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Abstract: The large volume of hyperspectral images (HSI) generated creates huge 

challenges for transmission and storage, making data compression more and more important. 

Compressive Sensing (CS) is an effective data compression technology that shows that 

when a signal is sparse in some basis, only a small number of measurements are needed for 

exact signal recovery. Distributed CS (DCS) takes advantage of both intra- and  

inter- signal correlations to reduce the number of measurements needed for  

multichannel-signal recovery. HSI can be observed by the DCS framework to reduce the 

volume of data significantly. The traditional method for estimating endmembers (spectral 

information) first recovers the images from the compressive HSI and then estimates 

endmembers via the recovered images. The recovery step takes considerable time and 

introduces errors into the estimation step. In this paper, we propose a novel method, by 

designing a type of coherent measurement matrix, to estimate endmembers directly from 

the compressively observed HSI data via convex geometry (CG) approaches without 

recovering the images. Numerical simulations show that the proposed method outperforms 

the traditional method with better estimation speed and better (or comparable) accuracy in 

both noisy and noiseless cases. 

Keywords: hyperspectral images; distributed compressive sensing; endmember estimation; 
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1. Introduction 

Hyperspectral images (HSI) are collections of hundreds of images that have been acquired 

simultaneously in narrow and adjacent spectral bands, typically by airborne sensors [1,2]. Through the 

continued development of sensing technology, the spectral and spatial resolution for HSI has increased 

significantly. For example, the NASA Jet Propulsion Laboratory’s Airborne Visible Infra-Red Imaging 

Spectrometer (AVIRSI) covers the wavelength region from 0.4~2.5 microns using 244 spectral 

channels at the nominal spectral resolution of 10 nm [3]; the spatial resolution of the hyperspectral 

imager in the Tiangong 1 aircraft is 5 m [4]. High spectral and spatial resolution results in HSI 

providing a wealth of information for accurate target detection and identification, leading to many 

applications including environmental monitoring, agriculture planning, and mineral exploration [5]. 

However, it also makes the volume of data very large, which introduces a significant challenge to data 

transmission, storage and analysis. Due to the extremely large volume of HSI data, compression 

technology has received considerable interest in recent years. 

In conventional HSI sensing systems, the full data are acquired and are then compressed before 

transmission. This paradigm has several disadvantages: first, all the data should be stored; second, the 

computationally costly implementation of the compression is required to reside on board, housed 

within the sensing modality. Typically, the sensor platform is a severely resource-constrained environment 

such as a plane or satellite. As an alternative to the conventional sensing systems, compressive sensing 

(CS) [6,7] is an effective approach to acquire and compress the data in only one step. CS theory shows 

that only a small collection of a sparse or compressible signal contains enough information for stable 

signal recovery. Distributed CS (DCS) extends the single signal CS to multiple signals [8–10]. By 

exploiting both intra- and inter-signal correlation structures, DCS can reduce the number of 

measurements of each signal effectively, saving on the costs of data storage, communication and 

processing. DCS is very suitable for multi-channel applications, such as HSI. 

Blind hyperspectral unmixing (HU) is one of the most prominent research topics in signal 

processing (SP) for hyperspectral remote sensing [11,12]. Blind HU aims to identify endmembers 

present in a captured scene, as well as their proportions [13]. There are many methods for blind HU 

such as pixel purity index (PPI) [14], N-FINDR [15], vertex component analysis (VCA) [16],  

SSCBSS [17], hypGMCA [18], and modified VCA (MVCA) [19], which are all based on the Nyquist 

sampling theorem. There are also some HU methods based on the CS theory, such as CSU [20] and the 

method proposed in [5], but they all assume that the endmembers are known as side information. 

Endmember estimation is a key step to identify the materials in HSI, and in many applications, the 

endmembers are unknown. 

The traditional method for endmember estimation under the CS/DCS framework consists of 2 steps: 

(1) recovering the HSI data by CS/DCS methods and (2) estimating the endmembers from the 

recovered data by HU methods. The recovery step takes considerable time and also introduces errors 

into the estimation step, which will degrade the speed and accuracy of the endmember estimation. 

In this paper, by designing a type of coherent measurement matrix, we propose a novel method that 

estimates the endmembers directly from the compressive HSI with convex geometry (CG) approaches, 

which outperforms the traditional method with better estimation speed and better (or comparable) accuracy. 
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The paper is structured as follows. The necessary theoretical background and notations are provided 

in Section 2. In Section 3, we describe the proposed method in detail. The performance of the proposed 

method is demonstrated in Section 4 in comparison to the traditional method. We conclude the paper in 

Section 5. Important acronyms used in this paper are listed in Table 1. 

Table 1. Important acronyms used in this paper. 

Acronym Meanings 

HSI Hyperspectral Images 

SP Signal Processing 

CS Compressive Sensing 

DCS Distributed Compressive Sensing 

HU Hyperspectral Unmixing 

LMM Linear Mixing Model 

CG Convex Geometry 

JSM Joint Sparse Model 

2. Hyperspectral Unmixing in Distributed Compressive Sensing  

2.1. Hyperspectral Unmixing  

2.1.1. Linear Mixing Model for HSI 

HU refers to any process that separates the pixel spectral from a hyperspectral image into a collection 

of constituent spectral or spectral signatures, called endmembers and a set of fractional abundances, one 

set per pixel [12]. Mixing models can be characterized as either linear or nonlinear [12,13]. The linear 

mixing model (LMM) is a very representative model for HSI, and it is an acceptable approximation of 

the light scattering mechanisms in many real scenarios. In this paper, we only focus on the LMM. Let 

𝑥𝑏[𝑛]  denote the hyperspectral sensor’s measurement at spectral band 𝑏  and at pixel  𝑛 .  

Let 𝒙[𝑛] = [𝑥1[𝑛], 𝑥2[𝑛], ⋯ , 𝑥𝐵[𝑛] ] ϵ 𝑅𝐵, where 𝐵 is the number of spectral bands. The LMM can be 

denoted as 

𝒙[𝑛] = ∑ 𝑠𝑖[𝑛]𝒂𝑖

𝑃

𝑖=1

= 𝒔[𝑛]𝑨 (1) 

for 𝑛 = 1, 2, ⋯ , 𝑁, where each row vector 𝒂𝑖 ϵ 𝑅𝐵, 𝑖 = 1, 2, ⋯ , 𝑃, is called an endmember signature 

vector, which contains the spectral information of a certain material (indexed by 𝑖). 𝑃 is the number of 

endmembers, or materials; 𝑨 = [𝒂1
𝑇 , 𝒂2

𝑇 , ⋯ , 𝒂𝑃
𝑇]𝑇 ∈ 𝑅𝑃×𝐵 is called the endmember matrix; and 𝑠𝑖[𝑛] is 

the proportion of endmember 𝑖 at pixel 𝑛. 𝒔[𝑛] = [𝑠1[𝑛], 𝑠2[𝑛], ⋯ , 𝑠𝑃[𝑛] ] ϵ 𝑅𝑃 is the proportion vector 

at pixel 𝑛. 𝑁 is the number of pixels. The LMM is shown in Figure 1. 

Owing to physical constraints, the proportions are non-negative and satisfy the full additivity constraint: 

𝒔[𝑛] ≥ 0, 𝒔[𝑛] ∙ 𝟏 = 1, 𝑛 = 1, 2, ⋯ , 𝑁 (2) 

where 𝟏 denotes an 𝑃 × 1 vector of ones; 𝒔[𝑛]  ≥ 0 means that each entry in vector 𝒔[𝑛] is non-negative. 
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Let 𝒔𝑖 = [𝑠𝑖[1], 𝑠𝑖[2], ⋯ , 𝑠𝑖[𝑁] ]𝑇 ϵ 𝑅𝑁 denote the proportion vector of endmember 𝑖, and let 𝒙𝑏 =

[𝑥𝑏[1], 𝑥𝑏[2], ⋯ , 𝑥𝑏[𝑁] ]𝑇ϵ 𝑅𝑁  denote the measurements at band 𝑏.  Let  𝑺 = [𝒔1, 𝒔2, ⋯ , 𝒔𝑃] ϵ 𝑅𝑁×𝑃 , 

and 𝑿 = [𝒙1, 𝒙2, ⋯ , 𝒙𝐵] ϵ 𝑅𝑁×𝐵; then, the LMM can be written in the matrix form: 

𝑿 = 𝑺𝑨 (3) 

Obviously, row 𝑛 of 𝑿 is 𝒙[𝑛], and row 𝑛 of 𝑺 is 𝒔[𝑛]. From the signal processing aspect, 𝑺 can be 

seen as the source matrix whose 𝑛th column contains the proportion of source 𝑛 at each pixel; 𝑨 is the 

mixing matrix, and 𝑿 is the mixture matrix. 

 

Figure 1. The linear mixing model of hyperspectral images [13]. 

2.1.2. Convex Geometry Approaches for HU 

There are several key approaches for HU, including convex geometry (CG) approaches, statistical 

approaches, sparse regression approaches and nonnegative matrix factorization [12,13]. CG 

approaches are very popular and effective in HU. A vast majority of HU developments, if not all, are 

directly or intuitively related to concepts introduced in CG studies [13]. In this paper, we only focus on 

the CG approaches. 

We introduce some mathematical notations in convex analysis: spanned space, affine hull and 

convex hull. 

The space spanned by a set of vector {𝒃1, ⋯ , 𝒃𝑃} ϵ 𝑅𝐵 is defined as: 

span{𝒃1, ⋯ , 𝒃𝑃} = {𝛄 = ∑ β𝑖
𝑃
𝑖=1 𝒃𝑖|β𝑖 ∈ 𝑅} (4) 

The affine hull of a set of vectors {𝒃1, ⋯ , 𝒃𝑃} ϵ 𝑅𝐵 is the set of all affine combinations of elements 

of {𝒃1, ⋯ , 𝒃𝑃}: 

aff{𝒃1, ⋯ , 𝒃𝑃} = {𝛄 = ∑ β𝑖
𝑃
𝑖=1 𝒃𝑖|β𝑖 ∈ 𝑅, ∑ β𝑖

𝑃
𝑖=1 = 1} (5) 

The convex hull of a set of vector {𝒃1, ⋯ , 𝒃𝑃} ϵ 𝑅𝐵 is defined as: 

conv{𝒃1, ⋯ , 𝒃𝑃} = {𝛄 = ∑ β𝑖
𝑃
𝑖=1 𝒃𝑖|β𝑖 ∈ 𝑅, β𝑖 ≥ 0, ∑ β𝑖

𝑃
𝑖=1 = 1} (6) 

Assuming that {𝒃1, ⋯ , 𝒃𝑃} are affinely independent, i.e., 𝒃2 − 𝒃1, 𝒃3 − 𝒃1, …, 𝒃𝑃 − 𝒃1 are linearly 

independent, the convex hull of {𝒃1, ⋯ , 𝒃𝑃} is a (P − 1)-simplex in 𝑅𝐵. 
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Figure 2 shows the illustration of the affine hull and convex hull for the case of 𝑃 = 3. As can be seen, 

aff{𝒃1, 𝒃2, 𝒃3} is a plane and conv{𝒃1, 𝒃2, 𝒃3} is a triangle. {𝒃1, 𝒃2, 𝒃3} are the vertices of the 2-simplex. 

 

Figure 2. Affine hull and convex hull. 

There is a strong connection between the convex hull and the LMM of HSI. From Equations (1)–(3), 

we can see that each measured hyperspectral pixel vector 𝒙[𝑛]  is a convex combination of the 

endmember 𝒂1, ⋯ , 𝒂𝑃: 

𝒙[𝑛] ∈ conv{𝒂1, ⋯ , 𝒂𝑃}, 𝑛 = 1,2, ⋯ , 𝑁 (7) 

conv{𝒂𝟏, ⋯ , 𝒂𝑷} is a simplex because {𝒂𝟏, ⋯ , 𝒂𝑷} are linearly independent (and thus affine independent). 

Note that the vertices of conv{𝒂1, ⋯ , 𝒂𝑃} are 𝒂𝟏, ⋯ , 𝒂𝑷; thus, in CG approaches, the inference of the 

endmember matrix 𝑨 is equivalent to identifying the vertices of the simplex. 

2.2. Compressive Sensing 

CS theory indicates that if a signal is sparse or compressive in some basis, it can be exactly 

recovered by a small number of measurements, much less than the number required by the Nyquist 

sampling theory. Let 𝒙 =  [𝑥[1], 𝑥[2], ⋯ , 𝑥[𝑁]]
𝑇

 ϵ 𝑅𝑁 be a 𝐾 sparse signal (𝐾 ≪ 𝑁). The sparse basis 

is 𝚿 ϵ 𝑅𝑁×𝑁 with a sparse coefficient vector 𝜼 ϵ 𝑅𝑁. The signal can be denoted as 

𝒙 = 𝚿𝜼 (8) 

with ‖𝜼‖0 = 𝐾, where ‖𝜼‖0 denotes the number of non-zero entries in 𝜼. 

𝚽 is the 𝑀 × 𝑁 measurement matrix, where 𝑀 < 𝑁. The observation vector 𝒚 consisits of 𝑀 linear 

projections of 𝒙: 

𝒚 = 𝚽𝒙 = 𝚽𝚿𝜼 = 𝚯𝜼 (9) 

where 𝚯 = 𝚽𝚿 is called the sensing matrix. 

The design of 𝚽 is critical for CS. A sufficient condition for stable signal recovery is that 𝚽𝚿 

satisfies the RIP (Restricted Isometry Property) [21]. For each integer 𝑈 = 1, 2, ⋯, define the isometry 
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constant δ𝑈  of the matrix 𝚯  as the smallest number such that (1 − δ𝑈)‖𝚯𝜼‖2
2 ≤ ‖𝚯𝜼‖2

2 ≤

(1 + δ𝑈)‖𝚯𝜼‖2
2 holds for all 𝑈-sparse vectors 𝜼. We will loosely say that the matrix 𝚯 obeys the RIP of 

order 𝑈 if δ𝑈 is not too close to one [7]. The correlation between 𝒚 and 𝜼 is shown in Figure 3. 

 

Figure 3. The framework of compressive sensing [22]. 

The length of 𝒚 is much smaller than the length of 𝒙, and thus, Equation (9) is underdetermined and 

the solution is ill-posed [23], for the matrix  𝚯  has more columns than rows. The most original 

approach for solving this problem is to find the sparsest vector 𝜼, which seeks a solution to the 𝑙0 

minimization problem 

min‖𝜼‖0 𝑠. 𝑡. 𝒚 = 𝚯𝜼 (10) 

The 𝑙0 minimization is NP-hard and computationally intractable [23]. 

Fortunately, it has been proven that the 𝑙1 minimization method can also exactly recover the signal 

under some conditions [7,21]. The 𝑙1 minimization is given by: 

min‖𝜼‖1 𝑠. 𝑡. 𝒚 = 𝚯𝜼 (11) 

The 𝑙1  minimization is also called the basis pursuit (BP), whose computational complexity is 

𝑂(𝑀2𝑁3/2) [24]. The recovery speed is very slow, especially when 𝑁 is very large in the HSI application. 

Greedy algorithms, such as Orthogonal Matching Pursuit (OMP) [25] and Subspace Pursuit (SP) [26], 

are more computationally attractable and are widely used for CS problems at the expense of requiring 

slightly more measurements [25–27]. 

2.3. Distributed Compressive Sensing 

DCS [8–10] is a combination of distributed source coding (DSC) and CS. In the DCS framework, 

multichannel sensors measure signals that are each individually sparse in some domain and also 

correlated from sensor to sensor. The DCS theory rests on a concept called the joint sparsity of a signal 

ensemble. There are three joint sparse models (JSM): JSM-1, JSM-2 and JSM-3. In JSM-1, all signals 

are sparse and have common sparse components, while each signal contains sparse innovation parts. In 

JSM-2, all signals share the same support set with different amplitudes. In JSM-3, all signals have  

non-sparse common parts and sparse innovations. 

JSM-2 is the most concise model, as shown in Figure 4, and has been applied in compressive HSI [27]. 

 

y Φ Ψ η Θy
η
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Figure 4. JSM-2 in distributed compressive sensing. 

A key prior that will be essential for compressive HSI is that each source image/mixture image is 

piecewise smooth in the spatial domain, implying a sparse representation in the DCT (discrete cosine 

transform) domain or the wavelet domain. 

According to the assumption above, the image in each spectral band has a sparse representation, 

whose observations measured by the CS method can be written as 

𝒚𝑏 = 𝚽𝒙𝑏 = 𝚽𝚿𝜼𝑏 = 𝚯𝜼𝑏(𝑏 = 1,2, ⋯ , 𝐵) (12) 

From our assumption; each source image is also sparse in some domain; and thus; the sparse 

representation of each mixture (spectral image) has the same sparse location with different coefficients 

due to the different mixing parameters of each source. 

The SOMP (Simultaneous Orthogonal Matching Pursuit) method is proposed in [28] to reconstruct 

all of the signals that fall into the JSM-2 simultaneously, and this algorithm outperforms the OMP 

algorithm when dealing with multiple signals [8] and in compressively sensed HSI reconstruction 

applications [27]. 

Hence, the compressive observation of HSI can be denoted as 

𝒀 = [𝒚1, 𝒚2, ⋯ , 𝒚𝐵] = [𝚽𝒙1, 𝚽𝒙2, ⋯ , 𝚽𝒙𝐵] = 𝚽𝑿 = 𝚽𝑺𝑨 (13) 

To summarize, the task of endmember estimation from compressive HSI can be described as 

follows: given the compressive observation matrix 𝒀, as well as the measurement matrix 𝚽 and the 

sparse basis 𝚿, estimate the endmember matrix 𝑨. 

2.4. Traditional Method for Endmember Estimation from Compressive HSI 

The framework of the traditional method for solving the problem mentioned above is shown in  

Figure 5. It contains two steps: in the first step, it recovers the hyperspectral image 𝒙𝑖  (𝑖 = 1, 2, ⋯ , 𝐵) 

by solving the DCS problem described in Equation (12) and then estimates the endmember matrix 𝑨 (from 
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the recovered mixtures) by solving the endmember estimation problem, as shown in Equation (3). In  

Figure 5, �̂�𝑏 is the recovered value of 𝒙𝑏, and �̂� is the estimated value of 𝑨. 

 

Figure 5. The framework of the traditional method based on DCS theory. 

The aim of endmember estimation is to estimate the endmember matrix 𝑨, not the image matrix 𝑿, 

which is only an intermediate representation used to calculate 𝑨. However, the recovery of the images 

is a necessary step in the traditional method, as shown in Figure 5. It consumes a great deal of time and 

may also introduce errors to the estimation step.  

In the next section, we will propose a new method that can estimate 𝑨  directly from the 

compressive HSI data without recovering the images, which leads to a better estimation speed. 

3. The Proposed Method 

3.1. Framework Description of the Proposed Method 

As discussed in Section 2, if we can estimate endmembers directly from the compressive HSI data 

without recovering the images, omitting the recovery step will greatly reduce the complexity of 

computation; we will obtain a much better estimation speed and possibly also a better estimation 

accuracy. 

The compressive observation of HSI is denoted as follows: 

𝒀 = 𝚽𝑿 = 𝚽𝑺𝑨 = [𝚽𝒔1, 𝚽𝒔2, ⋯ , 𝚽𝒔𝐵]𝑨 = [𝒗1, 𝒗2, ⋯ , 𝒗𝐵]𝑨 = 𝑽𝑨 (14) 

where 𝒗𝑝 =  𝚽𝒔𝑝 can be regarded as the compressive measurement of the source 𝒔𝑝. 

The value 𝒚𝑏 = 𝚽𝒙𝑏 = (∑  𝒗𝑝𝑎𝑝𝑏
𝑃
𝑝=1 ) is the compressive measurement of mixture 𝒙𝑏 , and it is 

also the mixture of all of the 𝒗𝑝(𝑝 = 1,2, ⋯ , 𝑃). 𝑎𝑝𝑏 is the element of matrix 𝑨 at row 𝑝 column 𝑏. 

Equation (14) can be considered as LMM, as shown in Equation (3). Thus, we wish to estimate the 

endmember matrix 𝑨 directly via CG approaches such as PPI, N-FINDR, VCA, and MVCA. 

Unfortunately, the properties of the measurement matrix 𝚽 make it impossible to directly use the 

CG approaches on Equation (14). Incoherence is a critical property indicating that the structures of the 

measurement matrix used in CS that, unlike the signals of interest, have a dense representation in the 

basis 𝚿, and random matrices are largely incoherent with any fixed basis 𝚿, making the sensing 

matrix 𝚯 hold RIP with overwhelming probability [7]. Hence,  𝒗𝑝 =  𝚽𝒔𝑝 is not sparse in basis 𝚿, and 

𝒗[𝑛] (similar to the definition of 𝒙[𝑛] in Section 2.1) cannot hold the non-negative and full additivity 

constraints, as shown in Equation (2), due to its dense and random character. We can see that: 

𝒚[𝑛] ∈ 𝑪 = {𝛄 = ∑ 𝑣𝑖[𝑛]𝑃
𝑖=1 𝒂𝑖|𝑣𝑖[𝑛] ∈ 𝑅}, 𝑛 = 1, 2, ⋯ , 𝑁 (15) 
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𝑣𝑖[𝑛] is the element in matrix 𝑽 at column 𝑖 row 𝑛. From Equation (15), we can see that 𝑪 is not a 

convex hull, and 𝒚[𝑛] is not a convex combination of endmember signatures. Actually, 𝑪 is the space 

spanned by {𝒂1, ⋯ , 𝒂𝑃} (see Figure 2 for the relationship between the spanned space and the convex 

hull), and 𝒚[𝑛] is a point in the space. In this condition, the endmember signatures {𝒂1, ⋯ , 𝒂𝑃} are no 

longer vertices of a simplex, which means that we cannot use CG approaches to estimate the 

endmembers directly. 

To the knowledge of the authors and the referenced materials, we have not found a measurement  

matrix that not only satisfies the incoherence (or RIP), but also makes  𝒗𝑝 =  𝚽𝒔𝑝 sparse in basis 𝚿 

or  𝒗[𝑛]  hold the non-negative and full additivity constraints. It seems impossible to estimate 

endmembers from compressive HSI data directly. 

We propose a novel method, as shown in Figure 6. A coherent measurement matrix is used to 

compressively measure the HSI, and the endmembers can be directly estimated from the observations.  

 

Figure 6. The framework of the proposed method. 

First, we design a coherent measurement matrix that makes 𝒗[𝑛] hold the non-negative and full 

additivity constraints. 

The coherent matrix that does not hold the RIP cannot be used for exact and robust signal recovery, 

as mentioned above. In this paper, the aim is to estimate endmembers directly from the compressive 

HSI data, not to recover the HSI data. Therefore, we do not have to use an incoherent matrix (meaning, 

we do not have to use a random matrix). We give an example of such a coherent matrix. Let 𝐈 ϵ 𝑅𝑁×𝑁 

be an identity matrix. We construct the measurement matrix using parts of 𝐈. For example, we select 

one row in every  𝑡(𝑡 = 1, 2, … )  rows from 𝐈  to compose  𝚽 ϵ R𝑀×𝑁  (the compression ratio is  

 𝑡, 𝑀 = round (
𝑁

𝑡
), where round() is the operation of rounding towards the nearest integer). It is clear 

that 𝒗[𝑛] holds the non-negative and full additivity constraints. With this kind of measurement matrix, 

it is possible to use CG approaches, such as PPI or VCA, to estimate the endmembers directly by 

solving the problem shown in Equation (14). 

Other measurement matrices 𝚽 that make 𝒗[𝑛] in 𝑽 = 𝚽𝑺 hold the non-negative and full additivity 

constraints can be used in this proposed method. 
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This type of measurement matrix achieves undersampling of HSI. It will lose some proportion 

information. Therefore, the undersampled data cannot be used to recover the proportion information.  

If this information is required, one can recover it by the data captured by an incoherent measurement 

matrix, as shown in Figure 6. 

In this paper, we use the VCA algorithm to estimate the endmembers directly in the proposed method. 

We assume the presence of pure pixels in the undersampled data as required by VCA, and we also 

assume the presence of all of the materials in the data. These assumptions are easy to realize for the 

increasing spatial resolution of hyperspectral sensors. 

In the proposed method, we first use a coherent measurement matrix to compressively sense HSI  

and then use the VCA method to estimate the endmember directly from the HSI observations without 

recovering the images, which is a necessary step in the traditional method. As shown in the dashed 

parts in Figure 6, if the proportion information 𝑺  is required, one can use another incoherent 

measurement matrix to capture the global information of HSI, which can be used along with the 

estimated endmembers �̂� to recover the proportions [5,20]. 

3.2. Analysis of the Computational and Memory Complexity 

Under the linear observation model, HSI data are in a subspace of dimension 𝑃. Typically,  𝑃 is far less 

than 𝐵 . The dimensionality 𝐵  ranges from around 100 to 250, whereas 𝑃  ranges from about 3 to  

20 [29]. In the VCA algorithm, the HSI data dimensionality is reduced by PCA or SVD. The 

computational complexity of the proposed method is 𝑂(𝑃2𝑀) [16]. 

The traditional methods used in this paper are SOMP-VCA (SOMP for HSI data recovery and VCA  

for endmember estimation) and OMP-MVCA. The computational complexity of the SOMP 

is  𝑂(𝐵𝐾𝑀𝑁 ), where 𝐾  is the sparsity of the signals. Typically, 𝐵  and 𝐾  are both larger than  𝑃 , 

so 𝐵𝐾𝑀𝑁 > 𝑃2𝑀𝑁 ≫ 𝑃2𝑀 . The computational complexity of VCA used in the traditional method 

is 𝑂(𝑃2𝑁 ) (each spectral image length is 𝑁 , while the length of the compressive spectral image in  

the proposed method is  𝑀 ). The total computational complexity of the traditional method is  

𝑂(𝐵𝐾𝑀𝑁 + 𝑃2𝑁). In most cases, 𝐵𝐾𝑀𝑁 > 𝑃2𝑀𝑁 ≫ 𝑃2𝑁, so the complexity can be simply denoted 

as 𝑂(𝐵𝐾𝑀𝑁). The computational complexity of the SOMP-VCA is much larger than that of the 

proposed method. 𝑃2𝑁 > 𝑃2𝑀 , and thus, we can see that the computational complexity of the 

traditional method is larger than that of the proposed method, even if we use other CS recovery 

methods besides the SOMP algorithm. The computational complexity of OMP is 𝑂(𝐵𝐾𝑀𝑁) when 

𝐾 ≪ 𝑁, otherwise, the computational complexity is the larger one of 𝑂(𝐵𝐾3𝑀) and 𝑂(𝐵𝐾𝑀𝑁). The 

computational complexity of MVCA is smaller than that of VCA. So the complexity of OMP-MVCA 

is dominated by OMP. 

In the proposed method, the memory required is 𝑂(𝑃𝑀) due to dimensionality reduction and data 

compression. In the SOMP-VCA method, the memory required by SOMP is 𝑂(𝑀𝑁) and the memory 

required by VCA is 𝑂(𝑃𝑁). 𝑀𝑁 ≫ 𝑃𝑁 > 𝑃𝑀; therefore, the memory required by the SOMP-VCA 

method can simply be 𝑂(𝑀𝑁), which is much larger than that of the proposed method. Similar to the 

analysis of SOMP-VCA, the memory required by OMP-MVCA is simply 𝑂(𝑀𝑁).  
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4. Simulation Results 

4.1. Evaluations of the Proposed Method 

In this section, we first evaluate the practicability of the proposed method. Then, we compare the 

performance of the proposed method with the performance of the SOMP-VCA method. 

The data used in this paper are (1) the semi-synthetic HSI of a rural suburb of Geneva and (2) real-work 

urban HSI, both of which are also used in [5] (This dataset is available at [30]. We acknowledge 

Mohammad Golbabaee, Simon Arberet and Vandergheynst for providing the dataset.). In the  

rural HSI, 𝑁 = 64 × 64, 𝑃 = 3, 𝐵 = 64, all the pixels are pure (which means that each pixel only 

contains one material), as shown in Figure 7. In the urban HSI,  𝑁 = 256 × 256, 𝑃 = 6,    

𝐵 = 171 (the first 16 bands are used in this paper), and parts of the pixels are pure, as shown in Figure 8.  

In this paper, the size of HSI data is reduced by SVD from 𝑁 × 𝐵 to 𝑁 × 𝑃 in VCA algorithm. 

   

 

Figure 7. The proportion of each material in the rural HSI. 

To evaluate the performance of the algorithms, we compute the rms (root-mean-square) error 

distance of vectors of angles 𝛉 = [θ1, θ2, ⋯ , θ𝑃]𝑇 with 

θ𝑝 = arccos
〈𝒂𝑝, �̂�𝑝〉

‖𝒂𝑝‖ ∙ ‖�̂�𝑝‖
 , (𝑝 = 1, 2, ⋯ , 𝑃) (16) 

where θ𝑝 is the angle between vector 𝒂𝑝 and �̂�𝑝(the estimated value of 𝒂𝑝). Based on 𝛉, we estimate 

the rms error distance: 

rmsSAE = (
1

𝑃
∑ (θ𝑝)

2𝑃

𝑝=1
)

1/2

 (17) 

where rmsSAE measures the distance between 𝒂𝑝  and �̂�𝑝  for 𝑝 = 1, 2, ⋯ , 𝑃 . (SAE stands for the 

Signature Angle Error). 

We use �̃� to denote the coherent measurement matrix described in Section 3.1. In noisy cases, 

white Gaussian noise 𝒏 is added to the observation, i.e., �̃� = �̃�𝑿 + 𝒏. The SNR (signal-to-noise ratio) 

is from 20 to 40 dB with a step length of 10 dB. 𝑁 is the number of pixels of a hyperspectral image, 

and 𝑀  is the number of compressive measurements of an image. The compression ratio  
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𝑡 (𝑡 = round(
𝑁

𝑀
)) is from 2 to 20 with a step length of 1 in the proposed method. We also consider the 

non-compression (Nyquist sampling) data, i.e., 𝑡 = 1. Each experiment is repeated 50 times to calculate 

the mean result. The platform used in this paper is with the following hardware and software: (1) CPU: 

Intel Core i3 550, 3.2 GHz; (2) RAM: 4 GB; (3) OS: Windows 8, 64-bit; and (4) Matlab version: 

R2011b, 64-bit. 

   

   

 

Figure 8. The proportion of each material in the urban HIS. 

From Figures 9 and 10, we can see that as the compression ratio t grows, the rmsSAE does not 

change a lot, especially when the SNR is large, compared with the non-compression case t = 1 (this is 

due to the performance and the assumption of the VCA algorithm). However, the runtime decreases 

greatly as t increases compared with the non-compression case. We can see that the proposed method can 

estimate the endmember with comparable accuracy to the Nyquist-based method (t = 1) with much faster 

estimation speed as t increases, as long as the pure pixel and all material presence assumptions hold. 

We note that the value of t is user-defined as long as the presence of each material and pure pixel 

assumption holds. 

To assess the performance of the proposed method for a large number of endmembers, we vary the 

number from 𝑃 = 10 to 𝑃 = 20. The endmember data are mineral signatures extracted from the U.S. 

Geological Survey (USGS) spectral library [16]. Each endmember signature consists of 𝐵 = 224 

spectral bands. Each synthetic hyperspectral image has 4096 pixels.  

From Figure 11 we can see that the rmsSAE values increase roughly with the increase of the number 

of endmembers under the same noise level. And the rmsSAE values also decrease roughly with the 
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increase of SNR, as expected. Comparing Figure 11a,b, we can also see that the performance of the 

proposed is comparabe when 𝑡 = 10 and 𝑡 = 20, as long as the pure pixel and all material presence 

assumptions hold. 

 

(a) 

 

(b) 

Figure 9. (a) Rural HSI: the rmsSAE of the proposed method as a function of the compression 

ratio t with different SNR; (b) Urban HSI: the rmsSAE of the proposed method as a 

function of the compression ratio t with different SNR. 

  

(a) (b) 

Figure 10. (a) Rural HSI: runtime of the proposed method as a function of compression 

ratio t; (b) Urban HSI: runtime of the proposed method as a function of compression ratio t. 
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(a) 

 

(b) 

Figure 11. The rmsSAE of the proposed method as a function of the number of 

endmembers under different noise levels. (a) Compression ratio 𝑡 = 10; (b) Compression 

ratio 𝑡 = 20. 

4.2. Comparison of the Proposed Method and the SOMP-VCA Method 

Next, we compare the performance of the proposed method with the traditional SOMP-VCA and 

OMP-MVCA methods. 

In SOMP-VCA and OMP-MVCA methods, the compression ratio 𝑡 ranges from 2 to 10 with a step 

length of 2. The incoherent measurement matrix 𝚽𝑇 is a random Gaussian matrix [21]. Each of the six 

signals (endmembers) in the urban HSI data has 𝑁 = 65,536 points. They require too much memory, 

as described in Section 3.2, when processed by a computer (the computer used in the paper with 4 GB 

RAM cannot afford enough memory to run the SOMP-VCA/OMP-MVCA algorithm when 𝑡 = 2 and 

4). In the experiments below, we divide each signal into several segments, each of which consists of 

𝑁𝑇 = 4906 points (The length of each signal in the rural HSI data is 4096). Therefore, 𝚽𝑇 is a 𝑀𝑇 × 𝑁𝑇 

matrix, where 𝑀𝑇 = round(
𝑁𝑇

𝑡
). To recover the HSI data by the traditional method, the sparsity 𝐾of 

each segment is required as a priori condition. We set 𝐾 = round(
𝑁𝑇

100
) in the experiments (Generally, it 

is very hard for people to get the exact value of 𝐾 in practical applications. This is also a disadvantage of 
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traditional methods). In noisy cases, the SNR is from to 20 to 40 dB with a step length of 10 dB.  

Each experiment was repeated 50 times. 

From Tables 2 and 3, we can see that at the same compression ratio, the rmsSAEs of the proposed 

method are much smaller than the rmsSAEs of both SOMP-VCA and OMP-MVCA methods when it 

is used for both the synthetic and real data. The reason is that both SOMP-VCA and OMP-MVCA 

methods first recover the images and then estimate endmembers from the recovered images, and the 

recovery step will introduce error to the estimation step. The proposed method directly estimates the 

endmembers by the VCA method without the recovery step. We can see that in the noiseless case, the 

proposed method can estimate the endmembers exactly, as some values of rmsSAE in Tables 2 and 3 

are 0.0000. 

Table 2. Rural HSI: the rmsSAE of the proposed method, SOMP-VCA method and  

OMP-MVCA method under different noise levels. 

SNR (dB) Methods 
Compression Ratio 𝒕 

2 4 6 8 10 

20 

SOMP-VCA 7.2655 8.5649 11.8756 16.5145 22.4027 

OMP-MVCA 9.4577 10.4254 13.6821 17.6317 23.6413 

proposed method 3.0957 2.9528 3.0154 2.9649 2.9956 

30 

SOMP-VCA 7.2271 8.7619 11.1736 16.1245 21.8981 

OMP-MVCA 9.0371 10.8842 12.9093 17.5480 22.7639 

proposed method 0.9858 0.9428 0.9147 0.8748 0.8937 

40 

SOMP-VCA 7.4524 8.5810 11.4107 15.7571 21.5858 

OMP-MVCA 9.1606 10.4191 12.9728 16.7786 22.8731 

proposed method 0.3022 0.3026 0.2853 0.2850 0.2823 

noiseless 

SOMP-VCA 7.1363 8.7955 11.1507 15.8788 21.1658 

OMP-MVCA 8.7426 9.7065 12.4191 16.2971 22.1178 

proposed method 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 3. Urban HSI: the rmsSAE of the proposed method, SOMP-VCA method and  

OMP-MVCA method under different noise levels. 

SNR (dB) Methods 
Compression Ratio 𝒕 

2 4 6 8 10 

20 

SOMP-VCA 24.9187 31.6129 36.0830 36.6952 37.4615 

OMP-MVCA 32.3194 34.4224 38.1644 41.1802 42.9744 

proposed method 13.5762 12.5006 11.9720 12.5650 12.2655 

30 

SOMP-VCA 26.1574 32.6052 35.9462 36.4788 38.6030 

OMP-MVCA 32.4168 34.6774 37.7206 41.1756 42.3880 

proposed method 8.4225 8.0781 8.2451 8.0752 8.1576 

40 

SOMP-VCA 25.2347 31.5503 35.5626 36.4574 37.4830 

OMP-MVCA 32.8362 35.3572 38.7706 41.4157 43.3261 

proposed method 5.0213 5.0131 4.6558 4.6736 4.7675 

noiseless 

SOMP-VCA 24.4760 32.2732 35.1763 37.2746 38.6559 

OMP-MVCA 31.7520 34.7726 38.8428 41.8539 43.3041 

proposed method 0.0000 0.0658 0.0000 0.0634 0.0000 
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Standard deviations of rmsSAE under different conditions are listed in Tables 4 and 5. We can see 

that under the same condition, the standard deviation values of the proposed method are also smaller 

than the values of SOMP-VCA or OMP-MVCA methods. The results indicate that the convergence of 

the proposed method is the best among the three methods. 

Table 4. Rural HSI: the standard deviations of rmsSAE of the proposed method, SOMP-VCA 

method and OMP-MVCA method under different noise levels. 

SNR (dB) Methods 
Compression Ratio 𝒕 

2 4 6 8 10 

20 

SOMP-VCA 0.8902 1.4799 1.7669 1.9100 2.4746 

OMP-MVCA 0.9173 1.4002 1.7810 1.9418 2.4016 

proposed method 0.2902 0.3109 0.2836 0.3009 0.2839 

30 

SOMP-VCA 1.1270 1.4565 1.8702 1.9582 2.1471 

OMP-MVCA 0.8975 1.4758 1.6597 1.8604 2.3451 

proposed method 0.0925 0.0946 0.0875 0.0937 0.1071 

40 

SOMP-VCA 0.9530 1.3130 1.7083 1.9289 2.4834 

OMP-MVCA 0.9719 1.9057 1.9287 2.4761 2.6789 

proposed method 0.0291 0.0295 0.0322 0.0273 0.0344 

noiseless 

SOMP-VCA 0.9990 1.4686 2.0272 2.2618 2.3057 

OMP-MVCA 0.9692 1.6301 2.0236 2.5843 2.4048 

proposed method 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 5. Urban HSI: the standard deviations of rmsSAE of the proposed method, SOMP-VCA 

method and OMP-MVCA method under different noise levels. 

SNR (dB) Methods 
Compression Ratio 𝒕 

2 4 6 8 10 

20 

SOMP-VCA 3.6738 5.7059 9.7719 9.6847 11.0516 

OMP-MVCA 5.8462 7.3156 10.5079 11.9029 12.2469 

proposed method 2.4330 1.8586 2.0141 2.2015 1.8326 

30 

SOMP-VCA 3.6221 5.7251 9.8847 9.8163 10.9784 

OMP-MVCA 5.8731 6.8789 10.5414 11.8779 12.2589 

proposed method 0.6661 0.7820 0.7265 0.5924 0.8368 

40 

SOMP-VCA 3.6785 5.8697 9.7896 9.8166 11.2482 

OMP-MVCA 5.7435 7.3800 10.6197 11.7198 12.6990 

proposed method 1.4182 1.2347 1.2149 1.2545 1.4128 

noiseless 

SOMP-VCA 3.5570 5.7007 9.8128 9.8786 11.2197 

OMP-MVCA 5.5244 7.5697 10.9623 11.8132 12.7545 

proposed method 0.0000 0.0781 0.0000 0.0673 0.0000 

From Tables 6 and 7, we can see that the time consumed by the proposed method is much smaller 

than the time consumed by SOMP-VCA or OMP-MVCA methods. As analyzed in Section 3, the 

proposed method estimates the endmembers in one step, while both SOMP-VCA and OMP-MVCA 

use two steps. Therefore, from Tables 2 to 7, the estimation accuracy and speed of the proposed 

method are both better than those of SOMP-VCA and OMP-MVCA methods. 
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Table 6. Rural HSI: average runtime consumed by the two methods for estimating the endmembers. 

Compression Ratio 𝒕 SOMP-VCA OMP-MVCA Proposed Method 

2 21.1327 172.9077 0.0092 

4 10.8779 96.5817 0.0076 

6 7.4465 71.5078 0.0075 

8 5.7839 58.4532 0.0075 

10 4.7957 51.1818 0.0073 

Table 7. Urban HSI: average runtime consumed by the two methods for estimating the endmembers. 

Compression Ratio 𝒕 SOMP-VCA OMP-MVCA Proposed Method 

2 113.5758 692.2542 0.0287 

4 59.8402 385.9496 0.0168 

6 41.8393 285.0992 0.0143 

8 32.9574 233.9354 0.0130 

10 27.7860 204.1461 0.0118 

Different CS recovery algorithms affect the performance and the runtime for estimating the 

endmembers. To eliminate the influence of the choice of the CS method, we suppose that the sparsity 

of each signal is known and that the CS method can recover the HSI data accurately, and the recovered 

data are as accurate as the Nyquist-based data at the same noise level. From Figures 9 and 10, we can 

see that the performance of the proposed method (𝑡 > 1) is comparable to the performance of the 

method with Nyquist-based data (𝑡 = 1). Therefore, the performance of the proposed method is 

comparable to or better than the performance of the traditional CS base method. The same is true of the 

runtime time of the proposed method: it is less than that of the traditional CS base method with other 

CS recovery methods, as analyzed in Section 3.2. 

5. Conclusions 

In this paper, we proposed a new method to directly estimate the endmembers from the compressive 

observations of the HSI data, while traditional methods first have to recover the HSI data from  

the compressive observations and then estimate the endmembers. Simulation results demonstrated that 

the proposed method outperforms the traditional method with better estimation speed and better (or 

comparable) accuracy. 
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