation table and includes 

the closest segment one after another until the following condition is true: 

rzwherek

z

j

j 


,

1
 (29) 

In Equation (29), Φj denotes the total number of member nodes in the jth segment of the target ith 

sector. The SHi then broadcast a query request to all the member nodes of the 
z

j

thj 1}{   segments. The 

member nodes of the corresponding segments respond to the query request. The SHi accumulates the 

received responses and sends them to the source query node. Figure 9 shows an example of K-Nearest 

Neighbor Query with the value of K = 9. 

 

Figure 9. The KNN(q, 9)—nearest neighbor nodes containing similar data to q inside Sth 

sector are m1, m3, m14, m17, m8, m10, m4, m9, m5. Range Query Example.  

  



Sensors 2015, 15 5491 

 

 

4. DCSMSS Analysis 

4.1. SBD Analysis 

This section analyzes the SBD performance in terms of routing message complexity (total number 

of message transfers in the network). The notations used in this section are summarized in Table 5. For 

simplicity it is assumed that the data transmission is error-free. Assume that the local sensor sampling 

and reporting rate to SH is α, the remote update rate is λ and the query rate is η. Let Clu, Cru and Cqr be 

the cost of local update, cost of remote update and cost of getting an answer to a query, respectively. 

Hence, based on this assumption the overall message routing complexity can be defined as shown in 

Equations (30) and (31). 

qrrulu
CCCC    (30.a) 

rurulu
CCCC  2  (30.b) 

)(rCC
txlu

  (31) 

Here, Ctx is the transmission cost by a wireless sensor node that covers a transmission range of r 

inside a sector. 

For a single remote update issued by S0 (represented by track (t0) and sector (s0)) to SH in S1 (t1, s1),  

S2 (t2, s2), ..., Sn (tn, sn), SBD sends out n updates to n different SHs. Let Cru,to,so,n and Ctx,SH be the cost of 

remote update from S0 to S1, S2, ..., Sn and transmission cost between two SHs, respectively. Hence, the 

cost of this remote update routing can be given by Equation (26). 

 


n

i
SHtxiinstru

CssttC
0

,00,,,
)(

00
 (32) 

Table 5. Notations used in analysis. 

Notations Description 

Clu Cost of local update 

α Local update rate 

Cru Cost of remote update 

λ Remote update rate 

Cqr Cost of query request and response 

η Query rate  

Si ith sector number 

ti ith track number (row) 

si ith sector number (column) 

Cru,to,so,n Cost of remote update from S0 to S1, S2, …, Sn 

Ctx,SH Transmission cost between two SH 

For simplicity, consider that the data first travels toward a corresponding track and then sector. So, 

the longest distance the data travels up or down is: 
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(33) 

Similarly the longest distance the data moves left or right is: 

 
n
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,........,min  

(34) 

Before forwarding an update, it is possible to merge the packets having the same destination as their 

next hop and hence it is possible to optimize traffic. Thus, the horizontal and vertical routing cost can 

be minimized to: 
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(35) 

In the ideal situation the lower bound for the routing cost that can be achieved is: 

       
nnnnnstru
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 (36) 

Based on Equations (32) and (36) we find: 
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Hence, Cru,to,so,n is at least equal to the lower or upper bound defined in Equation (37) and no lower 

than or greater than the respective bounds. 

The producer SH node and target storage node are considered to be randomly distributed. It is 

assumed that all sectors have the same probability to disseminate updates. The remote update cost can be 

defined as: 
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 (38) 

Here S is the total number of sectors. 

5. Performance Evaluation 

Simulations were conducted using Castalia v3.2 [16] running on top of OMNET++ [17] to evaluate 

the SBD and DCSMSS performance. The system parameters and their settings used in the experiments 

are summarized in Table 6. The network model (illustrated in Section 3.1) was tested in four rectangular 

fields with different parameter settings. Simulations were run 30~40 times with varying-channel 
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affecting seeds to provide results that included average and 95% confidence interval. In Section 5.1, 

performance of SBD was tested in terms of Energy Consumption and Latency. For the experiments 

presented in Sections 5.1.1 and 5.1.2, the routing efficiency of SBD is evaluated against Low Energy 

Adaptive Clustering Hierarchy (LEACH) [18], Greedy Perimeter Stateless Routing (GPSR) [19], Directed 

Diffusion (DD) [20] and Car Pooling [7]. The querying performance of DCSMSS is evaluated in 

Section 5.2 in terms of Point Query, Range Query, KNN Query, Similarity Searching and Scalability. 

For the experiments presented in Sections 5.2.1–5.2.5 the querying performance of DCSMSS is 

evaluated against SDS, GHT [21] and DD.  

Table 6. Simulation parameters. 

Parameter Setting 

Field Size 60 × 60 m2, 90 × 90 m2, 120 × 120 m2, 150 × 150 m2 

Number of Nodes (n) 80 (3600 m2), 180 (8100 m2), 320 (14,400 m2), 500 (22,500 m2) 

Member Node Density (fm) 1 node/56.25 m2 

Sector Head Node (SH) Density (fSH) 1 node/225 m2 

Radio Range (member node) ~8 m 

Radio Range (SH) ~20 m 

Transmission Power  0 dBm (SH), –5 dBm (member node) 

Power Consumption in Sending and Receiving Messages 57.42 mW (SH), 46.2 mW (member node) 

Power Consumption Per Sensing 0.02 mJoule 

Data Rate, Modulation Type, Bits Per Symbol, Bandwidth, 

Noise Bandwidth, Noise Floor, Sensitivity 
250 Kbps, PSK, 4, 20 MHz, 194 MHz, -100 dBm, -95 dBm  

pathLossExponent 2.4 

Initial Average Path Loss (PL(d0)) 55 

Reference Distance (d0) 1.0 m 

Gaussian Zero-Mean Random Variable (Xα) 4.0 

MAC Protocol, Maximum Transimission Retries SMAC [16], 2 

SMAC Acknowledgment, Synchronization, RTS, CTS Packet Size 11, 11, 13, 13 bytes 

Weight Matrix, and thus level of significance, is set using the configuration file that is used to 

initialize the network during the deployment of the network. In addition, an XML file is used that can be 

dynamically loaded any time from any SH and thus any change of the behavior of the environment or 

network can be disseminated throughout the network. The frequency of this dynamic dissemination 

technique is 1/round, where round = 1, 2, 3, ..., and this frequency is set based on how quickly the 

monitored network changes its behavior over time. The aggregation schemes are loaded at initialization of 

the network and can be changed on-demand during run-time. However, on-demand update during run time 

doesn’t effect on previously collected data. 

It is obvious that LSH is a very powerful tool. However, LSH is good for data with high dimension. 

In WSN, dimension is usually limited and fixed at the time of deployment because total number of 

dimension depends on the number of sensor attached to a node. Thus a similarity searching based on 

the events, which are categorized in terms of attributes, is not scalable. In this paper, multi-dimensional 

data has been normalized into a one-dimensional domain. The domain is segmented into n intervals, 

where n is the total number of sectors. Each sector is responsible for storing data that falls in that 

interval. Hence, we could say, this hash function is more suitable than LSH for WSN. 
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5.1. SBD Performance 

The performance of SBD is evaluated in comparison with DD, GPSR, LEACH and Car Pooling 

routing. The candidate routing protocols for evaluation were chosen from the literature based upon their 

being an acceptable representation of existing comparative techniques. DD, GPSR, and Car Pooling were 

used in different DCS schemes over the last decade. On the other hand, SBD, LEACH and Car  

Pooling are cluster routing algorithms. DD, a data-centric routing technique, floods the query to a  

region of interest that contains the data sought for. One of the widely used point-to-point routing  

algorithms is GPSR, which is used in earlier DCS schemes. GPSR implements two distinct routing  

algorithms—greedy forwarding algorithm and perimeter forwarding algorithm. Greedy forwarding 

algorithm moves packets progressively closer to the destination at each hop. At a void situation, where 

there is no greedy path, it switches to perimeter forwarding mode, in which a packet traverses 

consecutively closer along a planer sub-graph of the full radio network connectivity graph. This 

continues until it reaches to a node closer to the destination where greedy forwarding resumes. In 

LEACH and Car Pooling, sensor nodes are grouped into clusters with a Cluster Head (CH) for each 

group. A CH is responsible for data aggregation and communicating with other CH on behalf of the 

cluster nodes. However, unlike LEACH, in Car Pooling routing, the next hop is determined from the 

neighbor head node, which is closest to the destination head node. Nevertheless, packets with a common 

next hop are aged and sent together in order to reduce overhead though they might have different 

destinations. The consequent sub-sections present the performance evaluation of SBD in terms of Energy 

Consumption, Reliability and Latency against Car Pooling, LEACH, GPSR and DD. 

5.1.1. Energy Consumption 

This experiment was conducted in a network of 180 nodes in a 90 m × 90 m (8100 m2) field with a 

simulation time of 60 s. The data production and consumption rate per sector was varied between 

0.1~15 packets per second. Figure 10a,b show the average energy consumption (joules) per node and 

total number of hop counts, respectively, as a function of packet rate per sector per sec. As shown in 

Figure 10a, SBD exhibits the lower energy consumption in all cases (low to high traffic rate). On the 

contrary, the energy consumption and total number of hop counts of DD are significantly higher than 

other methods and grows sharply due to its broadcasting. Figure 10b shows an interesting contrast. As 

shown in Figure 10b, the total number of hops for SBD, LEACH and Car Pooling is almost the same 

due to their similar clustering nature. However, despite having similar hop counts SBD outperforms all 

other approaches in energy consumption because SBD employs GCA to allocate conflict free 

scheduling. This helps to avoid packet retransmission as the chances of packet loss due to interference 

or collision is very low (see Section 5.1.2, Figure 11b). 
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(a) (b) 

Figure 10. (a) Average energy consumption per node (joule) and (b) total number of hops 

(number of hops in storage and query routing). 

  

(a) (b) 

Figure 11. (a) Percentage of packets successfully delivered and (b) number of packets that 

failed due to interference. 

5.1.2. Latency 

The setting for this experiment was the same as for the reliability experiment except for the total 

number of remote storage updates and queries, which were set to 100 each (generating 300 application 

packets including 100 storage updates, 100 query requests and 100 query responses). Figure 12a shows 

the latency of each method. Here, latency is defined as the time from the source sending a remote 

packet (storage update/query/response) to the destination receiving it. As expected, the latency of each 

method increases gradually with the increase in network size except for one case. It is observed that 

DD leads to the highest latency with a higher value than the other methods especially when there are 

80 nodes. This happened because DD broadcasts 100 queries among the small number of nodes, which 

makes it more likely to generate congestion. LEACH, SBD and Car Pooling show similar low latency. 

Figure 12b depicts an interesting explanation for the result provided in Figure 12a. In Figure 12b, it is 

noted that the number of total Request to Send (RTS) sent by SBD is almost equal to the number of 

remote packets (remote update, query and response) while for DD it is almost a factor of two and for the 

other algorithms it is one and a half. However, despite having lower packet loss and lower retransmission 

compared to LEACH and Car Pooling, SBD shows similar latency due to its store and forward technique. 
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(a) (b) 

Figure 12. (a) Latency (sec) and (b) total RTS sent. 

5.2. Querying Performance 

In this section, the performance of DCSMSS with SBD and LEACH routing algorithm is evaluated in 

comparison with SDS, DD and GHT. As mentioned earlier, DD broadcasts a query to search for all of 

the desired data. GHT applies a hash function on the attribute name to find the location of the data and 

merges the located data to the query result. SDS uses the Locality Sensitive Hash (LSH) function and 

the number of hash values for a data item after the LSH operation was set to 5. 

5.2.1. Point Query 

This experiment was conducted to evaluate the performance of each approach for point queries, 

which returns a single data item if it finds an exact match. The experiment was conducted using a  

90 m × 90 m rectangular field, in which 180 nodes were randomly and independently disseminated. 

300 queries, in total, were generated uniformly from different parts of the network. Queries were 

generated as a group referred to as a batch, which is sent out at the same time. The next group was 

released once all the queries of the previous batch were resolved or the maximum response waiting 

time was exceeded. 

Figure 13a shows the success rate of different methods. Success rate is defined as the ratio between 

the number of successfully resolved queries and the total number of queries generated. This metric is 

used to reflect the effectiveness of a data storage method. From Figure 13a, it is observed that DD 

exhibits the worst performance and its success rate falls sharply as the number of queries per batch 

increases. With increased number of queries per batch DD’s broadcasting causes excessive messages, 

which leads to congestion and high packet loss. DCSMSS+SBD maintain a low packet loss due to its 

collision avoidance technique. The other three approaches—GHT, DCSMSS + LEACH and SDS fall in 

the middle. However, amongst these three, GHT’s performance is slightly lower. GHT routing uses a 

node as a step unit rather than zone or sector. As a result, it leads to a bit higher traffic causing more 

congestion and packet loss than those of the DCSMSS + LEACH and SDS. 

Figure 13b shows that DD’s latency grows radically due to the congestion as traffic increases. Since 

DD uses broadcasting for data querying, it produces excessive message and traffic congestion when 

the number of queries per batch increases. DCSMSS + SBD, DCSMSS + LEACH and SDS have almost 

similar latency. GHT takes the shortest path and thus it outperforms other approaches when the traffic 
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was low but its latency is affected by the congestion caused by the increased traffic with the increase in 

the number of queries per batch. DCSMSS and SDS schemes do not need to send as many queries as GHT 

since they rely on neighbor zone or SH to forward queries, thus reducing traffic and congestion.  

DCSMSS + SBD produces less traffic by realizing the collision avoidance technique (GCA) compare to 

DCSMSS + LEACH and SDS with Car Pooling. Due to the collision free time slot allocated to SH in 

the routing layer through GCA, SBD in DCSMSS uses a store and forward technique. However, the 

overhead that was added due to the store and forward technique is consistent regardless of traffic 

volume. Hence, it is observed from Figure 13b that SBD’s latency outperforms DCSMSS + LEACH 

and SDS with the increased number of queries per batch. 

  

(a) (b) 

Figure 13. (a) Success Rate and (b) latency. 

5.2.2. Range Query 

This experiment was conducted in order to realize the performance of range query in various 

scenarios. The network size and number of queries was the same as the previous experiment. In  

Figure 14a–c, experiments were conducted for four different variations of range query. The range of the 

queries was varied in such a way so that in case one to four the number of sectors for the target data 

varies from one to four. For example, DCSMSS + Sector = 2 refers to the case where the target result 

of the query is to be fetched from two neighbor sectors.  

Figure 14a shows the average latency of each scenario as a function of number of queries per batch. 

As expected, the latency increases when the number of target sectors increases. If the target range of a 

query includes more than one sector all the corresponding SH fetch data from their respective 

segments and returns the data to the source SH. It is observed that, the latency for all scenarios grows 

slightly when the number of queries per batch increases except for the scenario DCSMSS + Sector = 4. 

In the case of DCSMSS + Sector = 4, latency begins to grow sharply when the number of queries 

increases from four to eight. This happens because of the congestion created due to the high number of 

reply packets flowing to the source query node from four neighbor sectors in response to a single query. 
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(a) (b) (c) 

Figure 14. (a) Latency; (b) success rate and (c) total number of events. 

Figure 14b shows the success rate of each scenario as a function of the number of queries per batch.  

As expected, the performance of different scenarios is inversely proportional to the number of target 

sector. It is noted that all approaches falls slightly when the number of queries per batch increases from 

one to four but they start dropping sharply with the increase of number of queries per batch from four 

to sixteen. Figure 14c shows the number of discovered data items for each scenario when the number 

of queries per batch is four. 

5.2.3. KNN Query 

The setting of this experiment was similar to that of the previous experiment. Like the previous 

experiment, the value of k in KNN (q, k) in the four different scenarios was varied in such a way that 

the target number of sectors varied from one to four. It is observed from Figure 15a that the latency is 

directly relative to the number of target sectors from which the resultant query is to be fetched. In 

addition, latency increases for each scenario with the increase in the number of queries per batch. 

  

(a) (b) 

Figure 15. (a) Latency and (b) success rate. 

Figure 15b shows the total number of events finally discovered in comparison to the total number of 

expected events when the number of queries per batch is four. The discovery rate was 100% when the 

number of target sectors is one but it gradually falls with the increase in the number of target sectors. 

This happens due to the packet loss during the response time. When the number of target sector increases 

with regard to the increase of the value of k, the volume of reported events for single query increases 

significantly. This large number of reported events created hotspot and congestion around the query node 

and the corresponding relay SH of its route. 
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5.2.4. Similarity Searching 

The setting of this experiment was same as the previous experiment except the number of queries 

generated. The number of actual data items in the system and the number of discovered data items with 

no less than 50% similarity is shown in Figure 16a. This similarity is measured in terms of range 

query. After calculating hq of a query, r is calculated as ±0.25 hq. Thus, the range of the query was 

defined by [hq − 0.25 hq, hq + 0.25 hq]. The target head nodes where query was forwarded were SHj, 

SHj+1, …, SHk, where Pj ≤ hq-r ≤ Pj+1, Pk ≤ hq+r ≤ Pk+1 and j ≤ k. From Figure 16a it is observed that 

DCSMSS can always discover more than 85% of this type of data events. 

Figure 16b shows the discovery rate of DCSMSS, SDS, DD and GHT in terms of similarity between the 

discovered data and the query. Discovery rate is defined as the percent of events that have certain similarity 

to a query and that can be discovered. In the second experiment, in total 100 queries were generated 

with four queries per batch. Since GHT is not locality preserving in data storage, its exact-mapping 

querying cannot locate similar data and thus for the GHT only 100% similar data is considered. Unlike 

other approaches, DD broadcasts queries to all SH and accordingly achieves 100% discovery rate. 

However, SDS and DCSMSS discover 85%~90% similar data. However, DCSMSS provide an 

optimized trade-off between energy consumption, latency and discovery rate. 

  

(a) (b) 

Figure 16. (a) Total number of events and (b) discovery rate. 

5.2.5. Scalability 

This experiment was conducted in four different network field size of 60 × 60 m2, 90 × 90 m2,  

120 × 120 m2 and 150 × 150 m2 containing 80, 180, 320 and 500 nodes, respectively. In total 200 

queries were generated with eight queries per batch. Figure 17a shows the total number of hops. It 

demonstrates that DD’s total number of hop count is much higher than other approaches and grows 

sharply. This refers to the poor scalability of DD. The total number of hop counts for  

DCSMSS + SBD, DCSMSS + LEACH, SDS and GHT grows relatively slowly, which demonstrates 

the high scalability of these approaches. However, DCSMSS + SBD provides reasonably stable 

performance in terms of the total number of hops. This implies that this scheme has relatively stable 

routing performance for different size WSNs. 

Figure 17b demonstrates the latency performance of each approach for different network sizes. DD 

has higher latency than other approaches with a dramatically higher latency when the network size is 
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small (80 nodes). This happened because DD broadcasted the same number of queries in a small 

network creating high traffic with subsequent congestion in the network. In contrast, DCSMSS + SBD, 

DCSMSS + LEACH and SDS exhibit low latency across varying network sizes. This indicates the 

high scalability of these approaches. 

  

(a) (b) 

Figure 17. (a) Total number of events and (b) discovery rate. 

Figure 18 illustrates the experiments which were conducted in a scenario of 120 m × 120 m 

rectangular field, in which 320 nodes are randomly and independently placed. These experiments were 

executed for 50 s with the querying frequency varied from 0.1 to 100 queries/s. Figure 18a,b show the 

total hop count and latency as the function of the querying frequency. Figure 18a demonstrates that the 

total number of hops for all approaches increases linearly. However, the performance of DD is lower 

because its broadcasting technique leads to vast traffic. It is also noted that the total number of hops for 

DCSMSS + SBD, DCSMSS + LEACH and SDS schemes is less than that of GHT. GHT always sends a 

query to ten different nodes for every attribute. SDS always sends queries to five sectors and DCSMSS 

sends to i sectors depending on the range r. That’s why DCSMSS based schemes show lower hops 

while SDS is slightly higher. 

  

(a) (b) 

Figure 18. (a) Total number of events and (b) discovery rate. 

As shown in Figure 18b, the latency of each approach increases with an increase in the querying 

frequency. The latency of all approaches grows slightly with the increase in querying frequency from 

0.1 to ten and then grows sharply when the frequency increases to 100 queries/s. It is also noted that 

DD has the highest latency. Since DD broadcasts queries to all sectors it generates congestion, packet 
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loss excessive retransmission. Despite having lower collision and subsequent packet loss and 

retransmission, DCSMSS + SBD’s latency is higher than SDS and DCSMSS + LEACH due to the 

reasoning explained in Section 5.1.2. However, it is interesting to note that the latency of GHT is lower 

than other approaches when the querying frequency is 100 queries/s. This happens because the number 

of sectors is lower than the number of nodes and under heavy traffic routing relying on SH became 

more congested than routing relying on nodes. Moreover, the routing, referred to GPSR, used in GHT 

uses the greedy forwarding technique which eventually selects the shortest path to route packets. 

6. Conclusions and Future Work 

In this paper a highly scalable distributed information service, DCSMSS, is presented that provides 

improved performance over comparative schemes. The scheme is an efficient similarity search 

mechanism for WSN. DCSMSS was applied to a range of WSN scenarios utilizing modeling, simulation 

and a statistical analysis and found to provide lower latency and improved search accuracy when 

compared to relatively recent alternate approaches. Discussion has been provided surrounding the 

alternate approaches and the improvements found when DCSMSS is applied. The research is continuing 

with future work considering methods to reduce complexity and improve processing at the nodes and 

SH to reduce energy utilization. DCSMSS has been simulated with a static, non-mobile network. 

Problems are expected when applying virtual sector formation or synchronization to groups of mobile 

nodes. Virtual sector or cluster formation in the dynamic WSN is an interesting area for future research. 

Furthermore, in current model, SH is the only gateway to the sector and hence it could create hotspot 

around the SH. This issue can be resolved in future work by outsourcing some of the responsibility to 

MNs, which will act as Secondary SH (SSH). A prototype implementation of DCSMSS is under 

development using the Texas Instruments’ (TI) CC2530 Evolution Module (CC2530EM) [17], which is 

ZigBee/IEEE 802.15.4 compliant System-on-Chip with an optimized 8051 MCU core and radio for the 

2.4 GHz unlicensed ISM/SRD band.  
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