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Abstract: This article compares three different algorithms used to compute Euler angles 

from data obtained by the angular rate sensor (e.g., MEMS gyroscope)—the algorithms 

based on a rotational matrix, on transforming angular velocity to time derivations of the 

Euler angles and on unit quaternion expressing rotation. Algorithms are compared by their 

computational efficiency and accuracy of Euler angles estimation. If attitude of the object 

is computed only from data obtained by the gyroscope, the quaternion-based algorithm 

seems to be most suitable (having similar accuracy as the matrix-based algorithm, but 

taking approx. 30% less clock cycles on the 8-bit microcomputer). Integration of the Euler 

angles’ time derivations has a singularity, therefore is not accurate at full range of object’s 

attitude. Since the error in every real gyroscope system tends to increase with time due to 

its offset and thermal drift, we also propose some measures based on compensation by 

additional sensors (a magnetic compass and accelerometer). Vector data of mentioned 

secondary sensors has to be transformed into the inertial frame of reference. While 

transformation of the vector by the matrix is slightly faster than doing the same by 

quaternion, the compensated sensor system utilizing a matrix-based algorithm can be 

approximately 10% faster than the system utilizing quaternions (depending on 

implementation and hardware). 
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1. Introduction 

Micro-Electro-Mechanical systems (MEMS) represent the integration of mechanical elements, 

sensors, actuators, and electronics on a common silicon substrate through the utilization of 

microfabrication technology [1]. The number of MEMS used in various applications is permanently 

growing due to the small dimensions, light weight, lower power consumption, higher reliability, and 

relatively low cost which makes them commercially available. Typical MEMS-based low-cost 

products are accelerometers, gyroscopes, pressure sensors, microphones, digital mirror displays, micro 

pumps, etc. For the purpose of low-cost navigation solutions MEMS-based inertial sensors 

(accelerometers and gyroscopes) have been developed since orientation of an object in the  

three-dimensional space is key information needed for navigation, guidance and control tasks. MEMS 

inertial sensors may be found in variety of applications from traditional ones (navigation and 

positioning of various transport means and/or robots) to sensing of human body walking and 

movement [2–5], daily life surveillance [6] or new commercial applications available through smart 

phones [7]. Most studies on MEMS gyroscopes are focused on their performance, and common methods 

to improve the performance [8]. Unlike non-micro devices MEMS sensors experience more errors that 

build up over time, corrupting the precision of the measurements and eventually rendering the 

navigation solution useless [9,10]. Thus the first and easiest-to-measure performance criterion of a gyro 

is its static readout as a function of time. Accuracy is usually limited by electrical noise, systematic 

errors and/or mechanical thermal noise [11,12]. The static compensation of sensor inaccuracies can be 

enabled by proper calibration methods designed for MEMS gyroscopes and accelerometers [13]. The 

principle of recently developed micro-machine gyroscopes, their structures and classification can be 

found in [14].  

Generally, gyroscopes measure rotational rate, which can be integrated to yield changes in 

orientation. An effective method most used to parametrize the orientation space is based on usage of so 

called Euler angles. Euler angles are used as a framework for formulating and solving the equations for 

conservation of angular momentum. This article has been written with motivation to analyze and show 

how precision and speed of computations of Euler angles could be improved when processing data 

from the MEMS gyroscope. It is organized as follows: Section 1 (Introduction) describes theoretically 

several methods of notation to express rotation of a body (particularly the rotation matrix, Euler angles, 

rotation around arbitrary axis, and quaternion). Section 2 (Experimental Section) is focused on 

comparison of errors occurring when algorithms utilizing described notations process data from the 

gyroscope. If applicable, more versions of the same algorithm are considered (focused either on 

accuracy or fastness of computation). At the end of the section there is discussion on how errors 

presented in real gyroscopes could be compensated. Section 3 (Results and Discussion) summarizes 

analyzed properties and gives final comparison and overview of obtained results. Finally, Section 4 

gives the conclusions. The article is an extended version of the conference paper [15], elaborated and 

supported by the VEGA1/0453/12 grant and used with kind permission of Springer Science + Business 

Media. Article extensions resulted from the work under another project as stated in the 

Acknowledgments section.  

The purpose of the inertial navigation in the 3D space is to determine six independent variables: 

translation of an object in three axes and its rotation in three axes, relative to the inertial frame of the 
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reference body. In this article we describe possible ways how to express rotation (attitude) of the object 

and calculate it from angular velocity measured by the gyroscope.  

We consider the Cartesian (orthonormal) right-hand coordinate system oriented by convention 

NED, i.e., North-East-Down. Moving object axes’ orientations are x → forward, y → right and  

z → down (Figure 1). Two reference frames are used: 

• Frame of reference joined with Earth (considered to be approximately inertial), marked S. All 

variables measured with respect to Earth will be marked without a dash. 

• Frame of reference joined with rotating object, marked S’. All variables measured onboard the 

moving object will be marked with a dash. 

 

Figure 1. Orientation of the coordinate system axes. 

First we will analyze four used methods of notation that allow us to express rotation of a body. 

Differences among those individual approaches can be seen in data redundancy and consumption of 

computer time during processing of raw data from the gyroscope and during conversion from one 

notation to another (which has direct impact on algorithm efficiency). 

1.1. Euler Angles  

Euler angles are expressing rotation of the object as a sequence of three rotations around objects’ 

local coordinate axes. This way of rotation expression is most interpretative and has zero data 

redundancy because only three real numbers are needed. Different sequence of axis rotation produces 

different resultant rotation; therefore Euler angles are defined according to chosen sequence 

(convention). In aviation the most used convention is z-y-x convention (sometimes called  

Yaw-Pitch-Roll convention or 3-2-1, see Figure 2): 

1. Rotate the object around its z-axis by angle Yaw (marked γ);  

2. Rotate the object around its new y1-axis by angle Pitch (marked β); 

3. Rotate the object around its new x2-axis by angle Roll (marked α).  

Rotation order of z-y-x convention can be expressed by the following operator: 

( )( )zyx
γβαγβα ℜℜℜ=ℜ 12

,,  (1)

Inverse rotation is given by the reversed rotation order by inverted angles: 

( )( )xyz ′
−−−

− ℜℜℜ=ℜ αβγγβα
211

,,  (2)
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Main disadvantage of representing object’s rotation by Euler angles is a lack of the simple 

algorithm for vector transformation. This can be realized by transferring Euler angles to the rotation 

matrix by Equation (10) and following application of Equation (4). Trivial chaining (adding) of two 

rotations represented by Euler angles is not possible. 

 
1 2 3 

Figure 2. Euler angles for 3-2-1 convention. 

1.2. The Rotational Matrix  

The rotation matrix defines change of coordinates of the object in the coordinate system S during 

rotational movement. It is a typical representation of object’s attitude (very often used, e.g., in 

computer graphics). It is clear that this form has the greatest data redundancy due to needs of saving 

nine real numbers: 
















=

333231

232221

131211

RRR

RRR

RRR

R  (3)

Transformation of coordinates from the system S to the system S' can be done by multiplication of 

the position column vector r by the rotation matrix: 

rRr ⋅=′  (4)

Result of rotation R1 followed by R2 is given by matrix multiplication: 

12 RRR ⋅=  (5)

Inverse rotation is given by the transposed matrix: 

TRR =−1  (6)

While the original vector r has the same length as the resultant vector r', the rotational matrix has to 

be orthogonal with its determinant equal to 1. The matrix is orthogonal when all its row or column 

vectors are perpendicular to each other. The following algorithm can be used to normalize the matrix 

to be pure rotational [16]: 
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1. Calculate deviations eik from orthogonality of the matrix columns: 
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2. Distribute errors among all columns: 
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 (8)

3. Normalize columns to be unit vectors. Approximate formula (first order Taylor series) can be 

used only if normalization is performed incrementally by small steps (after each updating of the 

rotational matrix): 
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 (9)

Conversion from 3-2-1 Euler angles to the rotational matrix is given by the following formula [17]: 


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where: 
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 (11)

Conversion from the rotational matrix to 3-2-1 Euler angles can be done by the following algorithm: 
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The function atan2(y, x) is a four quadrant inverse tangent function, i.e., arctangent function 

extended to the output angle interval from –π to π. Inputs x and y are coordinates of any point in 2D 

plane, output is an oriented angle between x-axis and the vector [x, y]. Function is supported by many 
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programming languages by standard (e.g., C-language), having two arguments. The purpose of using 

two arguments instead of one is to gather information on the signs of the inputs in order to return  

the appropriate quadrant of the computed angle, which is not possible for the single-argument 

arctangent function. 

1.3. Rotation around Arbitrary Axis  

According to the Euler theorem it is possible to replace every rotation representation by simple 

rotation around angle θ around the arbitrary axis given by the unit vector n = n' = [nx, ny, nz] (length of 

the axis vector is |n| = 1). Note that the axis vector has the same coordinates in the inertial system S 

and the body-fixed system S'.  

Transformation of the vector r from the system S to S' is expressed by the Rodriguez rotation formula: 

( )( )[ ]θθ cos1sin −×+×+=′ rnrnrr  (13)

Inverse rotation is expressed by the identical axis n and opposite angle −θ. Chaining of two 

rotations around non-parallel axes of rotation is impossible to implement trivially, transformation to 

another type of expression is needed.  

1.4. Quaternion  

Quaternion (invented by sir William Rowan Hamilton in 1843) is a modification of rotation around 

arbitrary axis expression utilizing algebra of complex numbers expanded to three imaginary 

dimensions with the complex units i, j, k, for which it is valid: 

1...

.1..

..1.

−=−==
=−=−=
−==−=

kkijkjik

ikjjjkij

jkikjiii

 (14)

Based on the expanded Euler’s formula, the rotation for quaternion around the axis ],,[ zyx nnn=n  

by angle θ is defined as follows: 

( ) wzyxnnn zyx +++=+++= kjikjiq
2

cos
2

sin...
θθ

 (15)

While the axis n is a unit 3D vector, quaternion must follow unit constraint to be pure rotational: 

12222 =+++= wzyxq  (16)

Normalization of quaternion is done by the similar way like normalization of any vector. An 

approximate formula (like matrix normalization) can be used only if normalization is performed after 

each update of the quaternion: 

( )qqq
2

3 2222

2222normalized

wzyx

wzyx

−−−−≈
+++

=  (17)

The advantage of quaternions is quick computing of chaining of rotation q1 followed by q2 utilizing 

Hamilton’s product: 
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There are two basic variants of vector transformation utilizing quaternion. The first one takes the 

transformed vector as a quaternion 0+++= kjir zyx rrr : 

1−=′+′+′=′ qrqkjir zyx rrr  (19)

Concerning speed it is better to use the following formula: 

( )[ ]rqrqrr ×+×+=′ ˆˆ2 w  (20)

where q̂  is a vector part of quaternion: 

[ ]
2

sin,,ˆ
θnq == zyx  (21)

Conversion from 3-2-1 Euler angles to unit quaternion is given by the following formula: 
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Conversion from quaternion to 3-2-1 Euler angles can be done by the following algorithm: 
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2. Experimental Section 

In this section we compare errors of Euler angle estimation caused by algorithms processing 

gyroscopic data and being based on different rotation notations. These errors increase during run-time 

and depend on sampling frequency. The gyroscope firmly joined with the moving object S' is 

measuring angular velocity as a tri-component vector ],,[ zyx ωωω ′′′=′ω . These data are sampled with 

given sample frequency fsample = 1/ΔT. The sensor system has to process data sample by sample in  

real-time (Figure 3). As mentioned above, outputs of the algorithm are Euler angles α, β, γ, the system 

should also provide utility of the transformation of the vector from the S to S' coordinate system. 

In order to eliminate influence of the sensor itself a model of the ideal digital-output gyroscope with 

the following properties was used for algorithm testing: 

• Gyroscope output in each axis is a signed integer with 16-bit precision (like in many of 

available low-cost gyroscopes). Full-scale range of the output angular rate is ±500°/s. 

• No noise is present at gyroscope output; also sampling frequency is absolutely precise (we want 

to examine errors of data processing algorithms, not precision of data itself). Therefore, data 

simulation was used instead of real experiment. 

 

Figure 3. Schematics expressing principle of real-time gyroscope data processing. 

In order to obtain comparable results, simulated movement of the object has to be exactly the same 

for all experiments. Therefore the pre-defined non-random movement has to be simulated. As a test 

input for algorithms we used a model of precession motion with perpendicular precession axis (see 

Figure 4). Such rotational movement is easy to define and also it is possible to analytically compute 

object’s attitude (Euler angles) at any time.  

Angular velocity of primary rotation and precession was chosen A = 1 rad·s−1. Simulated angular 

velocity of the object (measured in its frame of reference) is then given by following: 

( ) ( )AtAtAtAtAt zyx cos)(;sin)(;)( =′=′=′ ωωω  (24)

Simulation time corresponds to 20 turns (tend = 40π/A ≈ 2 min). Euler angles during simulated 

movement are shown in Figure 5. Initial rotation is {α0 = 0°, β0 = 60°, γ0 = 0°}. Euler angles (3-2-1 

convention) during defined movement are given by following: 
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0
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00
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ββ

ββα

=
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+=
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Figure 4. Half turn of the simulated precession movement. 

Resulting error of the algorithm is considered to be the maximal deviation of Euler angles 

)(~),(
~

),(~ ttt γβα  estimated by the algorithm from the correct Euler angles )(),(),( ttt γβα  during  

the simulation: 

( ))()(~,)()(
~

,)()(~max tttttterr γγββαα −−−=  (26)

Note that the difference between two angles has to be computed as angular difference (e.g., 

difference between 180° and −180° is zero) and the maximal shown error is 180°.  

 

Figure 5. Euler angles during one turn of the simulated movement. 
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2.1. The Algorithm Based on Updating of the Rotational Matrix 

The first version of the algorithm for processing of measured angular velocity is utilizing a matrix 

as a primary expression of rotation. The principle of this method is shown in Figure 6. 

 

Figure 6. Precise version of the algorithm based on a rotation matrix. 

The original rotation matrix Rn is multiplied by the update matrix Rupdate: 

nn RRR ⋅=+ update1  (27)

The update matrix defines rotation of the object between 2 recent samples of the angular velocity 

vector ω' (samples ωn-1 and ωn) with time span ΔT. It is possible to create the update matrix from 

angular velocity by two ways—precise and fast. Fast version uses linear approximation of sine and 

cosine functions which significantly reduces computational demands; precise version uses non-linear 

goniometric functions. There is a possibility of using Taylor series of higher order as an approximation 

of sine and cosine functions.  

2.1.1. Precise Version 

We can assume that between 2 samples there is constant angular velocity, so its direction defines 

rotation axis and magnitude multiplied by sample period ΔT defines the angle of rotation: 

T

nnn zyx

zyx

Δ′=

=
′+′+′

′
=

′
′

=

ω

ω
ω
ω

n

θ

ωωω
],,[

222
 (28)

The corresponding update matrix is: 
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where θcos=c  and θsin=s .  

If we use substitution: 
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We obtain: 
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2.1.2. Fast Version 

In case of high sampling frequency, we can use the infinitesimal rotation matrix based on the first 

order approximation of trigonometric functions: 

1coslimsinlim
00

==
→→

xxx
xx

 (32)

The update matrix has a form of the infinitesimal rotational matrix: 
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Because of the linearity of equations (there is no need for calculation of trigonometric functions or 

normalization of the axis vector) this is the fastest of all mentioned methods (it is about 3-times faster 

than precise version, depending on the used hardware). However, the main disadvantage is low 

accuracy, which constrains this algorithm for systems with high sampling frequency. 

Figure 7 compares the fast and precise versions by their relative errors with respect to sampling 

frequency. Expression of rotation based on rotational matrices does not contain any singularities; 

therefore it is working with constant precision for every tilt. The advantage is also the quick algorithm 

of vector transformation. In order to maintain rotation matrix orthogonality, normalization is strongly 

recommended if fast version of the matrix-based algorithm is used. Shown results are computed after 

normalization in each step. 
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Figure 7. Errors of the matrix-based algorithms during simulated movement.  

2.2. The Algorithm Based on the Integration of the Euler Angle Rates  

Using this algorithm it is possible to avoid intermediate expression of rotation (e.g., by the matrix) 

and following need for conversion to Euler angles. The principle is shown in Figure 8. This version 

uses relation between angular velocity ω' measured in the coordinate system S' and time derivations of 

Euler angles (Euler angle rates): 
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By integration of Euler angle rates γβα  ,,  we get resulting Euler angles. There are two algorithms 

of numerical integration used in real-time processing: 

Step integration: 

Tnnn Δ+= ++ 11 ααα   (35)

Trapezoidal integration: 

( )
211

T
nnnn

Δ++= −+ αααα   (36)

Although trapezoidal integration is usually more precise than simple step integration, according to 

Figure 9 step integration is in case of Euler angle rates little more precise. This is caused by non-linearity 

of transformation Equation (34). The algorithm is precise enough only at high sampling frequency. 
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Figure 8. The algorithm based on Euler angle rates integration. 

The main disadvantage of this algorithm is singularity of expression Equation (34) in case of cosβ = 0 

called gimbal-lock, which is representing the state, when x-axis is pointing downwards or upwards  

(β = 90° or β = −90° respectively). In surroundings of this singularity numerical error is rising. In case 

that position reaches this singularity, information about two DoF is lost (see Figure 10). 

 

Figure 9. Relation between error and sampling frequency in the algorithm based on the 

integration of the Euler angle rates. 
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Figure 10. Relation between error and the initial pitch angle β0 at fsample = 1000 Hz of the 

Euler angle rates-based algorithm. 

This error can be avoided by early conversion to another Euler convention which reaches 

singularity in other points (for example conversion to 1-2-1, 1-3-1, 2-3-1, 3-1-2, 3-1-3 or 3-2-3 Euler 

angle convention [18]). After calculation of Euler angles in substitute convention, they are transformed 

back to the primary convention. Accuracy is then achieved in the whole angle range. This is 

computation demanding non-linear operation [18].  

2.3. The Algorithm Based on Quaternion  

The third possibility is to utilize primary expression of rotation using quaternion. The principle  

is expressed by Figure 11. Similarly as in the case of the rotational matrix, two variants of calculation  

are possible. 

2.3.1. Precise Version 

It is an analogy of the precise matrix-based algorithm. The form of update quaternion is following: 
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   

′ ′ ′ω + ω + ω ′ ′ω Δ ω Δ   = +   ′ω    

q i j k

i j k
 (37)

where 222
zyx ωωωω ′+′+′=′=′ ω .  
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Then it is valid: 

1. −= nupdaten qqq  (38)

 

Figure 11. Principle of the quaternion-based algorithm. 

2.3.2. Fast Version 

Neglecting higher order members, using approximations: 

1
2

cos
22

sin ≈





 Δ′Δ′

≈





 Δ′

′
′ TTT ii ωωω

ω
ω

 (39)

We obtain update quaternion in the form: 









+

′
+

′
+

′
= 1

222update kjiq
dtdtdt zyx ωωω

 (40)

Then according to Equation (38) it is valid: 

( ) qqqkjiq

qkji

qqq

d
dt

dtdtdt

zyx

zyx

update

+=′+′+′+≈





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


+

′
+

′
+

′
≈

=

111

1

12

2

1
222

.

ωωω

ωωω
 

(41)

which results in: 

( )qkjiq
zyxdt

d ωωω ′+′+′=
2

1
 (42)
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By integration of quaternion derivation by time we get resulting rotation quaternion. Figure 12 

compares precision of fast and precise versions of the algorithm. Like the fast matrix-based  

algorithm also the fast quaternion-based algorithm requires normalization of quaternion after each  

step. Normalization of rotation quaternion is described by Equation (17). Presented results are obtained 

with normalization.  

 

Figure 12. Errors of the quaternion-based algorithms during simulated movement.  

2.4. Compensation of MEMS Gyroscope Data Using a MEMS Accelerometer and Magnetic Compass  

Results given above are valid in an ideal case when gyroscope data are absolutely precise. Real 

MEMS gyroscope readings are noisy and sensitive to vibrations. The greatest impact on precision of 

Euler angles estimation has offset of the gyroscope. Due to variance of parameters of an electro-mechanical 

system with temperature the offset is also temperature dependent. The aim is to use secondary  

sensor (accelerometer, magnetic compass) to compensate increasing (offset-caused) error of the 

gyroscope-only system.  

The accelerometer is sensing its acceleration (3D vector) relative to inertial frame of reference. In 

gravitational field the accelerometer is sensing gravity as acceleration upwards. Reading of the 

accelerometer is (see Figures 13 and 14): 

],,[ accaccaccnoiseacc ZYX aaa=+′−′= agaa  (43)

where a' is own acceleration of the object expressed in the coordinate system S', g' is a vector of 

gravitational acceleration (depending on locality near Earth) transformed to the coordinate system of 

the object S' based on data concerning object rotation and anoise is the noise caused by: 
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• Vibrations of this object 

• Thermal noise of the sensor 

• Quantization noise of the A/D converter 

 

Figure 13. Accelerometer and magnetic compass readings at non-zero pitch β and yaw γ. 

Acceleration aacc is measured by the on-board accelerometer as a sum of the gravity 

acceleration g and object’s acceleration a. Earth’s magnetic field induction B has 

inclination θ, declination δ and its horizontal complement points to magnetic North.  

 

Figure 14. Roll and pitch calculation from measured gravity acceleration. Object pitches 

up and rolls right (axis x' points forward). The vector g' defines vertical direction. 

According to Figure 14 for roll and pitch angle we obtain: 

),(atan2),(atan2 accZaccYacc aagg zy −−≈′′=α  (44)

),(atan2),(atan2),(atan2 2
accZ

2
accYaccX

22
acc aaaggggg zyxyzx +≈′+′′−=′′−=β  (45)
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If we assume that noise anoise has zero mean value and lower limiting frequency fmin, then the noise 

can be effectively suppressed by the low pass filter.  

Since we cannot determine the rotation around vertical z'-axis (yaw γ) from accelerometer data, it is 

necessary to add a magnetic compass to the sensor system. For ensuring proper function of the system 

for all rotations of the object, the magnetic sensor has to determine magnetic induction B' of the 

Earth’s magnetic field in all three axes (compass output is the vector ],,[ zyx BBB ′′′=′B ). For yaw 

rotation calculated from readings of the magnetic sensor it is valid: 

mxy BB δγ −−= ),(atan2 11mag  (46)

where δm is magnetic declination (offset between magnetic and geographic north direction, depending 

on actual position on Earth), Bx1 and By1 are components of measured magnetic induction after 

transformation to the coordinate system S1 (inverted x- and following y- rotation, see definition of 

Euler angles) according to the formula: 

)(],,[ 1
,1111 BB ′ℜ== −
βαzyx BBB  (47)

In terms of avoiding preparation of partial inverse rotation, it is more convenient to determine the 

difference between yaw γgyro calculated from gyroscope data and yaw from the magnetic compass γmag as: 

mxy BB δγγγ −−=−=Δ ),(atan2gyromagmag  (48)

where Bx a By are components of measured magnetic induction after transformation to the coordinate 

system S (inverted x-, y- and z- rotation), which are: 

)(],,[ 1
,, BB ′ℜ== −
γβαzyx BBB  (49)

 

Figure 15. Data fusion of the gyroscope, accelerometer and magnetic sensor. 

For fusion of Euler angles measured by the gyroscope as a primary sensor and accelerometer and 

magnetic compass as secondary sensors we can use the algorithm as shown in Figure 15. Gain K << 1 
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expresses relative weight of the accelerometer with respect to the gyroscope (if K = 0, the 

accelerometer does not affect output Euler angles). Delay block and gain forms the first order discrete 

low pass filter in the accelerometer signal path with cutoff frequency: 

samplemax fKf ≈  (50)

The fusion schema does not filter out any noise from gyroscope reading; it suppresses increasing 

error of estimated Euler angles in long term caused mainly by offset.  

While the schematics in Figure 15 contains the reverse conversion block from Euler angles to the 

rotation matrix, normalization of the matrix is no longer needed. 

3. Results and Discussion 

Effect of sensor fusion is more significant after longer time (especially at low angular velocities). 

Figure 16 shows effect of using fusion of gyroscope, accelerometer and magnetic sensor readings. 

Simulated rotation was slowed down 100-times (A = 0.01, compare with Equation (24)). Fusion gain 

was K = 0.01, noise in secondary sensor data has SNR = 0dB. The precise quaternion-based algorithm 

at sampling frequency 1 kHz was used. Due to gyroscope offset the estimation error continuously 

increases with time. The low pass filter within the data fusion algorithm suppresses noise in secondary 

sensor data and roll angle obtained by fusion slightly oscillates around actual roll. 

As can be seen in Figure 17, sensor fusion with weak bound of secondary absolute but noisy sensor 

can effectively suppress error of estimation caused by sensor offsets. Fusion gain K has to be set 

according to offset variance of the gyroscope (the more precise the gyroscope is the lesser fusion gain 

can be obtained). 

 

Figure 16. Estimation of roll angle with gyroscope offset 0.1% of full range (500°/s). 
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Figure 17. Relative error of roll angle estimation with respect to gyroscope offset. 

The second great aspect of the algorithm is its computational time. Two types of reference hardware 

were used: 

• 8-bit low-cost microprocessor (Atmel ATmega1284P running at 20 MHz); 

• 32-bit microprocessor with FPU and DSP support (Atmel UC3C1512C running at 48 MHz). 

Table 1 compares computational time of algorithms in terms of the CPU cycles of 8-bit low-cost 

microprocessor. The mentioned cycle counts are average values from 1000 random inputs, using  

the mathematical library optimized for AVR 8-bit microcontrollers. Algorithms are using  

software-implemented single precision floating point arithmetic (according to IEEE 754) due to the 

fact that AVR microcontrollers do not contain the floating point unit (FPU). Using highly optimized 

implementation of the matrix-based algorithm including fusion of the gyroscope with accelerometer 

and magnetic compass allows algorithm sampling rate up to approximately 200 Hz (running on AVR  

8-bit core @ 20 MHz).  

Table 2 shows the same algorithms running on the 32-bit microprocessor. Utilization of the 32-bit 

microcontroller with FPU significantly reduces the count of needed clock cycles (in case of adding and 

multiplication of real numbers approx. 30 times depending on the used processor). While the 

representation of numbers is the same for all architectures (32-bit floating point number), accuracy of 

the algorithm does not depend directly on the used microcontroller. However, decreasing time needed 

for one cycle of the algorithm allows higher maximal sample rate (up to maximal sample rate of 

gyroscope itself). Increasing sample rate will improve accuracy significantly. For example, increasing 

sampling rate from 200 Hz to 1 kHz will decrease error caused by the algorithm by approx. 50%  

(see Figures 5, 7 and 10).  
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Table 1. Comparison of methods in terms of 8-bit AVR processor clock cycles. 

Algorithm 
Updating of the 

Rotational Matrix 

Integration of the 

Euler Angle Rates 

Updating of the 

Quaternion 

Redundancy (count of variables) 
** 

9 

**** 

3 

*** 

4 

Gyroscope data processing  

(rotation update) 

*** + 

17,230 (6034 +) 

*** 

14,750 

**** 

11,462 (5120 +) 

Normalization 
** 

12,265 

***** 

0 

**** 

1972 

Vector transformation 
**** 

2301 

* 

15,231 3) 

*** 

4321 

Transformation to the rotational matrix 
***** 

0 

** 

12,930 

**** 

3536 

Transformation to Euler angles 
**** 

7820 

***** 

0 

*** 

10,673 

Transformation to quaternion 
*** 

3370 

** 

13,020 

***** 

0 

Clock cycles for the gyroscope-only system 1) 37,315 (26,119 +) 14,750 24,107 (17,765 +) 

Clock cycles for the compensated system 2) 40,281 (29,085 +) 29,981 3) 39,476 (33,134 +) 

Legend: + Fast version of the algorithm; * Improper; ** Usable; *** Good; **** Excellent; ***** No demands on 

computing time; 1) Cycles needed for gyroscope data processing, normalization (if needed) and conversion to Euler angles; 
2) Cycles needed for gyroscope data processing, transformation of the magnetic induction vector (compass), conversion to 

Euler angles and back; 3) Euler angles were converted to the rotational matrix which was used for vector transformation. 

Table 2. Comparison of methods in terms of 32-bit UC3C processor clock cycles. 

Algorithm 
Updating of the 

Rotational Matrix 

Integration of the 

Euler Angle Rates 

Updating of the 

Quaternion 

Gyroscope data processing (rotation update) 
*** 

4511 (247 +) 

** 

10,900 

**** 

4219 (169 +) 

Normalization 
** 

226 

***** 

0 

**** 

66 

Vector transformation 
**** 

58 

* 

13,757 3) 

*** 

182 

Transformation to the rotational matrix 
***** 

0 

** 

13,669 

**** 

752 

Transformation to Euler angles 
**** 

10,014 

***** 

0 

*** 

10,648 

Transformation to quaternion 
**** 

1049 

** 

11,337 

***** 

0 

Clock cycles for the gyroscope-only system 1) 14,751 (10487 +) 10,900 14,933 (10,883 +) 

Clock cycles for the compensated system 2) 28,252 (23988 +) 24,657 3) 26,386 (22,336 +) 

Legend: + Fast version of the algorithm; * Improper; ** Usable; *** Good; **** Excellent; ***** No demands on 

computing time; 1) Cycles needed for gyroscope data processing, normalization (if needed) and conversion to Euler angles; 
2) Cycles needed for gyroscope data processing, transformation of the magnetic induction vector (compass), conversion to 

Euler angles and back; 3) Euler angles were converted to the rotational matrix which was used for vector transformation. 
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If the microcontroller with hardware support of floating-point calculations is used, linear (fast) 

versions of algorithms are much faster than the precise non-linear algorithms. Results given in Tables 1 

and 2 strongly depend on implementation of the discussed algorithms (execution speed can be 

improved by using optimized mathematical libraries for hardware supporting floating-point 

calculations). Number of the clock ticks is shown mainly for simple comparison purposes.  

The Euler angle rates integration can be faster than the remaining two algorithms but it has 

significantly worse accuracy at the same sampling frequency and also has intrinsic singularity. 

Therefore the choice should be between the matrix- and quaternion-based algorithms. If the sensor 

system should be able to quickly transform many vectors between inertial and local frame of reference the 

matrix-based algorithm can be a better choice (2–3 times faster vector transformation than by quaternion). 

4. Conclusions 

By comparing relative errors of each mentioned algorithm we can see that the worst algorithm is 

direct Euler angles integration due to its singularity. Precise version of the quaternion-based algorithm 

is slightly faster than the precise matrix-based algorithm. Fast version of the quaternion-based 

algorithm at lower sampling frequency is also more accurate than the matrix-based algorithm (see 

Table 3). Difference in accuracy between fast and precise versions of the same algorithm decreases 

with sampling frequency (see Figures 7 and 12). The choice of the proper algorithm depends on: 

• Available computational power (CPU) and maximal sampling frequency of the sensors (which 

reflects in overall cost of the sensor system and its accuracy). At lower sampling frequency the 

fast quaternion-based algorithm is more precise than the fast matrix-based algorithm. 

• Precision requirements (in order to achieve long-term stability the compensated system with 

sensor fusion has to be used). 

• Amount of vectors transformed from the non-rotated coordinate system to rotated coordinates 

and vice versa (transformation performed by the matrix is faster). 

Table 3. Accuracy of the algorithms.  

Sampling 

Frequency 

Maximal Error of the Algorithm during 120 s of Simulated Movement 

Matrix-Based Algorithm Integration of Euler Angle Rates Quaternion-Based Algorithm 

Fast Precise Step Integration Fast Precise 

10 Hz >180° 8° >180° 30° 8° 

50 Hz 4° 1° >180° 1° 1° 

100 Hz 1° 0.6° >180° 0.6° 0.6° 

500 Hz 0.1° 0.1° 8° 0.1° 0.1° 

1000 Hz 0.06° 0.06° 4° 0.06° 0.06° 
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