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Abstract: The use of beamforming and power control, combined or separately, has 

advantages and disadvantages, depending on the application. The combined use of 

beamforming and power control has been shown to be highly effective in applications 

involving the suppression of interference signals from different sources. However, it is 

necessary to identify efficient methodologies for the combined operation of these two 

techniques. The most appropriate technique may be obtained by means of the 

implementation of an intelligent agent capable of making the best selection between 

beamforming and power control. The present paper proposes an algorithm using 

reinforcement learning (RL) to determine the optimal combination of beamforming and 

power control in sensor arrays. The RL algorithm used was Q-learning, employing an  

ε-greedy policy, and training was performed using the offline method. The simulations 

showed that RL was effective for implementation of a switching policy involving the 

different techniques, taking advantage of the positive characteristics of each technique in 

terms of signal reception. 
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1. Introduction 

Sensor arrays have been widely used in a variety of applications including estimation of the 

direction of arrival (DOA) of signals [1,2], tracking systems, location of sources [3], and suppression of 

interference signals [4], amongst others. Adaptive array systems are able to locate and track signals (of 

users and interferences), dynamically adjusting the sensor alignment to maximize reception, and 

minimizing interference using signal-processing algorithms [5]. In applications where the aim is to 

suppress interference signals associated with various different sources, adaptive sensor arrays can be 

used together with power control techniques. The development of adaptive sensor arrays using 

beamforming together with power control can be used to achieve better system performance, with 

lower consumption of energy for transmission [6–17]. 

Methods used to resolve the problem of combining beamforming with power control have been 

described [6,7], where an algorithm has been proposed that is capable of beamforming in the uplink 

channel, followed by the adjustment of power in this channel and in the downlink channel. In this case, 

the weights for the downlink channel are considered the same as those for the uplink channel. This 

algorithm improves the performance of the system using a Signal to Interference plus Noise Ratio (SINR). 

In [8], a duality constrained least-mean-square (DCLMS) algorithm was proposed that utilizes LMS 

to find the optimum beamforming weights, while at same time controlling the power in both the uplink 

and downlink channels. A reference signal is used for beamforming, avoiding the use of additional 

algorithms for computation of the arrival directions of the signals. Since it is based on LMS, the 

algorithm presents low computational complexity, and the adaptation step for control of convergence 

can be selected empirically in order to better address the objectives of application of the algorithm. 

Updating of the transmission power only occurs after convergence of the beamforming process, taking 

account of successive tests of convergence and loss of performance in non-stationary environments.  

A similar algorithm is presented in [9], but with proportionality between the uplink and downlink 

weights. In other work [10], minimization of the transmission power in the channels is performed for 

each antenna individually. All these approaches assume a priori knowledge of the channel, so that it is 

possible to calculate the reception SINR, which then enables calculations for updating of the 

transmission powers in the uplink and downlink channels. 

The work described in [11] presents a joint optimization of beamforming and power control in a 

coordinated multicell downlink system which attends multiple users per cell to maximize the minimum 

weighted signal-to-interference-plus-noise ratio. The optimal solution and distributed algorithm with a 

fast convergence rate are obtained using the nonlinear Perron-Frobenius theory and the multicell 

network duality. Despite operating in a distributed manner, the iterative algorithm requires 

instantaneous power update in a coordinated cluster by means of backhaul. 

In [12], an algorithm is proposed that explores techniques of beamforming at the source and 

destination nodes, together with control of transmission power, in order to minimize the total 

transmission power of the source so that a minimum SINR threshold can be maintained in each 

receiver. This objective is achieved using an iterative algorithm that combines these techniques. 

The work described in [13] proposes an algorithm for power control together with beamforming in 

the receiver, with multiple adaptive base stations, for communication in the uplink channel. An 

iterative optimization algorithm is proposed, and the results show that the transmission power can be 
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significantly reduced, even with a smaller number of multiple base stations, which is of considerable 

interest for uplink channel communications. 

In [14], an algorithm was developed to optimize the sum rate of the network under the interference 

constraints of primary users using beamforming and power control for each secondary user in a 

multiuser cognitive radio system. The interior-point method was used to solve the problem, employing a 

second-order cone programming (SOCP) approach. 

The work described in [15] proposes an algorithm that utilizes the combination of beamforming and 

power control for a cognitive radio system with a base station with multiple antennas. This algorithm 

employs an iterative water-filling method that seeks to maximize the total rate of the secondary users, 

without affecting the quality of service (QoS) of the primary link, in other words, with the restriction 

of protecting the primary network from interferences in the cognitive radio system. 

Another paper [16] considers the benefits of combining beamforming by means of multiple cells in 

a multiple input and multiple output (MIMO) system, where the multiple base stations can act together 

to optimize the corresponding beamforming in order to improve the overall performance of the system. 

The duality between the uplink and downlink channels is generalized for multi-cell cases using 

Lagrange’s theorem applied to the criterion: minimize the total transmission power subject to SINR for 

remote users. 

The algorithm presented in [17] provides a combination of power control and beamforming in ad 

hoc wireless transmission networks with multiple antennas subject to constant QoS restriction. The 

proposed algorithm reduces the mutual interference in each node. The total transmission power of the 

network is minimized, while ensuring constant SINR in each receiver. Comparison was made of the 

performance of cooperative (COPMA) and non-cooperative (NPMG) iterative algorithms. In the case 

of the COPMA algorithm, users update their beamforming vectors in order to minimize the total 

transmission power in the network. In the case of NPMG, all the beamforming transmission vectors are 

updated at the start of the iteration, followed by power control. 

Artificial intelligence (AI) techniques have been widely used in problems involving beamforming 

and power control [18–23]. The proposal of the present work is to develop an intelligent algorithm that 

utilizes reinforcement learning (RL) to establish an optimum policy for combination of the two 

techniques, beamforming (BF) and power control (PC), in sensor arrays, benefiting from the individual 

characteristics of each technique in accordance with SINR threshold. In this case, the great challenge of 

RL is to select the action (BF or PC) that, based on the learning state (SINR), is most suitable for the 

system. The RL algorithm used was Q-learning with an ε-greedy policy, trained using the offline 

method. In this case, acquirement of the most suitable techniques for indication of the action to select 

during each state of learning is obtained by reinforcement, employing a structure of adaptive 

parameters on which the algorithm operates. 

It is important to emphasize that the technique proposed in this paper is not limited to use of the 

LMS (least mean square) procedure for fitting of the beamforming parameters. Other AI 

methodologies such as fuzzy logic and artificial neural networks, amongst others, can be used to 

improve the performance of the parameter fitting [24–26]. 

Reinforcement learning is based on the capacity of the agent to be trained to obtain knowledge 

while interacting with the unknown environment in which it is inserted. One of the great advantages of 

reinforcement training is precisely the capacity of the agent, while interacting with the unknown 
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environment, to evolve by means of identification of the characteristics of this environment, dispensing 

of any need for the teacher present in supervised learning [27]. Thus, the main contributions of this  

work are: 

• Reinforcement learning ensures that the optimal policy is found, with the most suitable 

technique being executed in preference to others. 

• Independence in execution between beamforming and power control-these techniques are not 

performed sequentially, as in the above work, but alternately. 

• Reduced complexity of the method, with fewer operations required, because one technique is 

not followed by another. 

• The RL methodology proposed here is independent of the beamforming parameter fitting 

technique and the power control algorithm. 

The paper is structured as follows: Section 2 provides a basic description of the functioning of the 

adaptive sensor arrays, together with a model of the input and output signals of the array, and a 

discussion of resolution of the beamforming problem using the LMS and power control; Section 3 

presents the Q-learning algorithm, based on RL, which is the main focus of this work; Section 4 

presents a proposal for an intelligent agent, employing RL; Section 5 shows the results obtained for 

simulations involving the agent and the sensor array; Section 6 provides the main conclusions of  

the work. 

2. Adaptive Sensor Arrays 

Figure 1 shows a functional diagram of an adaptive sensor linear array with K elements. Each k-th 

element of the antenna array is spacing ݀ should generally be equal to λ/2 (λ is the wavelength). The 
signal ݔ௜,௞(݊) received by the k-th antenna element is given by: 

(݊)௜,௞ݔ =෍ߩ௜ݒ௜(݊)݁ି௝(௞ିଵ)ቀଶగఒ ቁௗ ௖௢௦(ఏ೔)ெ
௜ୀଵ + ௞(݊) (1)ݎ

where ݒ௜(݊), ߩ௜, and ߠ௜ are the signal, the angle of arrival (AOA) and the attenuation of the i-th source, 

respectively. All sources have the same wavelength and ݎ௞(݊)  is the noise associated with each 

antenna element. The signal, ݒ௜(݊), is modeled as a narrowband signal. 

In many cases, overall reception performance is measured effectively using the SINR in the output 

of the array. The SINR estimates the ratio between the signal of interest with a view to noise plus 

interference, providing a measure of the quality of communication. 

In an array of sensors, the adaptive process is conducted by means of adjusting the coefficients 

(weights) associated with each of the elements of the array. This adjustment is performed using a 

signal processor and considers a performance criterion established for the system, which could be the 

SINR, the mean square error, the bit error rate (BER), or any other parameter [28–30]. 

The desired characteristics of irradiation/reception, as well as the spatial filtering in an sensor array, 

are configured by convenient manipulation of certain array parameters, such as the number of elements 

(sensors), the geometry (spatial arrangement and spacing between the elements), types of antennas, 

and the coefficients (weights) used to adjust the signal amplitude and phase in each element. 
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Figure 1. Functional diagram of an adaptive array. 

In the system shown in Figure 1, the array output signal for the i-th user is given by: ݕ௜(݊) = ௜,௄ு࢝ (2) (݊)࢞(݊)

where ࢝௜,௄ு (݊) is the vector of weights for the i-th user of the system, and the index H represents the 

Hermitian conjugate transpose. The array output signal ݕ௜(݊) is compared to the desired response 	݀௜(݊), 
the difference between them is called the estimation error, as illustrated in Figure 1. As presented  

in [28], the reference signal (or desired signal) is a training sequence understood by the sensor array, 

sent periodically by the sources. 

2.1. Beamforming 

The objective of beamforming is to adjust the weight vectors in order to obtain the maximum SINR 

in the output of the array. This can be achieved by minimizing the total interference in the array output, 

while maintaining a constant gain for the signal of interest [5,29,30]. Taking the array output given  

in Equation (2), the average total output power (in W) for the i-th user can be written as: 

௜ܲ = ௜(݊)ଶሿݕሾܧ = ௜,௄ு࢝ሾܧ ௜,௄(݊)ሿ (3)࢝(݊)ு࢞(݊)࢞(݊)

where E is the mean operator. Defining: ܴ = ுሿ (4)(݊)࢞(݊)࢞ሾܧ

as the autocorrelation matrix of the input signal, the average total output power of the array is given by: 
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௜ܲ = ௜,௄ு࢝ ௜,௄(݊) (5)ܴ࢝(݊)

The weight vectors that maximize the SINR of the array output can then be found using the 

following minimization problem: 

(೔,಼,௉భ,…,௉ೖ࢝,…,೔,భ࢝)݊݅݉ ൭෍ ௜ܲ௄
௜ୀଵ ൱ 

subject to ܴܵܰܫ௜ ≥ ௜ (6)ߜ

where δ୧, P୧, and ܟ୧,୏ are, respectively, the smallest allowed SINR value in dB (the pre-established 

threshold level), the transmission power, and the beamforming vector for the i-th user. The aim is to 

obtain an optimum pair of the weight and transmission power vectors, with minimization of the total 

transmission power, maintaining the SINR above a pre-established threshold (δ୧). 
2.2. LMS Algorithm 

The LMS algorithm is a method based on gradient search techniques, applied to mean square error 

functions, employing optimum solution of the Wiener-Hopf equation. The algorithm is based on the 

steepest descent method [31], in which changes in the weight vectors are made along the contrary 

direction of the estimated gradient vector. This can be described by: ࢝௜,௄(݊ + 1) = (݊)௜,௄࢝ − ෠(݊) (7)ߘߤ

where ߤ  is a scaling constant that controls the rate of convergence and stability of the algorithm  
(adaptation step), and ߘ෠(݊)	 is the vector gradient estimated from the quadratic error in relation to ࢝௜,௄(݊). 

The error is obtained between the output of the filter, (ݕ௜(݊) = ௜,௄ு࢝  and the reference ,((݊)࢞(݊)

signal,	݀௜(݊), so that: ߝ௜(݊) = ݀௜(݊) − ௜,௄ு࢝ (8) (݊)ݔ(݊)

The stop criterion or convergence criterion of the weights using LMS algorithm is the variation of 

the mean square error at each iterarion, i.e.: |ߝ௜ଶ(݊) − ݊)௜ଶߝ − 1)| < (9) ߦ

where ߦ  ia threshold defined by the designer based on their application that limits the number  

of iterations. 

2.3. Power Control 

An important benefit derived from beamforming and consequent increase in the SINR is the 

possibility of reducing the signal transmission power. This improves the energy efficiency of the 

system and reduces interference between the users, ensuring that each signal is transmitted with the 

lowest power required to maintain a good quality connection. 

The control of power in sensor arrays is based on a selected quality criterion, which in the present 

case was the SINR. During this process, the power is reduced in order to satisfy the restrictions shown 

in Equation (6). Based on papers presented at [8–11], the updating of the power is given by: 
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௜ܲ(݊ + 1) = ௜ܲ(݊) ௜ (10)ܴܰܫ௜ܵߜ

where it can be seen that convergence is achieved when ܴܵܰܫ௜ =  ௜. In the calculation of Equation (10), itߜ

is necessary to know the value of the ܴܵܰܫ௜ in the moving terminal, which can be estimated from the 

minimum mean square error of the beamforming step (LMS), as described by: ܴܵܰܫ௜ = 1 −݉݅݊ ௜ଶ(݊)ሿ݉݅݊ߝሾܧ ௜ଶ(݊)ሿߝሾܧ  (11)

where ܴܵܰܫ௜ represents the estimated SINR for each user. 

Rearranging Equation (10) as a function of the minimum mean square error gives the final 

expression for calculation of the power: 

௜ܲ(݊ + 1) = ௜ߜ ௜ܲ(݊) ݉݅݊ ௜ଶ(݊)ሿ1ߝሾܧ − ݉݅݊ ௜ଶ(݊)ሿ (12)ߝሾܧ

3. Reinforcement Learning 

Reinforcement learning is a technique whereby an apprentice agent attempts to maximize a 

performance parameter based on the reinforcement it receives while interacting with an unknown 

environment. Its use is recommended when there are no a priori models available, or when it is not 

possible to obtain appropriate examples of situations to which the apprentice agent will be exposed. 

The agent that lacks previous knowledge learns by means of interaction with the environment, being 

rewarded for its actions and thereby discovering the optimum policy [32]. 

In a reinforcement learning system, the state of the environment is represented by a set of variables, 

known as the state space, which are perceived by the senses of the agent. An action chosen by the 

agent changes the state of the environment, and the value of this transition of states is passed to the 

environment by means of a scalar reinforcement signal (reward signal). The objective of the technique 

is to lead the agent to selection of the sequence of actions that would tend to increase the sum of the 

reward signal values. 

The agent moves autonomously in the state space, interacting with the environment and learning 

about it through experimentation. Each time that the agent performs an action, an external training 

entity (critic), or even the environment, can give it a reward or a penalty, indicating how desirable it 

would be to reach the resulting state [33]. Hence, the reinforcement does not always signify an 

advance, as it can also inhibit the agent in relation to the action executed. Figure 2 provides a generic 

scheme of the notion of learning by reinforcement. 

The goal of the RL method is to guide the agent towards taking actions that would result in 

maximizing (or minimizing) the sum of the reinforcement signals (numerical reward or punishment) 

received over the course of time, known as the expected return, which does not always signify 

maximizing the immediate reinforcement to be received [34]. 
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Figure 2. Scheme of interaction between the agent and environment. 

The expression describing the sum of the reinforcement signals in an infinite horizon is given by: ܴ௧ = ௧ାଵݎ + .ߛ ௧ାଶݎ + ⋯ = ௧ାଵݎ + ෍ߛ௞. ௧ା௞ାଵஶݎ
௞ୀଵ  (13)

where ܴ௧ represents the return (sum of the reinforcements) received over the course of time, ݎ௧ା௞ is  

the immediate reinforcement signal, and ߛ is the discount factor, defined in the interval 0 ≤ 1 ≥ ߛ,  

that ensures that ܴ௧ is finite. If 0 = ߛ, the agent has a myopic view of the reinforcements, maximizing 

only the immediate reinforcements. If 1 = ߛ, the reinforcement view covers all future states giving  

the same importance to gains at the moment and any future gain. 

The behavior that the agent should adopt in order to achieve maximization (or minimization) of the 

return is known as the policy and can be expressed by π. According to [34], a policy π (s,a) is a 

mapping of states (s) in actions (a) taken in that state, and represents the probability of selecting each 

one of the possible actions, in such a way that the best actions correspond to the greatest probabilities 

of selection. When this mapping maximizes the sum of the rewards, the optimum policy has  

been achieved. 

Evaluation of the quality of the actions taken by the agent involves application of the concept of  

state-action value function, Q(s,a), which is a value that provides an estimate of how good it is for  

the agent to be in a given state (s) and take a given action (a), when it is following any policy π. The term 

Q(s,a) represents the expected value of the total return for the state ݏ௧ =  which is ,(the present state) 	ݏ

the sum of the reinforcements, taking into account the rate of discount (ߛ), as described in expression: ܳగ(ݏ, ܽ) = గܧ ൝෍ߛ௞ݎ௧ା௞ାଵ|ݏ௧ = ,ݏ ܽ௧ = ܽஶ
௞ୀ଴ ൡ (14)

Two central questions in relation to reinforcement learning are presented in [32]:  

• Given a policy π(s,a), what is the best way to estimate Q(s,a)? 

• Given an affirmative response to the preceding question, how can this policy be modified so that 

Q(s,a) approaches the optimum value of this function, and how can the consequent 

corresponding optimum policy be obtained? 

Environment 

Agent

Action atState st Reward rt

st+1

rt+1
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The literature suggests various algorithms that can be used in replying to these questions. However, 

in the present work it was decided to use the Q-learning algorithm developed by [35], which offers 

advantages including the fact that it can directly approach the optimum value of Q(s, a), irrespective of 

the policy employed. The values of Q(s, a) are updated according to: ܳ(ݏ, ܽ) = ,ݏ)ܳ ܽ) + ௧ାଵݎሾߙ + ,௧ାଵݏ)௔ܳݔܽ݉.ߛ ܽ) − ,ݏ)ܳ ܽ)ሿ (15)

where ߙ is the learning rate (0 ≤ ߙ < 1) and ߛ is the discount rate (0 ≤ γ < 1). 

The Q-learning algorithm is presented in Algorithm 1. The episode mentioned in this algorithm is 

characterized by a sequence of states ending in a final state. 

Algorithm 1. Q-learning algorithm. 

1: Initialize Q (s, a) randomly; 

2: Repeat (for each episode) 

3: Initialize s; 

4: Repeat 

5: Choose a for s using the policy π; 

6: Given the action a, watch r, s’; 

,ݏ)ܳ :7 ܽ) = ,ݏ)ܳ ܽ) + ௧ାଵݎሾߙ	 + ,௧ାଵݏ)௔ܳݔܽ݉.ߛ ܽ) − ,ݏ)ܳ ܽ)ሿ 
8: s  s’; 

9: until the final state is reached; 

10: until the number of episodes is reached 

Given that convergence of the algorithm can only be guaranteed if all the state-action pairs are 

visited an infinite number of times, selection of the policy to be used in the Q-learning algorithm must 

ensure that all the pairs have non-null probability of being visited. This can be achieved using an  

ε-greedy policy, defined by: 

,ݏ)ߨ ܽ) = ൞1 − ߝ + |(ݏ)ܣ|ߝ , ݂݅ ܽ = ܽ∗ = ௔ݔܽ݉݃ݎܽ ,ݏ)ܳ |(ݏ)ܣ|ߝ(ܽ , ܽ ≠ ܽ∗  (16)

This policy consists in a choice of the associated action to the highest value of Q with 1 − ߝ + ఌ|஺(௦)| 
probability and random selection of any other action with 

ఌ|஺(௦)| probability, where |A(s)| is the number 

of possible actions to be executed from s, and ߝ is the control parameter between greed and randomness. 

4. Proposed Solution (Intelligent Agent Project) 

In this problem, the aim of the reinforcement learning modeling is to find an optimum policy able to 

indicate the most suitable techniques that the agent should select among the actions available, 

considering beamforming and power control. 

From the point of view of reinforcement learning, the problem can be modeled as follows: the state 

of the environment is represented by a discrete set of SINR values, so that S = {SINR1, SINR2, …, 

SINRm}, where SINRm represents the maximum value defined for the SINR. 
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In each state s ∈	 S, the deciding agent must select an action a from a set of actions available in  

the state s, denoted by A(s). The possible actions available for each state are beamforming (BF) and 

power control (PC). The Q-learning algorithm governs the decision to explore or take advantage, using 

the policy known as ε-greedy. This policy is defined in the algorithm for selection of the action that 

possesses the highest value for the utility of the state (greedy criterion), with probability (1 − ε), and 

for random action, with probability ε. 
As a consequence of selection of an action a ∈ A(s), starting from state s and at instant of decision t, 

the deciding agent receives a reward rt(s,a). The selection of action a alters the perception of the agent 

in relation to the environment, leading to a new state st+1 that conducts it to a new instant of decision  

t + 1. When the reward is positive, it is seen as a profit or prize, and when it is negative, it is seen as a 

cost or punishment. In definition of the return function (reward), an indication should be provided of  

the objective to be achieved by the algorithm. In this problem, an attempt is made to minimize the total 

transmission power, maintaining constant the gain of the desired signal, and keeping the SINR above a 

pre-established threshold δ. The reward was therefore defined as being positive when the SINR 

approached the threshold, and negative when the opposite was true. 

Once the states, actions, and return function had been defined, the next step was the process of 

training the agent, as shown in Algorithm 2. At the start of the learning process, the agent has no 

knowledge of the result obtained by choosing a particular action, so it performs various actions and 

observes the results. For a while, the agent explores many actions that result in increasingly greater 

rewards, and gradually tends to repeat them (exploration); after this, it acquires knowledge from the 

actions, and can sometimes learn to repeat those that result in greater rewards (exploitation). 

Algorithm 2 requires information for the parameters (line 1): learning coefficient (α), parameter for 

regulation of the greedy criterion (ε), discount rate (γ), and LMS stop criterion (ߦ). Subsequently, the 

matrix Q is initiated using random values (line 2), and the initial state is determined randomly within 

the values defined in s (line 4). An available action is chosen for s (line 6), and according to the action 

selected, the corresponding technique (BF or PC) is executed. If the action selected is BF, the 

algorithm will adjust the weights while the determined condition (line 8) remains satisfied, and if not, 

will update the transmission power in accordance with the equation presented in Algorithm 2 (line 16). 

Assuming that the initial action PC is chosen, a random value was given for the min_mse variable 

equal to 2 (which is the minimum value of the error) and then the powers were updated. Otherwise, 

i.e., if the chosen initial action is BF, the min_mse used to update the powers is based on the last 

iteration of the error vector ߝ௜ in BF operation. The power is a vector of positions, where M is the 

number of signals that are addressing the array of sensors. In executing the available actions for s, the 

reward (r) (line 19) and a new state 	(	sᇱ) are reached, according to the equation in line 20, and the 

matrix Q is updated (line 21). The process (lines 6–22) repeats itself until a final state is found, which 

in this work was defined by the SINR threshold. After attaining the final state, the algorithm is 

executed (from line 4) until the defined number of repetitions is completed. The stages of the  

Q-learning algorithm applied to the sensor array in the agent training step are shown in Algorithm 2. 

At the end of the training, a Q matrix is constructed, which is utilized in the functioning of the agent. It 

is important to note that for each BF action, there is storage of a matrix W(s, 1), containing all the optimum 

weight values, together with a matrix P(s, 2), for each PC action, corresponding to all the transmission 

power updates. Whenever the environment is changed, a new execution of Algorithm 2 is required. 
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Algorithm 2. Sensor array Q-learning algorithm. 

1: Require: (α, ε, γ,	ܯ,ߦ) 

2: Initialize Q (s, a)  

3: While maximum episodes are not reached Do 

4:  Initialize s         % initial state 

5:  While final state is not reached Do  

6:   Choose a according to ε-greedy rule; % a =1(BF) or a=2 (PC) 

7:   If a==1       % Beamforming 

8:    While |ߝ௜ଶ(݊) − ݊)௜ଶߝ − 1)| <  10ିସ	ℎܽ݊ݐ	ݏݏ݈݁	݈݀݋ℎݏ݁ݎℎݐ	%   Do ߦ

9:     For i=1, 2, …, ܯ 

݊)௜ݓ      :10 + 1) = (݊)௜ݓ +  (݊)௜ߝ(݊)࢞ߤ
11:    End-For 

12:   End-While 

13:  End - If  

14:   If a==2       % Power Control 

15:     For i=1, 2, …, M 

16:      ௜ܲ = ߜ ௜ܲ ௠௜௡_௠௦௘ଵି௠௜௡_௠௦௘ %Updated powers  

17:     End-For  

18:  End - If  

19:   Watch r % Reward 20:		ݏᇱ = (1 −  New State %      ݁ݏ݉_݊݅݉/(݁ݏ݉_݊݅݉

,ݏ)ܳ	:21 ܽ) = ,ݏ)ܳ ܽ) + ௧ାଵݎሾߙ	 + ,௧ାଵݏ)௔ܳݔܽ݉.ߛ ܽ) − ,ݏ)ܳ ܽ)ሿ	% Updating Q-table 

22:   s  s’ 

23:   End-While 

24: End-While 

25: return Q(s,a) % Q-values Matrix 

Algorithm 3 shows the functioning of the agent, where j is the processing cycle, corresponding to 

selection of an initial state, execution of an action, and attainment of a new state. 

Algorithm 3. Algorithm for functioning of the agent. 

2: If (environment changes) 

3: training % Algorithm 2 

4: Else  

5: Choose an initial state s 

6:  For j from 1 until max_value Do  

7: Choose amax for s and run 

8:   s  s’ 

9:   End-For 
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5. Simulation and Results 

The functioning of the algorithm was demonstrated for two sources (M = 2) using simulation of a 

situation with angles of 90° and 30° for the desired and interferent signals, respectively. The target 

SINR was 2 dB, and the initial powers were set at 1 W for both sources. All sources were modeled 

with polar binary signals (ݒ௜(݊) 	∈ 	 ሼ−1,1ሽ) random uniform distribution. The noise at each antenna 

element was modeled as Additive white Gaussian noise (AWGN) with variance ߪଶ. The parameters 

used in the simulation are listed in Table 1. 

Table 1. Simulation Parameters. 

Parameters Value 

Number of elements in the array (K) 8 
Number of signals (M) 2 

Initial transmit power (P0) 1 W 
SINR threshold (δ) 2 dB 

Step Adaptation (ߤ ) 0.001 
Noise Variance ( ଶߪ ) 0.1 

Distance between each element of the array (d) λ/2 
Learning Rate ( ߙ ) 0.1 

Discount Factor ( ߛ ) 0.9 
Greedy Rule (  0.2 (ߝ

Attenuation of the i-th source (ρ୧) 1 

In this paper, a linear array of sensors with eight elements and two signal sources was used for a 

desired source and an interfering source. A linear array with K elements can create up to K − 1 nulls in 

the direction of the interfering source. When the number of unwanted (interfering) sources is close to 

such a limit, the attenuation of unwanted signals is reduced and there are excess gains (greater than the 

gain attributed to the desired signal) in the proximity of the desired and undesired angles. Thus, the use 

of two sources is in the range between the limits established for the performance of the system. 

The distance between the array elements (d) is limited by the value λ/2. This limitation avoids the 

production and overlapping of side lobes. The unit transmission powers were used to initialize the 

power control algorithm and to facilitate the calculations. The choice of ߤ in the adaptation step is 

experimentally determined in order to provide stability of the algorithm. The higher the adaptation step 

value, the higher the convergence speed. However, the excess error also becomes larger, which is 

undesirable. The 	ߛ ,ߙ, and ߝ values were obtained after several simulations. 

The states of the environment were represented by discrete SINR values between −0.8 and 5, which 

corresponded to index values in the range 1–18. Each action was identified with the label 1 or 2, 

indicative of beamforming and power control, respectively. An ε-greedy policy was adopted, with 80% 

possibility of selecting the better action. 
  



Sensors 2015, 15 6680 

 

 

Two simulations were performed using the parameters shown in Table 1, but with the variation of 

the noise (σ2) changed to 0.3 in the second simulation. In each simulation, the training was configured 

to execute 10, 50 and 250 episodes. 

The results of the first simulation are shown in Table 2, indicating the policies obtained after each 

different episode. Each line corresponds to a SINR value, and the columns correspond to the 

beamforming (BF) or power control (PC) processes. 

Table 2. Policy Improvement of the agent. 

  Policy 10 Policy 50 Policy 250 

INDEX SINR(dB) BF PC BF PC BF PC 

1 −0.8 0.5 0.5 1 0 0 1 
2 −0.6 0.5 0.5 1 0 1 0 
3 −0.4 0.5 0.5 1 0 0 1 
4 −0.2 0 1 1 0 1 0 
5 0 0 1 0 1 0 1 
6 0.2 0 1 0 1 0 1 
7 0.4 0 1 0 1 0 1 
8 0.6 0 1 0 1 0 1 
9 0.8 1 0 1 0 0 1 
10 1 0 1 0 1 0 1 
11 1.2 0 1 1 0 0 1 
12 1.4 0 1 0 1 0 1 
13 1.6 0 1 0 1 0 1 
14 1.8 0 1 0 1 0 1 

15 2 Destination Destination Destination 

16 3 1 0 0 1 1 0 
17 4 1 0 1 0 1 0 
18 5 1 0 1 0 1 0 

The values given in Table 2 correspond to the probability of selecting each technique, for the range 

of discretized SINR values. The optimum policy was obtained after 250 episodes, and was adopted for 

testing the agent. 

Figure 3 present (on the ordinate axis) the states (SINR), and the curves indicate the evolution of the 

SINR until reaching the target value (δ = 2). 

The switching sequence using an initial SINR of −0.8 is illustrated in Figure 4, with the actions 

executed (beamforming or power control) indicated on the ordinate axis, and the curve showing the 

order of execution in each processing cycle. Index 1 indicates execution of beamforming, and Index 2 

indicates power control. 
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(a) 

(b) 

(c) 

Figure 3. (a) System response. Agent started with SINR = −0.8 dB; (b) System response. 

Agent started with SINR = 0 dB; (c) System response. Agent started with SINR = 5 dB. 
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Figure 4. The switching sequence among the two techniques. 

Table 3 presents the simulation results obtained using the same parameters, but with variance of the 

noise equal to 0.3. 

Table 3. Policy Improvement of the agent. 

  Policy 10 Policy 50 Policy 250 

INDEX SINR(dB) BF PC BF PC BF PC 

1 −0.8 0.5 0.5 0 1 0 1 
2 −0.6 0.5 0.5 0 1 0 1 
3 −0.4 0.5 0.5 1 0 0 1 
4 −0.2 0 1 1 0 0 1 
5 0 0.5 0.5 0.5 0.5 0 1 
6 0.2 0 1 0 1 0 1 
7 0.4 0 1 0 1 0 1 
8 0.6 0 1 0 1 0 1 
9 0.8 1 0 0 1 0 1 
10 1 0 1 0 1 0 1 
11 1.2 0.5 0.5 0 1 0 1 
12 1.4 0 1 0 1 1 0 
13 1.6 0 1 0 1 0 1 
14 1.8 0 1 0 1 0 1 

15 2 Destination Destination Destination 

16 3 0 1 1 0 1 0 
17 4 0 1 1 0 1 0 
18 5 1 0 1 0 1 0 

From Tables 2 and 3, it can be seen that power control was selected in more states, compared to 

beamforming, which demonstrates the independence of the algorithm in selecting the optimum policy, 

in contrast to other procedures [8–10,17] in which only the power is updated once beamforming 

convergence is reached. Figure 5 illustrate the evolution of the SINR until the target value is reached 

(second simulation). 
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(a) 

(b) 

(c) 

Figure 5. (a) System response. Agent started with SINR = −0.8 dB; (b) System response. 

Agent started with SINR = 0 dB; (c) System response. Agent started with SINR = 5 dB. 
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Figure 6 presents the switching sequence for an initial SINR of 5, where the ordinate axis shows the 

actions executed (beamforming or power control) and the curve indicates the order of execution in 

each processing cycle. Index 1 indicates the execution of beamforming and Index 2 indicates the 

execution of power control. 

 

Figure 6. The switching sequence among the two techniques. 

It can be seen that even with increase of the variance of the noise from 0.1 to 0.3, the proposed 

algorithm was effective in selecting the optimum policy, requiring only one new training, given that  

the environment was modified. This is an important point, and shows the robustness of the algorithm 

when faced with new noise conditions. 

6. Conclusions 

The use of beamforming and power control individually in sensor arrays has its benefits, but it can 

be seen that by employing them jointly there is an increase in system performance. Several studies 

have used beamforming and power control jointly, but this paper presents a new control method 

employing a combination of beamforming and power control. The algorithm presented uses the 

technique of reinforcement learning to obtain the optimum policy for selection between beamforming 

and power control in sensor arrays. 

It can also be seen that the proposed technique reduces the computational cost, as the techniques are 

selected independently. For example (Table 2), using the optimum policy obtained after 250 episodes,  

it was found that in many cases it was not necessary to execute the LMS algorithm. This resulted in 

lower computational cost and reduced complexity of the proposed method. 

From the simulations performed, it could be concluded that reinforcement learning offers an 

effective way of implementing a policy of switching between beamforming and power control in 

sensor arrays, benefiting from the advantages of both techniques. 
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