
Sensors 2015, 15, 5474-5503; doi:10.3390/s150305474

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Distributed Efficient Similarity Search Mechanism in Wireless

Sensor Networks

Khandakar Ahmed †,* and Mark A. Gregory †

School of Electrical and Computer Engineering, RMIT University, Melbourne, VIC 3000, Australia;

E-Mail: mark.gregory@rmit.edu.au

† These authors contributed equally to this work.

* Author to whom correspondence should be addressed; E-Mail: khandakar.ahmed@rmit.edu.au;

Tel.: +61-4262-40101.

Academic Editor: Leonhard M. Reindl

Received: 15 December 2014 / Accepted: 25 February 2015 / Published: 5 March 2015

Abstract: The Wireless Sensor Network similarity search problem has received considerable

research attention due to sensor hardware imprecision and environmental parameter variations.

Most of the state-of-the-art distributed data centric storage (DCS) schemes lack

optimization for similarity queries of events. In this paper, a DCS scheme with metric

based similarity searching (DCSMSS) is proposed. DCSMSS takes motivation from vector

distance index, called iDistance, in order to transform the issue of similarity searching into

the problem of an interval search in one dimension. In addition, a sector based distance

routing algorithm is used to efficiently route messages. Extensive simulation results reveal

that DCSMSS is highly efficient and significantly outperforms previous approaches in

processing similarity search queries.

Keywords: Wireless Sensor Networks; distributed data centric storage; similarity search;

range query; K-nearest neighbor query; sector based distance routing

1. Introduction

This paper considers a distributed information delivery and search service for one or more

applications in a Wireless Sensor Network (WSN) that utilizes in-network storage, which is known as

Data Centric Storage (DCS) [1]. The applications consist of a set of producer and consumer nodes that

OPEN ACCESS

Sensors 2015, 15 5475

can exchange information by relaying packets through neighboring sectors. Nodes have no explicit

knowledge of each other but are aware of the applications. The distributed information delivery and

search service is used to implement an information delivery and search layer between applications and

nodes that provides enhanced reliability and improved flexibility. This paper introduces Data Centric

Storage with Metric based Similarity Searching (DCSMSS), which is a highly scalable distributed

information service based on Disk Based Data Centric Storage (DBDCS) [2] that incorporates similarity

searching. A data query search for an exact match or for data within a specified similarity range is called

similarity searching. Similarity searching is particularly useful where users seek data within a WSN that is

either a match or close to a match.

The member nodes in a sector or zone report the sensed event to their associated Sector Head (SH),

which aggregates the received events at the end of each epoch (length of a Time Division Multiple

Access (TDMA) slot assigned to each sector). The aggregated event is hashed to produce a hash key,

which is mapped from a one dimensional domain into a metric space utilizing a normalized and

adapted variant of iDistance [3]. The distance between a data point and its closest reference point plus

a scaling value is called the point’s iDistance. In this paper distances between data points and reference

points in the multi-dimensional space have been mapped to one-dimensional values.

The DCSMSS scheme presented is used to balance information transfer loads across the network,

enhance reliability and provide efficient similarity searching within a distributed network for two types

of queries—range query and k-query. DCSMSS uses a lightweight Sector Based Distance (SBD)

routing algorithm, presented in [2,4], to route inter-sector storage, intra-sector storage and query traffic.

The domain of the derived hash key of an aggregated sensed event, denoted by HD, is mapped into the

metric space of the DBDCS architecture. In order to balance the load among the sectors, a pivot point

generation procedure is used dividing HD into almost equally populated sub-intervals, denoted by hDi,

where hDi ≠ hDj and 0 ≤ i ≤ j ≤ S; S refers to the total number of sectors. In order to store an event, the

target sector is mapped based on the derived hash key and pivot points. Furthermore, the target

SH distributes the load among the member nodes based on the hash key value and distance to the

member nodes.

The remainder of this paper is structured as follows: Section 2 provides an overview of the related

work in the literature. Network architecture, data processing and mapping, SBD routing, insertion and

querying are illustrated in Section 3. Section 4 describes the SBD analytical model. This is followed by

the simulation results and performance evaluation of DCSMSS and SBD presented in Section 5. The

paper is concluded in Section 6.

2. Related Work

A detailed literature survey that discusses key research on DCS techniques is presented in [1,5].

This section mentions researches, which are closely related to the research reported on in this paper.

In order to process similarity search queries efficiently, Chung, et al. [6] propose a novel framework

over a data-centric storage structure, referred to as the Similarity Search Algorithm (SSA), based on

the concept of a Hilbert Curve. The lack of global knowledge about the entire sensor database is

identified as one of the major challenges in processing a sensor network similarity search query.

However, in order to overcome this constraint, SSA presents a network layout based on a Hilbert

Sensors 2015, 15 5476

Curve, and hence, successfully avoids the need to collect data from all sensors when searching for the

most similar data item. SSA divides the whole network recursively into 4l square quadrants where l

denotes the number of levels. The center (referred to indexing node and denoted by I) of each square

quadrant (cell) is responsible for storing a sub-range of the entire range of an event denoted by R where

RL and RU denotes the lower bound and upper bound, respectively. The data sub-range for which IID

(IDth indexing node) is responsible is denoted by (RL
ID, RU

ID) = (RL + (IID − 1) × r, RL + IID × r), where

n × r = R, n is the number of indexing nodes. However, SSA is not applicable in multi-dimensional

range queries or similarity searching. Furthermore, statistically 80%~90% of the reported sensed data

points tend to be very close to the mean range. But, SSA divides the domain of an attribute into equal

sub-ranges and maps each sub-range to a square quadrant. This design leads to an unbalanced load

distribution across the network leaving most of the quadrants empty or lightly loaded compared to few

heavily loaded quadrants. Finally, storing data only in the index node is highly inefficient due to its

single point of failure and quicker depletion of storage space and energy than other nodes inside

the cell.

Shen, et al. [7] propose an efficient spatial-temporal Similarity Data Storage (SDS) scheme for both

static and dynamic WSN. In SDS, a deployed large scale WSN field is considered as a rectangular

field. The entire field is divided into smaller rectangular zones (number of zones—horizontally nx and

vertically ny). A node in the zone with IDi can calculate its Euclidean distance from another zone IDj

using, with δxi,j = (IDi − IDj)%nx

and δyi,j = (IDj − IDi)/nx. A WSN application data item is

characterized by attributes referred to by d, and therefore, SDS uses Locality Sensitive Hashing

(LSH) [8] to transform d to a series of hash values. For example, if a data item is characterized by

d1 > d2 > d3, then their hash values conform to hd1 > hd2 > hd3, where hd is the hash value of d. In the

mapping between data and zones, the ID differences between zones indicate the similarity between the

data stored in the zones.

Apart from the research mentioned above, a few other research contributions [9–11] provide current

state-of-the-art implementations of range query mechanisms.

In Multidimensional Attribute (MDA) [9], a data storage and range query method for

multi-dimensional attributes in WSN is proposed. MDA is built on top of three assumptions: (1) The

sensors are uniformly and densely deployed; (2) each node can sense multiple events; and (3) each node

maintains a neighbor table via periodic beacon message exchanges and knows its own geographic

location. After a source node detects an event E of k dimension, a k-bit referred to as a “B” code is

assigned to it. E is then mapped to a range space R according to code B. In the data retrieval phase, a

range query is split into a k-dimension range of multiple sub-queries. After splitting, each attribute

sub-query is assigned with a bit code and tuples of k-bit codes, referred to as code “B”, are produced. The

codes “B” are then mapped to range space and data is retrieved from nodes located in the mapped R.

Distributed Index for Features (DIFS) [10], performs a data fusion based on data conveyance through

the network. The routing in DIFS is designed on top of a quad tree in a manner that balances the

communication load across the index, and the range is maintained along the sensor node hierarchy.

Unlike traditional binary and quaternary trees, DIFS constructs a multiply rooted hierarchical index,

where a non-root node might have multiple parents. Information for a specific range within a particular

geographic region is stored in corresponding nodes of that region. A node covering a large area stores

a smaller range of values while a node covering a small area stores a wider range of values.

Sensors 2015, 15 5477

Li, et al. [11] proposed a method called Distributed Index for Multi-dimensional Data (DIM), which

includes both a point and a range query in a multidimensional DCS model. In DIM, each sensor is linked

as a node in a tree structure where each node represents a range of values. A root node represents the

entire range of values and splits into two equal parts for left and right child nodes. This process

continues for each non-leaf node until leaf nodes are reached. Table 1 summarizes related work with

corresponding features.

Table 1. Summary of relevant DCS schemes.

 Mechanisms Schemes

Range Query

Bit Code Mapping MDA [9]

Tree Structure
Multiply Rooted Hierarchical Index DIFS [10]

Binary Tree DIM [12]

 Dimension (attribute) Range Query vs. Point Query Load Balancing Data Aggregation

Similarity Searching
Single Both Yes No SSA [6]

Multi Range Yes No SDS [7]

3. Basic System Operation

3.1. Network Architecture

The surface/platter of a magnetic disk storage device consisting of tracks and sectors provides an

interesting approach that may be applied to a large scale WSN. This assumption led to a Disk Based

Data Centric Storage (DBDCS) architecture, as shown in Figure 1a, dividing the rectangular field into

a matrix of storage cells (referred to as a sector) where row and column represent track (Ti) and

sector (Sj), respectively. In DBDCS, the covered network is considered as one of the storage surface

and sector is considered as the core cell of storage. However, unlike magnetic storage disk, in DBDCS,

the header file for data mapping is not located in one single particular location rather a dynamic

mapping algorithm is used using hashing. Hence, each SH could calculate the target sector to

read/write corresponding data. The physical deployment is mapped to an m x n matrix, where m is the

number of tracks and n is the number sectors for each track. Hence, the nodes in the network are

divided into S (mxn) sectors, each comprising a Sector Head (SH) and sector members that communicate

via one hop to the SH (see Figure 1c), where SHi ϵ [1…S]. Each node is configured to be aware of the

deployment layout by knowing: (1) All SHs are assigned with the sector number as a virtual address

and node id, and (2) All member nodes know their own node id and number of tracks (m) and sectors

(n) of the network field. As shown in Figure 1b, the intra-sector communication (i.e., communication

from sector members to SH or vice-versa) is constrained to one hop while inter-sector transmission is

multi-hop. For simplification, the sensor nodes inside each sector are not shown explicitly in Figure 1b.

Instead, an aggregated link (see Figure 1c) is shown to represent the total traffic from member nodes to

head node.

Sensors 2015, 15 5478

Figure 1. (a) DBS mapping; (b) inter-sector communication; and (c) intra-sector member

node to head node communication.

3.2. Metric-Based Searching

Metric space M can be defined as a pair M = (D, d), where D is the domain of objects and d is the

distance function—d: D × D → R satisfying the following constraints for all objects a, b, c ϵ D:

d(a, b) ≥ 0 (non-negativity)

d(a, b) = 0 if a = b (identity)

d(a, b) = d(b, a) (symmetry)

d(a, c) ≤ d(a, b) + d(b, c) (triangle inequality)

(1)

In this metric space, two types of similarity queries can be defined including range query

Range(q, r) and K-nearest neighbor search KNN(q, k) by the resultant set X, considering DI  to be a

finite set of indexed objects:

Range(q, r):

X = {a ϵ I|d(q, a) ≤ r}
(2)

KNN(q, k):

),(),(:\,,: bqdaqdXIXkXIX ba 
(3)

The data space can be divided into S segments (S is the total number of sectors) with a pivot point,

denoted by Pi, for each sector Si. The iDistance key for an object x ϵ D can be defined as (Figure 2a):

iDist(x) = d(Pi, x) + i·c (4)

In Equation (4), c is the separating constant for individual sectors. Given q ϵ D, the range query for

q with the range of r can be defined as (Figure 2b):

Sensors 2015, 15 5479

[d(P, q) + i·c − r, d(P, q) + i·c + r] (5)

In Equation (5), q denotes the query point and Pi denotes the pivot point for SHi where Pi ≤ q ≤ Pi+1.

Therefore, after locating the target sector (SHi), the conceptual range can be defined by Equation (5)

and is illustrated in Figure 2b. The axis showed in Figure 2 represents the one dimensional data space

that has been divided into S segments, where each sector is mapped to a segment.

Figure 2. (a) Data mapping; and (b) range query example.

3.3. Data Processing and Mapping

A sensed event E can be defined by an l-dimensional tuple, (A1, A2, A3, …, Al) where  lA gg ,1, 

denotes the gth attribute and DAg is the domain of attribute Ag. Each member node of a sector transmits

the sensed event as an l-dimensional tuple
kilii vvv ,......,, 21 , where 1 ≤ i ≤ Mk, Mk is the total number of

member nodes in the kth sector and vij denotes the value of the jth attribute received from ith member

node of the kth sector. The corresponding SH, after collecting tuples from all the member nodes,

aggregates them at the end of each epoch before finding the target SH mapping. Hence, after

aggregation at epoch t

 


kM

ilii
tvvv

1iAgg
21k
,......,, (Agg(t))E

  t
l

 ,.......,,
21



(6)

 
   Skljhere

vavgvv
ij

M

iij

M

iij

M

ij

kkk

,1,,1,

,,min,max
111








 (7)

Here, it is assumed that the attribute’s aggregated values of ψi have been normalized to be between

the range of 0 and 1. From Figure 1a, lets consider 6th (k = 6) sector, where M6 = 3. If the total number

of attribute is 3 then for any particular round (for example t = 2), Equation (6) can be illustrated as

shown in Table 2.

Sensors 2015, 15 5480

Table 2. Illustration of Equations (6) and (7).

Member Node First Attribute Second Attribute Third Attribute

1 v11 v12 v13

2 v21 v22 v23

3 v31 v32 v33

After applying Equations (6) and (7)

max (v11, v21, v31) max (v12, v22, v32) max (v13, v23, v33)

min (v11, v21, v31) min (v12, v22, v32) min (v13, v23, v33)

avg (v11, v21, v31) avg (v12, v22, v32) avg (v13, v23, v33)

As shown in Table 3, weights have been assigned to different attributes based on their importance

in the event description. Hence, an attribute with higher weight has greater influence on the similarity

among events.

Table 3. Weight settings.

Attribute Weight

A1 W1

A2 W2

....

Al wl

3.3.1. Pivot Point Generation

The domain of the one dimensional derived hash key HD of an aggregated l-dimensional sensed event

can be defined by α (αmin, αmax) as illustrated in Figure 3. In Equations (8)–(11), Ai(min), Ai(max), Ai(avg) and

Ai(θ) denote the minimum, maximum, average and threshold value of ith attribute. The center of mass

(COM), denoted by β, is derived in Equation (10) to find the normalized center point of the domain of

the hash key HD whereas δ is the separating factor between two pivot point. However, in order to

balance the load among sectors, it is important to find the range where the concentration of the data

points is high. Hence, β and δ can be used to find this COM range, denoted by β (βrange-min, βrange-max) as

shown in Equation (12):

 

 

min

min
max1

l
i

i
ii

w


   
    

  
 (8)

 

 

max

max
max1

l
i

i
ii

w


   
    

  
 (9)

 

 max1

l
i avg

i
ii

w


   
    

  
 (10)

 

 max1

l
i

i
ii

w



   
    

  
 (11)

Sensors 2015, 15 5481

minrange 

maxrange 
(12)

Thus, the separating step, denoted by η, between two pivot points in the COM range can be

defined by:

 max min

1
range range

S
  

 


 (13)

Thus the pivot points for S sectors can be defined in each sector head by (Algorithm 1):

min

min

max

, 0

, 0

,

i range

i

i i S

i S



 


      
 

 (14)

Figure 3. Pivot point generation example.

3.3.2. Mapping

Given l attributes in an attribute list associated with weight wj (1 ≤ j ≤ l) in a WSN application, the

source SHk generates the hash value by:

   




l

j
jjij

M

i
wAvavgh k

1
(max)1 (15)

Hence, after each epoch, SHk forwards the aggregated event     ,,,,,,
21

htE
lk

  where t denotes

the epoch number, to the destination sector head denoted by SHi where, Pi ≤ h ≤ Pi+1 and Pi and Pi+1 is

the lower and upper limit of ith sub-interval, respectively.

3.4. SBD Routing

In order to relay aggregated packets from SHk to SHi, DCSMSS uses the Sector Based Distance

(SBD) routing algorithm [4]. Each round of SBD consists of two phases: (a) Learning phase and

(b) Relaying phase. The learning phase is again divided into three stages: (I) Sector head TDMA slot

assignment stage using the grid coloring algorithm (GCA); (II) Member-SH association stage; and

(III) Intra-sector TDMA slot assignment stage for member nodes managed by the SH. In the first stage

of the learning phase, each SH finds the non-overlapping operating slot for corresponding sectors using

Sensors 2015, 15 5482

Algorithm 2. It is assumed that each SH is configured to be aware of the number of sectors in the

deployment layout. Using Algorithm 2, all sectors of any grid size could be assigned with conflict-free

TDMA slot by reusing only four time slots. For example, Algorithm 2 has been applied to a grid of

30 sectors (see Figure 4). Each sector of the grid is assigned with conflict free time slot by reusing only

four time slots (C0~C3). Sectors with similar time slot can perform concurrently without any interference.

Algorithm 1. Pivot Point Generation Algorithm (implemented at each SH node).

Input: attrRangeTable (containing minimum, maximum, average and theta of each attribute), W

(weights to different attributes based on their importance in the event description).

Output: P (derived pivot point for each sector)

1: mapRec.minRange ← 0; mapRec.maxRange ← 0

2: m ← lengthof(attrRangeTable)

3: for each i from 1 to m do

4: mapRec.minRange ← mapRec.minRange + (attrRangeTable[i].min/attrRangeTable[i].max) × W[i]

5: mapRec.maxRange ← mapRec.maxRange + (attrRangeTable[i].max/attrRangeTable[i].max) × W[i]

6: mapRec.com ← mapRec.com + (attrRangeTable[i].avg)/attrRangeTable[i].max) × W[i]

7: mapRec.theta ← mapRec.theta + (attrRangeTable.theta)/attrRangeTable[i].max) × W[i]

8: i ← i + 1

9: end for

10: comLowerLimit ← mapRec.com − mapRec.theta

11: comUpperLimit ← mapRec.com + mapRec.theta

12: // S is the total number of sectors

13: η ← (comUpperLimit − comLowerLimit)/(S − 1)

14: for each j from 0 to S do

15: if j = 0

16: then P[j] ← mapRec.minRange

17: else if j = S

18: then P[j] ← mapRec.maxRange

19: else

20: P[j] ← comLowerLimit + j × η

21: end if

22: j ← j + 1

23: end for

Hence, the frame length, denoted by L, of a round can be defined as:

L = 4 × ∆t (16.a)

∆t = |Ci|, 0 ≤ i ≤ 3 (16.b)

Here, ∆t is the length of the TDMA time slot assigned to each sector.

Sensors 2015, 15 5483

Figure 4. Slot assignment using algorithm 2 (GCA).

Algorithm 2. Conflict free TDMA frame slot assignment GCA (implemented at each SH node).

Input: HD = 2 (circular hop distance between two sectors), m, n (total number of tracks (or rows)

and sectors (or columns) in the grid, respectively)

Output: Conflict-free time-slot (Ci) with frame length L = 4 × epoch (length of the slot assigned to

a sector)

1: for each j from 1 to m do

2: for each i from (j − 1) × n to (j × n − 1) do

3: if i < n × j

4: then SHi ← C0

5: end if

6: if i +1 < n × j

7: then SHi+1 ← C1

8: end if

9: if i + n < m × n

10: then SHi+n ← C2

11: end if

12: if i + n + 1 < m × n

13: then SHi+n+1 ← C3

14: end if

15: i = i + HD

16: end for

17: j = j + HD

16: end for

In the Member-SH association stage, SH broadcasts a beacon frame and a member could receive beacon

messages from more than one SH. Each member node then sorts the received beacon frames that come

from more than one SH node based on Received Signal Strength Indicator (RSSI) into vector

Sensors 2015, 15 5484

ν(SHi, RSSIi), where RSSIi ≥ RSSIi+1. In the presence of channel noise, fading and attenuation, it is not

always possible to estimate the closest SH using RSSI only. Hence, in order to accurately find the closest

SH, the round trip time (RTT) method has been used as well. According to this method, each Member

Node (MN) sends a packet request to all candidate SHs in the list and waits for an immediate

acknowledgment. After receiving the acknowledgment the MN calculates the distance of the

corresponding SH from time of flight (TOF). It then calculates a ranking number for each candidate

SH based on both RSSI and TOF and selects a SH from the candidate list that has highest ranking

(see Algorithm 3).

According to this method, the time of flight, referred to as TTOF is calculated as follows

2

TCPRTT

TOF

TT
T


 (17)

Here, TRTT = Round Trip Time of Flight. TTCP = Time to Compute Packet.

The distance between two nodes can be calculated as

dRTT = TTOF × c (18)

Here, c = Speed of Light

The Equation (18) can further be rewritten after adding the faultiness as [13]:

LOS NLOS

RTT RTT RTTd d   (19)

Here, ε
LOS

RTT = Error occurs for ranging in a line of sight setting. ε
NLOS

RTT = Error due to ranging in a non-line

of sight environment.

The negative impacts of multipath effects, a big factor, in ε
LOS

RTT can be minimized using an empirical

approach [14]. Uncertainties and noise in the hardware especially jitter effects play a key role in ε
NLOS

RTT .

Considering the jitter component TTOF can be calculated as [15]

1 1 2 2()

2

RTT TCP t c TCP c t
TOF

T T J J T J J
T

     
 (20)

TCPctARctRTT
TJJTOFTOFJJT 

3300
 (21)

In Equations (20) and (21), TOFR = TOF for the request packet. TOFA = TOF for the

acknowledgment packet. JtN = jitter caused by the clock of transceiver. JcN = jitter caused by the clock

of microcontroller.

The timestamps that are used to calculate the time between sending a request packet and receiving an

acknowledge packet contain the jitter values Jt0, Jc0, Jt3 and Jc3. Another two timestamps that are

considered in calculating the computation time between receiving a packet and sending the first bit of the

ACK packet contain the jitter values Jt1, Jc1, Jt2 and Jc2.

The MNs then calculate the rank matrix for each candidate SH as

   
iRTT

M

i

iRTT

i

M

i

i

i

d

d

RSSI

RSSI
rank

NN

11
maxmax

















 (22)

In Equation (22), MN is the total number of member nodes in Nth sector.

The MNs, then send an association request to the SH, which has the highest rank in its list. This

ensures the association of a member node to its closest head node (see Algorithm 3).

Sensors 2015, 15 5485

Algorithm 3. Head_Selection (), implemented in member nodes, selects the closest SH based on

the rank calculated using Equation (22).

Input: rank, SHInfo

1: sort SHInfo in descending order based on rank

2: create network layer packet joinCntrlPacket

3: SHD ← pop top element from SHInfo.SHS

4: set SELF_NET_ADDR as source, SHD as destination and Packet Type = 4 to joinCntrlPacket

5: //Unicast joining request to the closest head node.

6: toMacLayer (joinCntrlPacket, SHD)

The SHs create a child table listing all the member nodes from which they receive association request.

In the third stage of the learning phase, SHs broadcast a packet containing Ck (0 ≤ k ≤3), ∆t and an array

γ, where γ = {m1, m2, m3, …, mi} and |γ| = Mk. In γ, mi and i denote the member node ID and index of

this member node in the array, respectively. Each member node then calculates the intra-sector

transmission slot based on their position in the array γ by:

     },|)(){(
1

jiMitCit
IDSki

 


 (23)

In Equation (23),  and MS-ID are the length of the intra-sector TDMA time slot and the node’s

self-network address, i.e., node’s self-ID, respectively. The number of member nodes in a sector varies

due to the dynamic nature of the Member-SH association procedure. Hence, the length of an

intra-sector TDMA time slot can be defined by:

(() 1)
t

sizeof


 
 (24)

In the relaying phase, all member nodes report their buffered or aggregated sensed data to their

associated SH during their allocated intra-sector TDMA transmission slot. A SH, after each epoch, i.e.,

after collecting data from all member nodes, forwards the mapped event data (according to Section 3.2)

in a multi-hop fashion to the corresponding sector for storage. In this inter-sector communication, SHs

continue forwarding their packets to their immediate neighbor SH, which lies on the same row in the

virtual grid (Figure 1a) until the packet reaches the SH that is on the same column as the destination

sector. The packet is then forwarded vertically up or down until it reaches the destination (Figure 1b).

The same process of routing is followed for query request and response. A description of the next hop

selection process or algorithm during the relaying phase is given in Algorithm 4, which facilitates the

selection of next hop in inter-sector communication. SHs continue forwarding their packets to their

immediate neighbor in the same track until the packet reaches the same column where the destination

sector lies. The packet is then routed vertically up or down until it reaches the destination.

A SH calls Algorithm 4 while acting as either: (I) a relaying node (receives a packet from MAC

layer) or (II) a source node (receives packet from application layer).

Sensors 2015, 15 5486

Algorithm 4. Search_Next_Hop (SHi), implemented at each sector head node.

Input: Target SHi, where  ,1 SSH
i

 m- number of tracks (rows) and n- number of sectors per

track (columns)

Output: Next Hop SHk, where  ,1 SSH
k



1: //Finding the row and column position of //destination sector head and current head in the //grid

2: destCol ← SHi%n;

3: destRow ← SHi/n;

4: curCol ← nextHopCol ← (SELF_NET_ADDR)%n

5: curRow ← nextHopRow ← (SELF_NET_ADDR)/n

6: SHk ← −1

7: //Moving the packet to the same column where //destination sector lies

8: if curCol < destcol

9: /*Move toward right */

10: then nextHopCol ← nextHopCol + 1

11: else if curCol > destcol

12: /*Move toward left */

13: then nextHopCol ← nextHopCol − 1

14: //It is in same column so move toward up or down

15: else if curCol = destCol

16: then if curRow < destRow

17: /*Move vertically up*/

18: then nextHopRow ← nextHopRow + 1

19: else if curRow > destRow

20: /*Move vertically down*/

21: then nextHopRow ← nextHopRow − 1

22: end if

23: end if

24: /*convert to sector number*/

25: SHk ← nextHopRow × n + nextHopCol

26: Return SHk

Alternate Route

In the case of any primary route failure (first travels toward a track and then a sector), SBD

switches to recovery mode of operation. In recovery mode, SHs follow alternate route:

Case 1: Route interruption along track path

(a) The last relay SHR forwards the packet one hop up or down along sector path.

(b) SBD returns to its normal mode of operation.

Case 2: Route interruption along Sector

(a) The last relay SHR forwards the packet one hop left or right along the track path

Sensors 2015, 15 5487

(I) The recipient SHR forwards the packet up or down along sector path

(b) SBD returns to its normal mode of operation.

For example, Figure 5, the source of the packet is SH0 and destination is SH23. Hence the primary

and possible routes of transmission are:

1. (0) →(1) → (2) → (3) → (8) → (13) → (18) → (23)

2. (7) → (8) → (13) → (18) → (23)

3. (1) → (6) → (7) → (8)→(13) → (18) → (23)

4. (11) → (12) → (13) → (18) → (23) and so on.

Figure 5. Some of the possible alternate routes from SHs → SHD.

3.5. Insertion

Within a sector, data is further distributed among nodes according to their distance from the SH. To

do this, a sector is divided into segments. Figures 6, 7 and Table 4 illustrate the idea of sector

segmentation. Given a kth sector containing Mk member nodes, the SHk first sorts all member nodes

based on RSSI in ascending order. The member nodes are then divided into r segments. Each segment

forms a ball, denoted by B(X,Y) (ri), where the ball centered in (X, Y) of radius ri. (X, Y) is the geographic

co-ordinates for SHk. The number of segments depends on the WSN application, the size of a sector

and the number of member nodes in each sector. Thus the set of sensors that are within a Euclidean

distance ri from (X, Y) form the segment defined by:

      
iiYX

ryxYXyxrdinateSensorsCoorB  ,,,:,)(
),(

 (25)

  Skr
kkk




1,
1

 (26)

 


























ri

ri

i

i

k

k

k

S

kiM K

0

0

,

,

,

1

1)(
 (27)

Sensors 2015, 15 5488

Figure 6. Formation of balls or segments inside a sector.

Figure 7. Segmentation architecture of member nodes inside a sector.

Table 4. Member table of a SH node.

Member Node Id Received Signal

Strength Indicator

m1 RSSI1

m2 RSSI2

m3 RSSI3

m4 RSSI4

.. ..

.. ..

mi RSSIi

.. ..

.. ..

.. ..

.. ..

MK RSSIk

By Equations (26) and (27), the pivot points for r segments within the kth sector are calculated.

An event with hash value, denoted by h, is stored in a member sensor node of ith segment where

)1()(


iMiM KK

h . In order to balance the load, data is distributed among the nodes inside a segment in a

round robin fashion (see Algorithm 5).

r1

r2

r3

r4

Sensors 2015, 15 5489

Algorithm 5. Search_Target_Node (segment[i]), implemented at each SH node.

Input: segment[i] (a data structure containing member node ID and tally to count the number of

packets stored in the corresponding member node)

Output: return the target Member Node ID.

1: sort segment[i] in ascending order based on segment[i].tally

2: segment[i].tally ← segment[i].tally + 1

3: memberNodeId ← segment[i].ID

4: return memberNodeId

3.6. Querying

3.6.1. Range Query

Range query, issued by the query nodes from a sector of the network, denoted by Range (q, r),

where q can be defined by an l-dimensional tuple, (q1, q2, q3, …, ql) where  lq gg ,1,  , denotes the

query value of the gth attribute and r is the weighted range to be considered. Hence, the query node

first calculates

   


l

i
iiiq

wAqh
1

(max)
 (28)

where, hq denotes an aggregated query hash. The query range can be defined by [hq − r, hq + r]. The

target head nodes where the query is to be forwarded are SHj, SHj+1, …, SHk where

Pj ≤ hq-r ≤ Pj+1, Pk ≤ hq+r ≤ Pk+1 and j ≤ k.

SHj pulls data from the member nodes belonging to the segments:

        rYXtYXtYX rBrBrB ,1,, ,...,,  of the jth sector, where)1()(  tMrqtM jj
h . In contrast,

SHk pulls packets from the member nodes belonging to the segments:         tYXYXYX rBrBrB ,1,0, ,...,,

where)1()(  tMrqtM jj
h . The rest of the head nodes: SHj+1, SHj+2, …, SHk−1 pull data from all of

their member nodes.

Figure 8. Range query example.

Sensors 2015, 15 5490

Suppose, Figure 8, hq is the hash value of the query (q, r). Hence, the range of the hash is

[hq − r, hq + r], where hq − r belongs to (i − 1)th sector and hq + r belongs to i + 1th sector. Thus the

target head nodes are (i − 1)th, ith, (i + 1)th sectors. Furthermore, within (i − 1)th sector, data is fetched

from the member nodes of
r

ti

th

ir }{ segments, where)1()(11  
 tMrqM iti

h . On the other hand,

within (i + 1)th sector data is fetched from the sensor nodes of
t

i

th

ir 1}{  segments, where

)1()(11  
 tMrqtM ii

h . Finally, within ith segment, data is fetched from the whole sector.

3.6.2. K-Nearest Neighbor Query

Like range query, a query node first calculates hash hq using Equation (28) for K-nearest Neighbor

Query denoted by KNN (q, k). Here, q is defined by an l-dimensional tuple (q1, q2, q3, …, ql) where

 lq gg ,1,  , denotes the query value of gth attribute and k is the number of nearest neighbor nodes

containing similar data to q. Thus the KNN (q, k) is first forwarded to the target sector head node,

denoted by SHi, where Pi ≤ hq ≤ Pi+1.

The KNN retrieval protocol is iterative. The SH scans through its segmentation table and includes

the closest segment one after another until the following condition is true:

rzwherek

z

j

j 


,

1
 (29)

In Equation (29), Φj denotes the total number of member nodes in the jth segment of the target ith

sector. The SHi then broadcast a query request to all the member nodes of the
z

j

thj 1}{  segments. The

member nodes of the corresponding segments respond to the query request. The SHi accumulates the

received responses and sends them to the source query node. Figure 9 shows an example of K-Nearest

Neighbor Query with the value of K = 9.

Figure 9. The KNN(q, 9)—nearest neighbor nodes containing similar data to q inside Sth

sector are m1, m3, m14, m17, m8, m10, m4, m9, m5. Range Query Example.

Sensors 2015, 15 5491

4. DCSMSS Analysis

4.1. SBD Analysis

This section analyzes the SBD performance in terms of routing message complexity (total number

of message transfers in the network). The notations used in this section are summarized in Table 5. For

simplicity it is assumed that the data transmission is error-free. Assume that the local sensor sampling

and reporting rate to SH is α, the remote update rate is λ and the query rate is η. Let Clu, Cru and Cqr be

the cost of local update, cost of remote update and cost of getting an answer to a query, respectively.

Hence, based on this assumption the overall message routing complexity can be defined as shown in

Equations (30) and (31).

qrrulu
CCCC   (30.a)

rurulu
CCCC  2 (30.b)

)(rCC
txlu

 (31)

Here, Ctx is the transmission cost by a wireless sensor node that covers a transmission range of r

inside a sector.

For a single remote update issued by S0 (represented by track (t0) and sector (s0)) to SH in S1 (t1, s1),

S2 (t2, s2), ..., Sn (tn, sn), SBD sends out n updates to n different SHs. Let Cru,to,so,n and Ctx,SH be the cost of

remote update from S0 to S1, S2, ..., Sn and transmission cost between two SHs, respectively. Hence, the

cost of this remote update routing can be given by Equation (26).

 


n

i
SHtxiinstru

CssttC
0

,00,,,
)(

00
 (32)

Table 5. Notations used in analysis.

Notations Description

Clu Cost of local update

α Local update rate

Cru Cost of remote update

λ Remote update rate

Cqr Cost of query request and response

η Query rate

Si ith sector number

ti ith track number (row)

si ith sector number (column)

Cru,to,so,n Cost of remote update from S0 to S1, S2, …, Sn

Ctx,SH Transmission cost between two SH

For simplicity, consider that the data first travels toward a corresponding track and then sector. So,

the longest distance the data travels up or down is:

Sensors 2015, 15 5492

 
n

tttt 
010

,.......,max

or

 
n

tttt 
010

,........,min

(33)

Similarly the longest distance the data moves left or right is:

 
n

ssss 
010

,.......,max

or

 
n

ssss 
010

,........,min

(34)

Before forwarding an update, it is possible to merge the packets having the same destination as their

next hop and hence it is possible to optimize traffic. Thus, the horizontal and vertical routing cost can

be minimized to:

 

 n

n

tttt

tttt





010

010

,.......,min

,.......,max

and

 

 
n

n

ssss

ssss





010

010

,.......,min

,.......,max

(35)

In the ideal situation the lower bound for the routing cost that can be achieved is:

       
nnnnnstru

ssssssssttttttttC 
010010010010,,,

,.......,min,.......,max,.......,min,.......,max
00

 (36)

Based on Equations (32) and (36) we find:

       








n

i

SHtxiinstru

nnnn

CssttC

sssssssstttttttt

0

,00,,,

010010010010

)(

,.......,min,.......,max,.......,min,.......,max

00

 (37)

Hence, Cru,to,so,n is at least equal to the lower or upper bound defined in Equation (37) and no lower

than or greater than the respective bounds.

The producer SH node and target storage node are considered to be randomly distributed. It is

assumed that all sectors have the same probability to disseminate updates. The remote update cost can be

defined as:

S

C
C

S

t

S

s
nstru

ru

i i


  0 0

00 ,,,

 (38)

Here S is the total number of sectors.

5. Performance Evaluation

Simulations were conducted using Castalia v3.2 [16] running on top of OMNET++ [17] to evaluate

the SBD and DCSMSS performance. The system parameters and their settings used in the experiments

are summarized in Table 6. The network model (illustrated in Section 3.1) was tested in four rectangular

fields with different parameter settings. Simulations were run 30~40 times with varying-channel

Sensors 2015, 15 5493

affecting seeds to provide results that included average and 95% confidence interval. In Section 5.1,

performance of SBD was tested in terms of Energy Consumption and Latency. For the experiments

presented in Sections 5.1.1 and 5.1.2, the routing efficiency of SBD is evaluated against Low Energy

Adaptive Clustering Hierarchy (LEACH) [18], Greedy Perimeter Stateless Routing (GPSR) [19], Directed

Diffusion (DD) [20] and Car Pooling [7]. The querying performance of DCSMSS is evaluated in

Section 5.2 in terms of Point Query, Range Query, KNN Query, Similarity Searching and Scalability.

For the experiments presented in Sections 5.2.1–5.2.5 the querying performance of DCSMSS is

evaluated against SDS, GHT [21] and DD.

Table 6. Simulation parameters.

Parameter Setting

Field Size 60 × 60 m2, 90 × 90 m2, 120 × 120 m2, 150 × 150 m2

Number of Nodes (n) 80 (3600 m2), 180 (8100 m2), 320 (14,400 m2), 500 (22,500 m2)

Member Node Density (fm) 1 node/56.25 m2

Sector Head Node (SH) Density (fSH) 1 node/225 m2

Radio Range (member node) ~8 m

Radio Range (SH) ~20 m

Transmission Power 0 dBm (SH), –5 dBm (member node)

Power Consumption in Sending and Receiving Messages 57.42 mW (SH), 46.2 mW (member node)

Power Consumption Per Sensing 0.02 mJoule

Data Rate, Modulation Type, Bits Per Symbol, Bandwidth,

Noise Bandwidth, Noise Floor, Sensitivity
250 Kbps, PSK, 4, 20 MHz, 194 MHz, -100 dBm, -95 dBm

pathLossExponent 2.4

Initial Average Path Loss (PL(d0)) 55

Reference Distance (d0) 1.0 m

Gaussian Zero-Mean Random Variable (Xα) 4.0

MAC Protocol, Maximum Transimission Retries SMAC [16], 2

SMAC Acknowledgment, Synchronization, RTS, CTS Packet Size 11, 11, 13, 13 bytes

Weight Matrix, and thus level of significance, is set using the configuration file that is used to

initialize the network during the deployment of the network. In addition, an XML file is used that can be

dynamically loaded any time from any SH and thus any change of the behavior of the environment or

network can be disseminated throughout the network. The frequency of this dynamic dissemination

technique is 1/round, where round = 1, 2, 3, ..., and this frequency is set based on how quickly the

monitored network changes its behavior over time. The aggregation schemes are loaded at initialization of

the network and can be changed on-demand during run-time. However, on-demand update during run time

doesn’t effect on previously collected data.

It is obvious that LSH is a very powerful tool. However, LSH is good for data with high dimension.

In WSN, dimension is usually limited and fixed at the time of deployment because total number of

dimension depends on the number of sensor attached to a node. Thus a similarity searching based on

the events, which are categorized in terms of attributes, is not scalable. In this paper, multi-dimensional

data has been normalized into a one-dimensional domain. The domain is segmented into n intervals,

where n is the total number of sectors. Each sector is responsible for storing data that falls in that

interval. Hence, we could say, this hash function is more suitable than LSH for WSN.

Sensors 2015, 15 5494

5.1. SBD Performance

The performance of SBD is evaluated in comparison with DD, GPSR, LEACH and Car Pooling

routing. The candidate routing protocols for evaluation were chosen from the literature based upon their

being an acceptable representation of existing comparative techniques. DD, GPSR, and Car Pooling were

used in different DCS schemes over the last decade. On the other hand, SBD, LEACH and Car

Pooling are cluster routing algorithms. DD, a data-centric routing technique, floods the query to a

region of interest that contains the data sought for. One of the widely used point-to-point routing

algorithms is GPSR, which is used in earlier DCS schemes. GPSR implements two distinct routing

algorithms—greedy forwarding algorithm and perimeter forwarding algorithm. Greedy forwarding

algorithm moves packets progressively closer to the destination at each hop. At a void situation, where

there is no greedy path, it switches to perimeter forwarding mode, in which a packet traverses

consecutively closer along a planer sub-graph of the full radio network connectivity graph. This

continues until it reaches to a node closer to the destination where greedy forwarding resumes. In

LEACH and Car Pooling, sensor nodes are grouped into clusters with a Cluster Head (CH) for each

group. A CH is responsible for data aggregation and communicating with other CH on behalf of the

cluster nodes. However, unlike LEACH, in Car Pooling routing, the next hop is determined from the

neighbor head node, which is closest to the destination head node. Nevertheless, packets with a common

next hop are aged and sent together in order to reduce overhead though they might have different

destinations. The consequent sub-sections present the performance evaluation of SBD in terms of Energy

Consumption, Reliability and Latency against Car Pooling, LEACH, GPSR and DD.

5.1.1. Energy Consumption

This experiment was conducted in a network of 180 nodes in a 90 m × 90 m (8100 m2) field with a

simulation time of 60 s. The data production and consumption rate per sector was varied between

0.1~15 packets per second. Figure 10a,b show the average energy consumption (joules) per node and

total number of hop counts, respectively, as a function of packet rate per sector per sec. As shown in

Figure 10a, SBD exhibits the lower energy consumption in all cases (low to high traffic rate). On the

contrary, the energy consumption and total number of hop counts of DD are significantly higher than

other methods and grows sharply due to its broadcasting. Figure 10b shows an interesting contrast. As

shown in Figure 10b, the total number of hops for SBD, LEACH and Car Pooling is almost the same

due to their similar clustering nature. However, despite having similar hop counts SBD outperforms all

other approaches in energy consumption because SBD employs GCA to allocate conflict free

scheduling. This helps to avoid packet retransmission as the chances of packet loss due to interference

or collision is very low (see Section 5.1.2, Figure 11b).

Sensors 2015, 15 5495

(a) (b)

Figure 10. (a) Average energy consumption per node (joule) and (b) total number of hops

(number of hops in storage and query routing).

(a) (b)

Figure 11. (a) Percentage of packets successfully delivered and (b) number of packets that

failed due to interference.

5.1.2. Latency

The setting for this experiment was the same as for the reliability experiment except for the total

number of remote storage updates and queries, which were set to 100 each (generating 300 application

packets including 100 storage updates, 100 query requests and 100 query responses). Figure 12a shows

the latency of each method. Here, latency is defined as the time from the source sending a remote

packet (storage update/query/response) to the destination receiving it. As expected, the latency of each

method increases gradually with the increase in network size except for one case. It is observed that

DD leads to the highest latency with a higher value than the other methods especially when there are

80 nodes. This happened because DD broadcasts 100 queries among the small number of nodes, which

makes it more likely to generate congestion. LEACH, SBD and Car Pooling show similar low latency.

Figure 12b depicts an interesting explanation for the result provided in Figure 12a. In Figure 12b, it is

noted that the number of total Request to Send (RTS) sent by SBD is almost equal to the number of

remote packets (remote update, query and response) while for DD it is almost a factor of two and for the

other algorithms it is one and a half. However, despite having lower packet loss and lower retransmission

compared to LEACH and Car Pooling, SBD shows similar latency due to its store and forward technique.

Sensors 2015, 15 5496

(a) (b)

Figure 12. (a) Latency (sec) and (b) total RTS sent.

5.2. Querying Performance

In this section, the performance of DCSMSS with SBD and LEACH routing algorithm is evaluated in

comparison with SDS, DD and GHT. As mentioned earlier, DD broadcasts a query to search for all of

the desired data. GHT applies a hash function on the attribute name to find the location of the data and

merges the located data to the query result. SDS uses the Locality Sensitive Hash (LSH) function and

the number of hash values for a data item after the LSH operation was set to 5.

5.2.1. Point Query

This experiment was conducted to evaluate the performance of each approach for point queries,

which returns a single data item if it finds an exact match. The experiment was conducted using a

90 m × 90 m rectangular field, in which 180 nodes were randomly and independently disseminated.

300 queries, in total, were generated uniformly from different parts of the network. Queries were

generated as a group referred to as a batch, which is sent out at the same time. The next group was

released once all the queries of the previous batch were resolved or the maximum response waiting

time was exceeded.

Figure 13a shows the success rate of different methods. Success rate is defined as the ratio between

the number of successfully resolved queries and the total number of queries generated. This metric is

used to reflect the effectiveness of a data storage method. From Figure 13a, it is observed that DD

exhibits the worst performance and its success rate falls sharply as the number of queries per batch

increases. With increased number of queries per batch DD’s broadcasting causes excessive messages,

which leads to congestion and high packet loss. DCSMSS+SBD maintain a low packet loss due to its

collision avoidance technique. The other three approaches—GHT, DCSMSS + LEACH and SDS fall in

the middle. However, amongst these three, GHT’s performance is slightly lower. GHT routing uses a

node as a step unit rather than zone or sector. As a result, it leads to a bit higher traffic causing more

congestion and packet loss than those of the DCSMSS + LEACH and SDS.

Figure 13b shows that DD’s latency grows radically due to the congestion as traffic increases. Since

DD uses broadcasting for data querying, it produces excessive message and traffic congestion when

the number of queries per batch increases. DCSMSS + SBD, DCSMSS + LEACH and SDS have almost

similar latency. GHT takes the shortest path and thus it outperforms other approaches when the traffic

Sensors 2015, 15 5497

was low but its latency is affected by the congestion caused by the increased traffic with the increase in

the number of queries per batch. DCSMSS and SDS schemes do not need to send as many queries as GHT

since they rely on neighbor zone or SH to forward queries, thus reducing traffic and congestion.

DCSMSS + SBD produces less traffic by realizing the collision avoidance technique (GCA) compare to

DCSMSS + LEACH and SDS with Car Pooling. Due to the collision free time slot allocated to SH in

the routing layer through GCA, SBD in DCSMSS uses a store and forward technique. However, the

overhead that was added due to the store and forward technique is consistent regardless of traffic

volume. Hence, it is observed from Figure 13b that SBD’s latency outperforms DCSMSS + LEACH

and SDS with the increased number of queries per batch.

(a) (b)

Figure 13. (a) Success Rate and (b) latency.

5.2.2. Range Query

This experiment was conducted in order to realize the performance of range query in various

scenarios. The network size and number of queries was the same as the previous experiment. In

Figure 14a–c, experiments were conducted for four different variations of range query. The range of the

queries was varied in such a way so that in case one to four the number of sectors for the target data

varies from one to four. For example, DCSMSS + Sector = 2 refers to the case where the target result

of the query is to be fetched from two neighbor sectors.

Figure 14a shows the average latency of each scenario as a function of number of queries per batch.

As expected, the latency increases when the number of target sectors increases. If the target range of a

query includes more than one sector all the corresponding SH fetch data from their respective

segments and returns the data to the source SH. It is observed that, the latency for all scenarios grows

slightly when the number of queries per batch increases except for the scenario DCSMSS + Sector = 4.

In the case of DCSMSS + Sector = 4, latency begins to grow sharply when the number of queries

increases from four to eight. This happens because of the congestion created due to the high number of

reply packets flowing to the source query node from four neighbor sectors in response to a single query.

Sensors 2015, 15 5498

(a) (b) (c)

Figure 14. (a) Latency; (b) success rate and (c) total number of events.

Figure 14b shows the success rate of each scenario as a function of the number of queries per batch.

As expected, the performance of different scenarios is inversely proportional to the number of target

sector. It is noted that all approaches falls slightly when the number of queries per batch increases from

one to four but they start dropping sharply with the increase of number of queries per batch from four

to sixteen. Figure 14c shows the number of discovered data items for each scenario when the number

of queries per batch is four.

5.2.3. KNN Query

The setting of this experiment was similar to that of the previous experiment. Like the previous

experiment, the value of k in KNN (q, k) in the four different scenarios was varied in such a way that

the target number of sectors varied from one to four. It is observed from Figure 15a that the latency is

directly relative to the number of target sectors from which the resultant query is to be fetched. In

addition, latency increases for each scenario with the increase in the number of queries per batch.

(a) (b)

Figure 15. (a) Latency and (b) success rate.

Figure 15b shows the total number of events finally discovered in comparison to the total number of

expected events when the number of queries per batch is four. The discovery rate was 100% when the

number of target sectors is one but it gradually falls with the increase in the number of target sectors.

This happens due to the packet loss during the response time. When the number of target sector increases

with regard to the increase of the value of k, the volume of reported events for single query increases

significantly. This large number of reported events created hotspot and congestion around the query node

and the corresponding relay SH of its route.

Sensors 2015, 15 5499

5.2.4. Similarity Searching

The setting of this experiment was same as the previous experiment except the number of queries

generated. The number of actual data items in the system and the number of discovered data items with

no less than 50% similarity is shown in Figure 16a. This similarity is measured in terms of range

query. After calculating hq of a query, r is calculated as ±0.25 hq. Thus, the range of the query was

defined by [hq − 0.25 hq, hq + 0.25 hq]. The target head nodes where query was forwarded were SHj,

SHj+1, …, SHk, where Pj ≤ hq-r ≤ Pj+1, Pk ≤ hq+r ≤ Pk+1 and j ≤ k. From Figure 16a it is observed that

DCSMSS can always discover more than 85% of this type of data events.

Figure 16b shows the discovery rate of DCSMSS, SDS, DD and GHT in terms of similarity between the

discovered data and the query. Discovery rate is defined as the percent of events that have certain similarity

to a query and that can be discovered. In the second experiment, in total 100 queries were generated

with four queries per batch. Since GHT is not locality preserving in data storage, its exact-mapping

querying cannot locate similar data and thus for the GHT only 100% similar data is considered. Unlike

other approaches, DD broadcasts queries to all SH and accordingly achieves 100% discovery rate.

However, SDS and DCSMSS discover 85%~90% similar data. However, DCSMSS provide an

optimized trade-off between energy consumption, latency and discovery rate.

(a) (b)

Figure 16. (a) Total number of events and (b) discovery rate.

5.2.5. Scalability

This experiment was conducted in four different network field size of 60 × 60 m2, 90 × 90 m2,

120 × 120 m2 and 150 × 150 m2 containing 80, 180, 320 and 500 nodes, respectively. In total 200

queries were generated with eight queries per batch. Figure 17a shows the total number of hops. It

demonstrates that DD’s total number of hop count is much higher than other approaches and grows

sharply. This refers to the poor scalability of DD. The total number of hop counts for

DCSMSS + SBD, DCSMSS + LEACH, SDS and GHT grows relatively slowly, which demonstrates

the high scalability of these approaches. However, DCSMSS + SBD provides reasonably stable

performance in terms of the total number of hops. This implies that this scheme has relatively stable

routing performance for different size WSNs.

Figure 17b demonstrates the latency performance of each approach for different network sizes. DD

has higher latency than other approaches with a dramatically higher latency when the network size is

Sensors 2015, 15 5500

small (80 nodes). This happened because DD broadcasted the same number of queries in a small

network creating high traffic with subsequent congestion in the network. In contrast, DCSMSS + SBD,

DCSMSS + LEACH and SDS exhibit low latency across varying network sizes. This indicates the

high scalability of these approaches.

(a) (b)

Figure 17. (a) Total number of events and (b) discovery rate.

Figure 18 illustrates the experiments which were conducted in a scenario of 120 m × 120 m

rectangular field, in which 320 nodes are randomly and independently placed. These experiments were

executed for 50 s with the querying frequency varied from 0.1 to 100 queries/s. Figure 18a,b show the

total hop count and latency as the function of the querying frequency. Figure 18a demonstrates that the

total number of hops for all approaches increases linearly. However, the performance of DD is lower

because its broadcasting technique leads to vast traffic. It is also noted that the total number of hops for

DCSMSS + SBD, DCSMSS + LEACH and SDS schemes is less than that of GHT. GHT always sends a

query to ten different nodes for every attribute. SDS always sends queries to five sectors and DCSMSS

sends to i sectors depending on the range r. That’s why DCSMSS based schemes show lower hops

while SDS is slightly higher.

(a) (b)

Figure 18. (a) Total number of events and (b) discovery rate.

As shown in Figure 18b, the latency of each approach increases with an increase in the querying

frequency. The latency of all approaches grows slightly with the increase in querying frequency from

0.1 to ten and then grows sharply when the frequency increases to 100 queries/s. It is also noted that

DD has the highest latency. Since DD broadcasts queries to all sectors it generates congestion, packet

Sensors 2015, 15 5501

loss excessive retransmission. Despite having lower collision and subsequent packet loss and

retransmission, DCSMSS + SBD’s latency is higher than SDS and DCSMSS + LEACH due to the

reasoning explained in Section 5.1.2. However, it is interesting to note that the latency of GHT is lower

than other approaches when the querying frequency is 100 queries/s. This happens because the number

of sectors is lower than the number of nodes and under heavy traffic routing relying on SH became

more congested than routing relying on nodes. Moreover, the routing, referred to GPSR, used in GHT

uses the greedy forwarding technique which eventually selects the shortest path to route packets.

6. Conclusions and Future Work

In this paper a highly scalable distributed information service, DCSMSS, is presented that provides

improved performance over comparative schemes. The scheme is an efficient similarity search

mechanism for WSN. DCSMSS was applied to a range of WSN scenarios utilizing modeling, simulation

and a statistical analysis and found to provide lower latency and improved search accuracy when

compared to relatively recent alternate approaches. Discussion has been provided surrounding the

alternate approaches and the improvements found when DCSMSS is applied. The research is continuing

with future work considering methods to reduce complexity and improve processing at the nodes and

SH to reduce energy utilization. DCSMSS has been simulated with a static, non-mobile network.

Problems are expected when applying virtual sector formation or synchronization to groups of mobile

nodes. Virtual sector or cluster formation in the dynamic WSN is an interesting area for future research.

Furthermore, in current model, SH is the only gateway to the sector and hence it could create hotspot

around the SH. This issue can be resolved in future work by outsourcing some of the responsibility to

MNs, which will act as Secondary SH (SSH). A prototype implementation of DCSMSS is under

development using the Texas Instruments’ (TI) CC2530 Evolution Module (CC2530EM) [17], which is

ZigBee/IEEE 802.15.4 compliant System-on-Chip with an optimized 8051 MCU core and radio for the

2.4 GHz unlicensed ISM/SRD band.

Acknowledgments

This work was supported by Victorian International Research Scholarship (VIRS) and RMIT

School of Electrical and Computer Engineering (SECE).

Author Contributions

Khandakar Ahmed has done this work during his PhD (July 2011–September 2014). This paper is

one of the major outcomes of his PhD thesis. He has recently completed his PhD from SECE, RMIT

University. Mark Gregory was Ahmed’s supervisor.

Conflicts of Interest

The authors declare no conflict of interest.

Sensors 2015, 15 5502

References

1. Ahmed, K.; Gregory, M.A. Techniques and Challenges of Data Centric Storage Scheme in

Wireless Sensor Network. J. Sens. Actuator Netw. 2012, 1, 59–85.

2. Ahmed, K.; Gregory, M.A. Wireless Sensor Network Data Centric Storage Routing using

Castalia. In Proceedings of the Australasian Telecommunication Networks and Applications

Conference, Brisbane, Australia, 7–9 November 2012; pp. 1–8.

3. Jagadish, H.V.; Ooi, B.C.; Tan, K.L.; Yu, C.; Zhang, R. iDistance: An adaptive B+-tree based

indexing method for nearest neighbor search. ACM Trans. Database Syst. 2005, 30, 364–397.

4. Ahmed, K.; Gregory, M.A. Optimized TDMA based distance routing for Data Centric Storage.

In Proceedings of the 2012 IEEE 3rd International Conference on Networked Embedded Systems

for Every Application (NESEA), Liverpool, UK, 13–14 December 2012; pp. 1–7.

5. Rumín, Á.C.; Pascual, M.U.; Ortega, R.R.; López, D.L. Data Centric Storage Technologies:

Analysis and Enhancement. Sensors 2010, 10, 3023–3056.

6. Chung, Y.C.; Su, I.F.; Lee, C. An efficient mechanism for processing similarity search queries in

sensor networks. Inf. Sci. 2011, 181, 284–307.

7. Shen, H.; Zhao, L.; Li, Z. A Distributed Spatial-Temporal Similarity Data Storage Scheme in

Wireless Sensor Networks. IEEE Trans. Mob. Comput. 2011, 10, 982–996.

8. Shen, H.; Li, T.; Schweiger, T. An Efficient Similarity Searching Scheme Based on Locality

Sensitive Hashing. In Proceedings of the 3rd International Conference on Digital

Telecommunications (ICDT), Bucharest, Romania, 29 June–5 July 2008.

9. Liao, W.H.; Chen, C.C. Data storage and range query mechanism for multi-dimensional attributes

in wireless sensor networks. IET Commun. 2010, 4, 1799–1808.

10. Greenstein, B.; Estrin, D.; Govindan, R.; Ratnasamy, S.; Shenker, S. DIFS: A distributed index

for features in sensor networks. In Proceedings of the 2003 IEEE International Workshop on

Sensor Network Protocols and Applications, Anchorage, AK, USA, 11 May 2003; pp. 163–173.

11. Li, X.; Kim, Y.J.; Govindan, R.; Hong, W. Multi-dimensional range queries in sensor networks.

In Proceedings of the 1st International Conference on Embedded Networked Sensor Systems,

Los Angeles, CA, USA, 5–7 November 2003; pp. 63–75.

12. Ye, F.; Zhong, G.; Lu, S.; Zhang, L. Gradient broadcast: A robust data delivery protocol for large

scale sensor networks. Wirel. Netw. 2005, 11, 285–298.

13. Bahillo, A.; Mazuelas, S.; Lorenzo, R.; Fernández, P.; Prieto, J.; Durán, R.; Abril, E. Hybrid

RSS-RTT localization scheme for indoor wireless networks. EURASIP J. Adv. Signal Process.

2010, 2010, 17.

14. Hashemi, H. The indoor radio propagation channel. IEEE Proc. 1993, 81, 943–968.

15. Adler, S.; Pfeiffer, S.; Will, H.; Hillebrandt, T.; Schiller, J. Measuring the distance between

wireless sensor nodes with standard hardware. In Proceedings of the 2012 9th Workshop on

Positioning Navigation and Communication (WPNC), Dresden, Germany, 15–16 March 2012;

pp. 114–119.

16. Wei, Y.; Heidemann, J.; Estrin, D. An energy-efficient MAC protocol for wireless sensor

networks. In Proceedings of the Twenty-First Annual Joint Conference of the IEEE Computer and

Communications Societies, New York, NY, USA, 23–27 June 2002; pp. 1567–1576.

Sensors 2015, 15 5503

17. Instruments, T. (2012, July) CC2530 Second Generation System-on-Chip Solution for 2.4 GHz

IEEE 802.15.4/RF4CE/ZigBee. Available online: http://www.ti.com/product/cc2530 (accessed on

10 December 2014).

18. Handy, M.J.; Haase, M.; Timmermann, D. Low energy adaptive clustering hierarchy with

deterministic cluster-head selection. In Proceedings of 4th International Workshop on Mobile and

Wireless Communications Network, Stockholm, Sweden, 9–11 September 2002; pp. 368–372.

19. Karp, B.; Kung, H.T. GPSR: Greedy perimeter stateless routing for wireless networks. In

Proceedings of the 6th Annual International Conference on Mobile Computing and Networking,

Boston, MA, USA, 6–11 August 2000; pp. 243–254.

20. Intanagonwiwat, C.; Govindan, R.; Estrin, D. Directed diffusion: A scalable and robust

communication paradigm for sensor networks. In Proceedings of the 6th Annual International

Conference on Mobile Computing and Networking, Boston, MA, USA, 6–11 August 2000;

pp. 56–67.

21. Ratnasamy, S.; Karp, B.; Yin, L.; Yu, F.; Estrin, D.; Govindan, R.; Shenker, S. GHT: A

geographic hash table for data-centric storage. In Proceedings of the 1st ACM International

Workshop on Wireless Sensor Networks and Applications, Atlanta, GA, USA, 28 September 2002.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

