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Abstract: With the development of intelligent surveillance systems, the need for accurate 

detection of pedestrians by cameras has increased. However, most of the previous studies 

use a single camera system, either a visible light or thermal camera, and their performances 

are affected by various factors such as shadow, illumination change, occlusion, and higher 

background temperatures. To overcome these problems, we propose a new method of 

detecting pedestrians using a dual camera system that combines visible light and thermal 

cameras, which are robust in various outdoor environments such as mornings, afternoons, 

night and rainy days. Our research is novel, compared to previous works, in the following 

four ways: First, we implement the dual camera system where the axes of visible light and 

thermal cameras are parallel in the horizontal direction. We obtain a geometric transform 

matrix that represents the relationship between these two camera axes. Second, two 

background images for visible light and thermal cameras are adaptively updated based on 

the pixel difference between an input thermal and pre-stored thermal background images. 

Third, by background subtraction of thermal image considering the temperature 

characteristics of background and size filtering with morphological operation, the candidates 

from whole image (CWI) in the thermal image is obtained. The positions of CWI (obtained 

by background subtraction and the procedures of shadow removal, morphological operation, 

size filtering, and filtering of the ratio of height to width) in the visible light image are 
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projected on those in the thermal image by using the geometric transform matrix, and the 

searching regions for pedestrians are defined in the thermal image. Fourth, within these 

searching regions, the candidates from the searching image region (CSI) of pedestrians in 

the thermal image are detected. The final areas of pedestrians are located by combining the 

detected positions of the CWI and CSI of the thermal image based on OR operation. 

Experimental results showed that the average precision and recall of detecting pedestrians 

are 98.13% and 88.98%, respectively. 

Keywords: pedestrian detection; visible light image; thermal image; dual camera system 

 

1. Introduction 

In recent years, with the development of intelligent surveillance systems, the need for the accurate 

detection of pedestrians using cameras has increased. Intelligent surveillance systems should detect 

pedestrians at all times, and this is required to guarantee good detection performance in a variety of 

environments. However, accurate detection is a very difficult problem because of the variability of 

pedestrian’s appearance and various outdoor environments. Despite this situation, most previous 

research only used a single camera system of visible light or thermal camera, and their performance is 

not sufficient. 

Previous research can be categorized as single camera-based research and dual camera-based 

research. The former uses the method of detecting pedestrians using a visible light camera [1–5], or 

thermal infrared camera [6–25]. 

In the research based on visible light cameras, the information from temporal differencing was used 

to detect pedestrians [1]. Other studies used wavelet templates [2], adaptive boosting (AdaBoost) 

detectors [3,4], and histograms of oriented gradient (HOG) with support vector machines (SVM) [5] for 

the detection of people. However, they have the limitation that their accuracies in detecting people are 

affected by various factors such as non-uniform illumination, shadow, and low external light during the 

evening and night. To overcome this problem, the research based on thermal camera is considered as  

an alternative. 

In previous studies on pedestrian detection, the HOG method [8,9,14–16,18], classification based on 

SVM [10], AdaBoost method [6], soft-label boosting algorithm [7], contour saliency map (CSM) [12,19], 

CSM template matching [20], shape and appearance-based detection [22,23], spatiotemporal texture 

vectors [21], and boosting framework [24] was used. In addition, background information for detecting 

people based on a Gaussian background-subtraction approach [12,19,20], texture change [21], 

expectation minimization (EM) [22,23], and image averaging [24] was used. In other research [25], a 

particle filter framework and histogram based on the intensity-distance projection space for pedestrian 

detection was adopted. These methods, based on thermal cameras, are less affected by illumination 

change, shadow, and low external light during the evening and night. However, their performances are 

affected by high background temperatures in the daytime, which makes it difficult to discriminate people 

from the background.  
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To overcome these problems, research has been done using dual camera systems. Bertozzi et al., 

proposed a method based on stereo thermal cameras [17], but their method did not solve the problem of 

high background temperatures in the daytime. Zhao et al., proposed the method of tracking people by 

combining visible and thermal cameras [26]. However, they had experiments with images where the 

people were close to the camera only indoors (where the visible light and thermal image do not include 

the effects by non-uniform illumination, shadow, and low external light in the outdoors during the 

evening and night). In addition, they did not show the quantitative accuracies of people detection.  

In [27], they used both visible and thermal cameras. However, their experiments were done only at night 

(where the thermal image does not include the effects by high background temperatures in daytime) nor 

did they show the quantitative accuracies of people detection. St-Laurent et al., also proposed the method 

of combining visible and thermal cameras [28]. They used the co-axial structure of visible and thermal 

cameras, where the axes of the two cameras are identical. The additional glass beamsplitter with  

indium-tin-oxide (ITO) coating was used for the co-axial structure, which can reflect thermal energy 

while transmitting visible waves. However, the camera viewing angle of thermal and visible cameras is 

usually large in order to be used for outdoors surveillance systems, which inevitably makes the size of 

the glass beamsplitter large and consequently the size of the system also increases.  

To overcome the problems of these previous works, we propose a new method of pedestrian detection 

using a dual camera system by combining visible light and thermal cameras, which are robust to various 

outdoor environments such as mornings, afternoons, nights and rainy days. We implement the dual 

camera system where the axes of visible light and thermal cameras are parallel in the horizontal direction, 

from which the images captured by the two cameras are aligned based on the geometric transform matrix. 

Two background images for visible light and thermal cameras are adaptively updated when the pixel 

difference between an input thermal image and a pre-stored thermal background image is smaller than 

threshold. By background subtraction of thermal image considering the temperature characteristics of 

background and size filtering with morphological operation, the candidates from whole image (CWI) in 

the thermal image is obtained. The positions of CWI (obtained by background subtraction and the 

procedures of shadow removal, morphological operation, size filtering, and filtering of the ratio of height 

to width) in the visible light image are projected on those in the thermal image by using the geometric 

transform matrix, and the searching regions for pedestrians are defined in the thermal image. Within 

these searching regions, the candidates from the searching image region (CSI) of pedestrians in the 

thermal image are detected. The final areas of pedestrians are located by combining the detected 

positions of the CWI and CSI of the thermal image based on OR operation.  

Table 1 compares the previous and proposed methods for pedestrian detection. 

The remainder of this paper is structured as follows: In Section 2, we describe the proposed system 

and method. Then, the experimental environment and results are shown in Section 3. Finally, we present 

the conclusions in Section 4. 
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Table 1. Comparison of previous and proposed methods. 

Category Method Advantages Disadvantage 

Single camera-based 

method 

Using visible  

camera [1–5] 

By using spatial or temporal 

information only in  

visible light image 

The performance of people 

detection in daytime of high 

temperature is higher due to 

the high resolution and 

quality of visible light image 

The performance is affected 

by non-uniform illumination, 

shadow, and low external 

light during evening and night 

Using thermal camera 

[6–16,18–25] 

By using spatial or temporal 

information only in  

thermal image 

The performance is less 

affected by illumination 

change, shadow, and low 

external light during evening 

and night 

The performance is affected 

by high background 

temperatures in daytime 

Dual camera-based 

method 

Using stereo thermal 

cameras [17] 

By using spatial information in 

stereo thermal images 

Higher performance of 

people detection than the 

single camera-based method 

The performance is affected 

by high background 

temperatures in daytime 

Using co-axial 

structure of visible and 

thermal cameras [28] 

Elaborately co-aligned structure 

of visible light and thermal 

cameras is used 

Additional device of 

beamsplitter is required, and 

large beamsplitter increases 

the system size 

Using visible light and 

thermal cameras 

People detection in 

constrained environment such as 

indoor [26] or night-time [27] 

Not showing quantitative 

accuracies of people detection 

in various environments such 

as high background 

temperatures in daytime, non-

uniform illumination, and 

shadow in outdoors 

People detection in 

unconstrained environments  

(proposed method) 

Robust to various 

environments without the 

additional device for 

combining two cameras 

Lower processing speed than 

single camera-based method 

due to processing of two 

camera images 

2. Proposed Method 

2.1. Hardware Device for Pedestrian Detection and Camera Calibration 

Surveillance systems often employ either near-infrared (NIR) or far-infrared (FIR) cameras. FIR 

cameras capture the image signal based on thermal radiation that is represented in the wavelength of  

8–12 μm [28]. Therefore, it is called long wavelength infrared light (LWIR). NIR cameras capture the 

image signal based on light whose wavelength is much shorter (0.75–1.4 μm) than LWIR. FIR cameras 

acquire images without additional illuminator whereas NIR cameras usually require additional NIR 

illuminators to capture images, especially in night. Therefore, the NIR camera capturing distance is 

limited due to the limitation of the illumination distance, and large illuminator is required in order to 

capture the image at a distance. In addition, according to the Z distance of the object to be captured, the 

illumination angle should be adjusted by the illuminator’s lens so as not to saturate the object by the 

illuminator. In addition, the impact of absorption and scattering of fog is known to be less severe in the 
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LWIR light than NIR one [28], which is one of important factor to be considered when the surveillance 

system is used in outdoors. Therefore, our dual camera system employs an FIR camera instead of an 

NIR one.  

Figure 1 shows the dual camera system used in our research. We create the dual camera system by 

combining visible light and thermal cameras. A commercial thermal camera of ICI 7320 is used [29]. It 

can capture an image of 320 × 240 pixels having a resolution of 14 bits in the wavelength range of  

7–14 μm with the measurement accuracy of temperature of ±1°. A 25 mm lens is used in the thermal 

camera, and the field of view (FOV) of the thermal camera is 18° and 14° in the horizontal and vertical 

directions, respectively. The dimension (height × width × depth) and weight of the thermal camera are 

2.1" × 3.2" × 0.5" and approximately 148 g, respectively.  

In order to reduce the size and cost of our system, a small, low-cost conventional web-camera is used 

as the visible light camera [30]. The FOV of the visible light camera is 20.4° and 15.4° in the horizontal 

and vertical directions, respectively. Due to the limitation of data transfer by universal serial bus (USB) 

2.0 and capturing two images at the same time, our system acquires the visible light image of  

640 × 480 pixels and the thermal image of 320 × 240 pixel at the capturing speed of 30 frames per sec. 

In order to reduce the image disparity between the two cameras, we make the two axes of visible light 

and thermal cameras parallel in the horizontal direction with minimum horizontal distance between the 

two cameras as shown in Figure 1.  

 

Figure 1. Proposed dual camera system. 

Then, the coordinates of two images by visible light and thermal cameras are set to be coincident by 

camera calibration based on geometric transform as shown in Equation (1) and Figure 2a. As shown in 

Equation (1), a pair of four points are required for obtaining the eight unknown parameters (a, b, … h) 

in the matrix of geometric transform, and this pair of four ground-truth points are used in the images by 

visible light and thermal cameras as shown in Figure 2a. These ground-truth points are manually 

obtained in our research because the procedure of obtaining the matrix of geometric transform is 

performed once, when the two cameras are combined, and it is not necessary to repeat this procedure 

irrespective of the subsequent setup locations of our dual camera system. 
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 (2) 

In order to measure the calibration error, a pair of 20 ground-truth points (which are not used for 

obtaining the matrix of geometric transform) is used as shown in Figure 2b. These ground-truth points 

are also manually obtained in our research. Based on the matrix of geometric transform (from visible 

light to thermal images) of Equation (2), we obtain the positions of the 20 points (of the visible light 

image) which are projected into those (the positions of 20 points) in the thermal image. Then, the average 

root mean square (RMS) error is calculated as the calibration error with the projected positions and  

20 ground-truth points in the thermal image. In addition, based on the inverse matrix of geometric 

transform (from thermal to visible light images), we obtain the positions of the 20 points (of the thermal 

image) which are projected into those (the positions of 20 points) in the visible light image. Similarly, 

the average RMS error is calculated as the calibration error with the projected positions and 20  

ground-truth points in the visible light image. Detail explanations and results of measuring calibration 

errors are shown in Section 3.1. 

 

(a) 

Figure 2. Cont. 
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(b) 

Figure 2. Calibration between two cameras based on geometric transform and accuracy 

measurements of the calibration. (a) Examples of calibration points used for calculating the 

matrix of geometric transform in the visible light (left) and thermal (right) images, 

respectively; (b) Points used for calculating the calibration error in the visible light (left) and 

thermal (right) images, respectively. 

2.2. Proposed Method for Detecting Pedestrian 

Figure 3 shows the detecting procedures used in our research. As shown in Figure 3, our method is 

composed of two parts of human detections in the images by visible light and thermal cameras, 

respectively. In our system, two images, using thermal and visible light cameras, are acquired at the 

same time (Steps (1) and (7)). Then, the pixel difference between the background (which is already 

stored at the initial setup of the system) and input images is calculated. If the pixel difference value is 

less than threshold and the time difference (between the background and current input images) is large 

(as shown in Steps (2) and (3)), the background image is updated by the current input image (Step (4)). 

If not, the pixel difference image is binarized by adaptive threshold based on the temperature 

characteristics of background image (Step (5)). Through the size filtering and morphological operation, 

the CWI is obtained (Step (6)).  

In case the background thermal image is updated by the current input image (Step (4)), the background 

(visible light) image is also updated by the current input image (Step (8)). Then, the binarized difference 

image between the background and input thermal images is obtained as shown in the Step (9). With this 

image, the human object area is detected through morphological operation, size filtering, removal of 

shadow area, and noise reduction as shown in Steps (10)–(12). With the detected area, the corresponding 

region of interest (ROI) of the object region in the thermal image is defined based on geometric transform 

matrix (Step (13)), and this matrix is obtained in advance by camera calibration as explained in  

Section 2.1. Then, the binarized difference image between the background and input thermal images is 

obtained within this ROI as shown in the Step (14). With this image, the CSI is obtained by 

morphological operation (Step (15)), and the final area of human in the thermal image is obtained by 

combining the CWI (which is obtained in Step (6)) and CSI based on OR rule (Steps (16) and (17)). The 

object region in the visible light image is also obtained by an inverse geometric transform matrix based 

on the final area of the human in the thermal image as shown in Step (18). 
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Figure 3. Flow chart of the proposed system. 

2.3. Proposed Method for Detecting Pedestrian 

As explained in Section 2.2 and Figure 3 (Steps (2)–(4), and (8)), two background images using 

visible light and thermal cameras are adaptively updated if the pixel difference value between the input 

and background thermal images is less than threshold, as shown in Equation (3), and there is a large time 

difference between the background and current thermal input images. 

Background update =  {
𝑡𝑟𝑢𝑒, 𝑖𝑓 ∑∑|𝐹𝑟𝑎𝑚𝑒𝑥,𝑦(𝑡) − 𝐹𝑟𝑎𝑚𝑒𝑥,𝑦(𝑡 − 𝑛)| > 𝑇ℎ

𝑦𝑥

𝑓𝑎𝑙𝑠𝑒,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                             

 (3) 

where 𝐹𝑟𝑎𝑚𝑒𝑥,𝑦(𝑡)  is the pixel value (at the position (x, y)) of current thermal image at time t, 

𝐹𝑟𝑎𝑚𝑒𝑥,𝑦(𝑡 − 𝑛) is the pixel value (at the position (x, y)) of background thermal image at time t − n. 

Our system determines whether the background image is updated by the input image based on only the 

thermal image as shown in Steps (2) and (3) of Figure 3. This is because using both the images by visible 

light and thermal cameras takes a great deal of processing time. In addition, it is usually more difficult 

to determine whether background image is updated by the input when using the visible light image 

because the visible light image is more affected by various factors of shadow by sunlight, illumination 

change, low illumination at evening or night, etc., compared to the thermal light image. 
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When obtaining the binarized difference image between background and input images (Step (5) of 

Figure 3), the temperature characteristics of background is considered in our method as follows. At first, 

we empirically determined th1 and th2 (of Equation (4)) which represent the maximum and minimum 

temperature of pedestrian, respectively. If the pixel intensity (𝑃(𝑥, 𝑦)) of background at the position 

((𝑥, 𝑦))  belongs to the range from th2 and th1 as shown in Equation (4), we can assume that the pixel 

difference between the pedestrian and background is small because the pixel intensities of background 

and pedestrian belong to the same range from th2 and th1. Therefore, we define this pixel position as 

label2 and use smaller threshold for binarizing the difference image between background and input 

images in this case as shown in Equation (4). Other cases mean that the pixel difference between the 

pedestrian and background is large. Therefore, the pixel position is defined as different labels of label1 

and label3, and larger threshold for binarization is used based on the temperature characteristics of 

background as shown in Equation (4). Using the background subtraction based on this adaptive 

thresholding for binarization, we can obtain the candidate region of pedestrian, which is less affected by 

the temperature of background. 

{

(𝑥, 𝑦) =  𝑙𝑎𝑏𝑒𝑙1,        𝑖𝑓(𝑃(𝑥, 𝑦) ≥ 𝑡ℎ1)                      
(𝑥, 𝑦) =  𝑙𝑎𝑏𝑒𝑙2,         𝑒𝑙𝑠𝑒 𝑖𝑓(𝑡ℎ1 > 𝑃(𝑥, 𝑦) > 𝑡ℎ2)
(𝑥, 𝑦) =  𝑙𝑎𝑏𝑒𝑙3,         𝑒𝑙𝑠𝑒 𝑖𝑓(𝑃(𝑥, 𝑦) ≤ 𝑡ℎ2)           

 (4) 

where (𝑥, 𝑦)  is 𝑥 and 𝑦  positions of input and background images, and 𝑃(𝑥, 𝑦)  is the pixel intensity  

(at the position (x, y)) in a background image. The th1, th2, and th3 are the thresholds for classifying the 

pixel intensity of 𝑃(𝑥, 𝑦) (temperature of background). 

This scheme of Equation (4) is used when obtaining the binarized image by the background 

subtraction with the input and pre-stored background images. Assuming that the input and background 

images are 𝐼(𝑥, 𝑦) and 𝑃(𝑥, 𝑦) of 2 × 2 pixels, respectively. If the 𝑃(0,0) ≥ 𝑡ℎ1, 𝑡ℎ1 > 𝑃(0,1) > 𝑡ℎ2, 

𝑃(1,0) ≤ 𝑡ℎ2, and 𝑃(1,1) ≤ 𝑡ℎ2, the positions of (0,0), (0,1), (1,0), and (1,1) have the label1, label2, 

label3, and label3, respectively. Then, we use the different thresholds for binarization according to the 

label1, label2, and label3 as shown in Equations (5)–(7). 

{
𝐵(x, y) = 1   if(|𝐼(𝑥, 𝑦) − 𝑃(𝑥, 𝑦)| ≥ 𝑡ℎ𝑟1)𝑎𝑛𝑑 𝑖𝑓((𝑥, 𝑦) == 𝑙𝑎𝑏𝑒𝑙1)                 

𝐵(x, y) = 0   if(|𝐼(𝑥, 𝑦) − 𝑃(𝑥, 𝑦)| < 𝑡ℎ𝑟1)𝑎𝑛𝑑 𝑖𝑓((𝑥, 𝑦) == 𝑙𝑎𝑏𝑒𝑙1)                
 (5) 

                 {
𝐵(x, y) = 1   if(|𝐼(𝑥, 𝑦) − 𝑃(𝑥, 𝑦)| ≥ 𝑡ℎ𝑟2)𝑎𝑛𝑑 𝑖𝑓((𝑥, 𝑦) == 𝑙𝑎𝑏𝑒𝑙2)

𝐵(x, y) = 0   if(|𝐼(𝑥, 𝑦) − 𝑃(𝑥, 𝑦)| < 𝑡ℎ𝑟2)𝑎𝑛𝑑 𝑖𝑓((𝑥, 𝑦) == 𝑙𝑎𝑏𝑒𝑙2)
                     (6) 

                 {
𝐵(x, y) = 1   if(|𝐼(𝑥, 𝑦) − 𝑃(𝑥, 𝑦)| ≥ 𝑡ℎ𝑟3)𝑎𝑛𝑑 𝑖𝑓((𝑥, 𝑦) == 𝑙𝑎𝑏𝑒𝑙3)

𝐵(x, y) = 0   if(|𝐼(𝑥, 𝑦) − 𝑃(𝑥, 𝑦)| < 𝑡ℎ𝑟3)𝑎𝑛𝑑 𝑖𝑓((𝑥, 𝑦) == 𝑙𝑎𝑏𝑒𝑙3)
                    (7) 

where thr1, thr2, and thr3 are the thresholds for binarization. 1 and 0 represent the white and black pixel, 

respectively. That is, B(0,0) is determined as 1 or 0 based on the Equation (5) because the position of 

(0,0) has label1. In addition, B(1,1) is determined as 1 or 0 based on the Equation (7) because the position 

of (1,1) has label3. By conclusion, the procedure of Equation (4) is performed before image binarization. 

Then, the image binarization is done according to the label1, label2 and label3 as shown in  

Equations (5)–(7). 

In order not to lose the thermal information of the image, the binarized pixel difference image is 

obtained using the original thermal image of 16 bits. Because the thermal image usually includes salt 
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and pepper noises, the binarized pixel difference image is obtained after the median filtering  

of the image. 

2.4. Obtaining CWI and CSI from the Thermal and Visible Light Images 

With the binarized pixel difference image, the accurate CWI is located through component labeling, 

size filtering, and morphological operations. The CWI of the visible light image is obtained through 

background subtraction, morphological operation, size filtering, removal of shadow area, and noise 

reduction (based on the ratio of height to width of the detected object region) as shown in Steps (9)–(11) 

of Figure 3. Detail explanations of morphological operation and size filtering are as follows. With the 

binarized difference image between background and input visible light images (Figure 4c), 

morphological operation of erosion and dilation [31] is performed two times, and the result image is 

obtained as shown in Figure 4d. Through the morphological operation, holes inside the human candidate 

region can be filled as shown in Figure 4d. Then, we perform the size filtering that removes the candidate 

region (whose size is smaller than the threshold) as noise. As shown in Figure 4e, the noises except for 

human candidate region are removed by size filtering. The right images of Figure 5b,d show the 

examples of the detected CWI in the thermal image. Because the CWI of thermal image is combined 

with the CSI based on OR rule as shown in Step (16) of Figure 3, our system uses strict threshold with 

which the CWI is detected without additional incorrectly detected regions. 

  

(a) (b) 

  

(c) (d) 

Figure 4. Cont. 
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(e) 

Figure 4. Examples of results by morphological operation and size filtering with the 

binarized difference image between background and input visible light images. (a) Input 

visible light image; (b) Background image; (c) The binarized difference image between 

background and input visible light images; (d) Result image by morphological operation;  

(e) Result image by size filtering. 

In most cases, the shadow region is difficult to be discriminated from the human area. To remove the 

shadow, we use the hue, saturation, and intensity information of the current and background images. We 

compared the same candidate region with the detected human in both the input and background images. 

If the hue and saturation values of one pixel within this candidate region of the input image are similar 

to those of the corresponding pixel of background image, and the intensity values of same pixel in input 

and background images are different, this pixel is determined as shadow region. This is based on the 

principle that the color information of shadow region in the input image is similar to that of 

corresponding background area whereas the intensity information in the input image is different (lower) 

from that of corresponding background area [32]. The left images of Figure 5b,d show the examples of 

the detected CWI in the visible light image. Because the CWI of visible light image is only used to define 

the ROI of the object in the thermal image as shown in Step (13) of Figure 3, our system uses the rough 

threshold with which the CWI is detected even though additional incorrectly detected regions occur. 

  

(a) 

Figure 5. Cont. 
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(b) 

  

(c) 

  

(d) 

Figure 5. Examples obtained from CWI. (a) First example of the current input images by 

visible light (left figure) and thermal cameras (right figure) in morning; (b) Detected CWIs 

in visible light (left figure) and the thermal input image (right figure) of (a); (c) Second 

example of the current input images by visible light (left figure) and thermal cameras (right 

figure) at afternoon; (d) Detected CWIs in visible light (left figure) and the thermal input 

image (right figure) of (c). 

Then, the ROI of the object in the thermal image from the CWI in the visible light image is defined 

as shown in Step (13) of Figure 3. As explained in Section 2.1, the two axes of visible light and thermal 

cameras are parallel in the horizontal direction with minimum horizontal distance between the two 

cameras in our system. In addition, we obtain the geometric transform matrix by camera calibration as 

shown in Figure 2a, and the corresponding position of the ROI of the visible light image can be obtained 

in the thermal image with the matrix. With the four corner positions of the ROI, the corresponding 
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positions in the thermal image are calculated using the matrix and Equation (2). Within the ROI, which 

is defined the corresponding positions in the thermal image, the CSI of object region is detected by 

background subtraction and morphological operations as shown in Figure 6a,b. 

 

(a) 

 

(b) 

Figure 6. Examples of the obtained CSI in the thermal image. (a) The CSI obtained from 

both Figure 5a and the left image of Figure 5b; (b) The CSI obtained from both Figure 5c 

and the left image of Figure 5d. 

However, using only the CSI (of Figure 6a,b) or the CWI (the right images of Figure 5b,d) can degrade 

the accuracy of human detection as shown in Figure 7. If the color of the human’s clothes are similar to 

that of background, as shown in the left image of Figure 7a, the object detection based on background 

subtraction in our system is not correct. Finally, this causes the errors in the visible light image of CWI 

(the left image of Figure 7b) and corresponding CSI (which is obtained based on the CWI in the visible 

light image) (Figure 7c). To overcome this problem, our system combines the CWI obtained in the 

thermal image (right image of Figure 7b) and the CSI (Figure 7c) (Step (16) of Figure 3). Detail 

explanations are included in Section 2.5. 
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(a) 

  

(b) 

 

(c) 

Figure 7. Examples of CWI and CSI. (a) Visible light and thermal images in the morning; 

(b) Results of CWI in visible light (left figure) and thermal (right figure) images; (c) Result 

of CSI in a thermal image. 

2.5. Detecting the Final Human Area by Combining the CWI and CSI 

As explained in Section 2.4, our system combines the CWI obtained in the thermal image and the 

CSI based on OR rule of Equation (8) in order to more accurately detect humans. 

Result imageb =  CWIb ||CSIb (8) 

where the subscript b denotes the binarized image. With the result image, the final human area is detected 

after the morphological operation and histogram projection. Detail explanations about histogram 

projection are as follows. Horizontal histograms of each candidate region are obtained to determine 
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whether one candidate region should be divided into two areas as shown in Figure 8. In detail, if the size 

of a detected region is greater than a threshold or the ratio of the height to width is not satisfied with the 

condition, the candidate region is divided into two parts based on the horizontal histogram information. 

The horizontal histogram is obtained by Equation (9): 

𝐻(𝐼𝑥) = ∑ 𝐵(𝑃(𝑥, 𝑦))

𝑀−1

𝑦=0

 (9) 

where P(x, y) is the binarized pixel value (white or black) at a location (x, y) within the candidate region 

(the combined area of CWI and CSI by OR rule in the thermal image). B(·) becomes one if  

P(x, y) is white, otherwise zero. M is the height of the candidate region. Ix is the horizontal index of the 

candidate region within the image as shown in Figure 8a. As indicated in Figure 8a, if the minimum 

value of H(Ix) is lower than the threshold, one candidate region is divided into two parts at the position 

(Ix), as shown in Figure 8b. Like this procedure, vertical histogram projection is also performed with the 

combined areas of CWI and CSI if the size of a detected region is greater than a threshold or the ratio of 

the height to width is not satisfied with the condition. If the minimum value of vertical histogram is 

lower than the threshold, one candidate region is divided into two parts at the position of the minimum 

value in the vertical direction. 

The final results of human detection are shown in Figure 9. The area of human in the visible light 

image is also defined by the inverse geometric transform matrix as shown in Step (18) of Figure 3.  

 

(a) 

Figure 8. Cont. 
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(b) 

Figure 8. Separation of one candidate region into two areas based on the horizontal 

histogram. (a) Detected candidate region and its horizontal histogram; (b) The separation 

result of one candidate region into two areas. 

 

(a) 

  

(b) 

Figure 9. Examples of combined image of CWI and CSI, and the final result of human 

detection. (a) Combined image of CWI (right image of Figure 7b) and CSI (Figure 7c);  

(b) Final result of human detection. 

3. Experimental Results 

3.1. Experiment Environment and Calibration Error 

Although there exist an open database for human detection of thermal images [33] or those for human 

detection of visible light images [34], there is no open database (for human detection) which is obtained 

by both visible light and thermal cameras. Therefore, we used the database that was collected by our 
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dual camera system. The data acquisition for the experiments was performed using a laptop computer 

and the dual cameras (Figure 1). All the images using visible light and thermal cameras were acquired 

simultaneously. The laptop computer was equipped with a 2.50 GHz CPU (Intel (R) Core (TM)  

i5-2520M) and 4 GB RAM. The proposed algorithm was implemented using a C++ program using 

Microsoft foundation class (MFC) and OpenCV library (Version 2.3.1). To obtain the image, we 

installed the system of our dual cameras at the position whose height was 20 m from the ground outdoors. 

The total number of images used in the experiment (database I) was 2000. The sizes of the visible light 

and thermal images are 640 × 480 pixels and 320 × 240 pixels, respectively. These images were obtained 

in various environments such as mornings (22.6 °C), afternoons (26.0 °C), nights (21.1 °C), and rainy 

days (19.1 °C and precipitation of 48.0 mm). We captured the images where people naturally move 

without any instruction from us. Therefore, there exist various cases that some people are close together, 

cluttered, or separated, etc. in our database. 

As the first experiment, we measured the calibration error between the visible light and thermal 

cameras based on the geometric transform as explained in Section 2.1 and Figure 2. As explained in 

Section 2.1, a pair of 20 ground-truth points (which are not used for obtaining the matrix of geometric 

transform) is used as shown in Figure 2b. These ground-truth points are manually obtained in our 

research. Based on the matrix of geometric transform (from visible light to thermal images), we obtain 

the positions of 20 points (of the visible light image) which are projected into those in the thermal image. 

Then, the average RMS error is calculated as the calibration error with the projected positions and  

20 ones in the thermal image. In addition, based on the inverse matrix of geometric transform  

(from thermal to visible light images), we obtain the positions of 20 points (of the thermal image) which 

are projected into those in the visible light image. Then, the average RMS error is calculated as the 

calibration error with the projected positions and 20 ones in the visible light image. The results are shown 

in Figure 10 and Table 2. As shown in Figure 10 and Table 2, the calibration error is less than 1.2 pixels, 

and we find that our calibration between the two cameras is accurate. 

In addition, we measure the calibration error with the points on real objects (the tiptoe and head top 

points of two persons as shown in Figure 11) and those on a different plane than the pavement (the other 

points except for the tiptoe and head top points of two persons as shown in Figure 11). As shown in 

Figure 11 and Table 3, the average RMS error with the points on real objects and those on a different plane 

than the pavement is similar to that with the points on the calibration object of Figure 10 and Table 2. 

Table 2. Result of calibration errors of Figure 10 (unit: pixel). 

Applying Geometric Transform Matrix Average Pixel Error 
Average RMS Error 

From To X Direction Y Direction 

Visible light image Thermal image 1 0.5 1.12 

Thermal image Visible light image 1.15 0.25 1.18 

Table 3. Result of calibration errors of Figure 11 (unit: pixel). 

Applying Geometric Transform Matrix Average Pixel Error 
Average RMS Error 

From To X Direction Y Direction 

Visible light image Thermal image 0.88 0.67 1.11 

Thermal image Visible light image 1.09 0.45 1.18 
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(a) 

 

(b) 

Figure 10. Calibration error between the two cameras (example 1). Left and right figures of 

(a,b) are visible light and thermal images, respectively. In each image, the circle and 

crosshair represent the ground-truth and calculated points, respectively (a) When using the 

geometric transform matrix (from visible light to thermal images); (b) When using the 

geometric transform inverse matrix (from thermal to visible light images). 
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(a) 

 

(b) 

Figure 11. Calibration error between the two cameras (example 2). Left and right figures of 

(a,b) are visible light and thermal images, respectively. In each image, the circle and 

crosshair represent the ground-truth and calculated points, respectively (a) When using the 

geometric transform matrix (from visible light to thermal images); (b) When using the 

geometric transform inverse matrix (from thermal to visible light images). 

3.2. Detection Result of Human Area 

As the next experiment, we measured the accuracies of human detection. Some examples of human 

detection are shown in Figure 12. In each Figure 12a–d, the detected boxes of the left figure (visible 

light image) are shown by the inverse geometric transform matrix and the detected results of thermal 

image as shown in the Step (18) of Figure 3. As shown in Figure 12, we can find that our system detects 

humans in various environments. Even in the case when the human is not seen in the image by the visible 

light camera at night as shown in the left image of Figure 12c, our system can detect the human  

area successfully. 
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(a) 

  

(b) 

  

(c) 

  

(d) 

Figure 12. Example of detection results in various environments. (a) Detection result in the 

morning; (b) Detection result in the afternoon; (c) Detection result at night; (d) Detection result 

on a rainy day. 
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As the next experiment, we quantitatively measured the accuracy of human detection. For this, the 

bounding boxes of the human areas were manually depicted in the images as ground truth regions. The 

detection results were evaluated based on Pascal Criteria [13,35], which determine the true or false 

positives by calculating the overlap of the bounding box and a ground truth box as shown in  

Equation (10).  

𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑑,𝑔 = 
𝑎𝑟𝑒𝑎(𝐵𝑑 ⋂𝐵𝑔)

𝑎𝑟𝑒𝑎(𝐵𝑑 ⋃𝐵𝑔)
 (10) 

where 𝐵𝑑 denotes the box detected by our system. 𝐵𝑔 is the ground truth box. (𝐵𝑑 ⋂𝐵𝑔) denotes the 

intersection of 𝐵𝑑 and 𝐵𝑑. (𝐵𝑑 ⋃𝐵𝑔) is their union [35]. 

Based on Equation (9), we obtain the true positive (TP) and false positive (FP) of the detection. The 

TP is the case that the human region is correctly located as a human. The FP is the case that the 

background region is incorrectly located as a human. We quantitatively measured the accuracies of the 

human detection based on precision and recall as shown in Equations (11) and (12) [8,36].  

Precision =  
#TP

#TP + #FP
 (11) 

Recall =  
#TP

#human regions in all the images
 (12) 

where #TP, #FP and #human regions in all the images show the number of TP cases, FP cases, and 

human regions in all the images, respectively. As shown in Equations (11) and (12), the maximum and 

minimum values of both precision and recall are 1 and 0, respectively. The higher values (closed to 1) 

represent a higher accuracy of human detection. In Table 4, we can see that the accuracies of human 

detection in our system are high for various environments. However, the recall at night is comparatively 

lower than that of the other cases because no information from visible light image can be obtained, as 

shown in the left image of Figure 12c.  

Table 4. Detection results using dual camera systems. 

Environment #Frame #People #TP #FP Recall (%) Precision (%) 

Morning 500 899 786 15 87.43 98.13 

Afternoon 500 730 677 5 92.74 99.27 

Night 500 698 561 27 80.37 95.41 

Rainy day 500 559 544 2 97.32 99.63 

Total 2000 2886 2568 49 88.98 98.13 

In addition, we compared the accuracies of our system of dual cameras with those of only visible light 

or thermal cameras; the results are shown in Tables 4–6. As shown in Tables 4–6, the accuracies of our 

system are much higher than those of only visible light or thermal cameras for all the cases, namely, 

mornings, afternoons, nights, and rainy days. 

In Figure 13, we show the detection error case by the proposed method. As shown in Figure 13, the 

error cases happen when occlusion by two pedestrians exists, which would be solved by using tracking 

information as future work. 
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Table 5. Detection result using only visible light camera. 

Environment #Frame #People #TP #FP Recall (%) Precision (%) 

Morning 500 899 556 11 61.85 98.06 

Afternoon 500 730 594 9 81.37 98.51 

Night 500 698 0 0 0 Cannot be calculated 

Rainy day 500 559 254 523 45.44 32.69 

Total 2000 2886 1404 543 48.65 72.11 

Table 6. Detection result using only thermal camera. 

Environment #Frame #People #TP #FP Recall (%) Precision (%) 

Morning 500 899 759 22 84.43 97.18 

Afternoon 500 730 252 2 34.52 99.21 

Night 500 698 554 64 79.37 89.64 

Rainy day 500 559 543 2 97.14 99.63 

Total 2000 2886 2108 90 73.04 95.91 

As the next experiment, we measured the processing time of our method as shown in Table 7. As 

shown in Table 7, the total processing time is about 23.13 ms and we find that our system can be operated 

at the speed of about 43.23 frames/s (1000/23.13). 

  

(a) 

 

(b) 

Figure 13. Detection error case in our database: (a) The example of the current input  

images by visible light (left figure) and thermal cameras (right figure); (b) Result image  

(of Step (17) of Figure 3).  
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Table 7. Processing time of our method. 

Steps of Figure 3 Processing Time (ms) 

Steps (1)–(4), (7) and (8) 16.05 

Steps (5) and (6) 2.44 

Steps (9)–(12) 2.25 

Step (13) 0.25 

Steps (14) and (15) 0.72 

Steps (16)–(18) 1.42 

Total 23.13 

As the next test, we compare our algorithm with other already published methods [8,14,22]. Although 

HOG detector [8,14] and other detector using shape-based and appearance-based features [22] have been 

used in previous researches, the former method [8,14] has the disadvantage that it takes processing time 

for extracting the gradient information of various directions. In addition, the additional classifier based 

on SVM should be used with the HOG features, which requires additional (time-consuming) procedure 

of training [8,14]. The latter method [22] has the disadvantage that it takes processing time for extracting 

the skeleton information as the shape-based feature. In addition, the additional (time-consuming) 

procedure of training for principal component analysis (PCA) is required for extracting the  

appearance-based feature [22]. In all these methods, the training procedures of SVM and PCA makes 

the performance of system affected by the training data, also. 

Because their method is for the pedestrian detection and tracking in thermal image [22], we compared 

the performance by our method in thermal image (Table 6) and that by their method. As shown in Tables 

6 and 8, average recall and precision by our method are higher than those by previous method [22]. In 

addition, we compared the processing time of our method with that by previous method [22]. The total 

processing time of our method is 23.13 ms (Table 7) which is smaller than that by previous method 

(48.54 ms). From these results, we can confirm that our method outperforms the previous one [22]. 

Table 8. Detection result using only thermal camera by previous method [22]. 

Environment #Frame #People #TP #FP Recall (%) Precision (%) 

Morning 500 899 785 57 87.32 93.23 

Afternoon 500 730 247 27 33.84 90.15 

Night 500 698 517 131 74.07 79.78 

Rainy day 500 559 541 37 96.78 93.60 

Total 2000 2886 2090 252 72.42 89.24 

In the next experiment, we compared the performance by our method with that by previous  

method [8,14]. Because their method can be applied to both the visible light and thermal images [8,14], we 

compared the performances by our method in visible light (Table 5) and thermal image (Table 6) and 

those by their method. As shown in Tables 5 and 9, average recall and precision in visible light image 

by our method are higher than those by previous method [8,14]. In addition, as shown in Tables 6 and 10, 

average recall and precision in thermal image by our method are higher than those by previous  

method [8,14]. In addition, we compared the processing time of our method with that by previous  

method [8,14]. The total processing time of our method is 23.13 ms (Table 7) which is smaller than that 
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by previous method (42.57 ms). From these results, we can confirm that our method outperforms the 

previous one [8,14]. 

Table 9. Detection result using only visible light camera by previous method [8,14]. 

Environment #Frame #People #TP #FP Recall (%) Precision (%) 

Morning 500 899 579 33 64.40 94.61 

Afternoon 500 730 560 46 76.71 92.41 

Night 500 698 0 0 0 Cannot be calculated 

Rainy day 500 559 248 501 44.36 33.11 

Total 2000 2886 1387 580 48.06 70.51 

Table 10. Detection result using only thermal camera by previous method [8,14]. 

Environment #Frame #People #TP #FP Recall (%) Precision (%) 

Morning 500 899 626 7 69.63 98.89 

Afternoon 500 730 242 61 33.15 79.87 

Night 500 698 507 10 72.64 98.07 

Rainy day 500 559 429 2 76.74 99.54 

Total 2000 2886 1804 80 62.51 95.75 

In addition, we compared the background subtraction by our method with that based on Gaussian 

background-subtraction approach which has been widely used [37]. For fair comparisons, only the 

background update and subtraction (Steps (1)–(5) and (7)–(9) of Figure 3) are replaced by [37] when 

measuring the performance by previous method [37]. Because their method can be applied to both the 

visible light and thermal images, we compared the performances by our method in visible light  

(Table 5) and thermal image (Table 6) and those by their method. Figure 14 shows the results of 

background subtraction by our method and previous one [37]. As shown in this figure, we can find that 

our background subtraction method outperforms the previous one [37]. 

 

(a) 

Figure 14. Cont. 
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(b) 

Figure 14. The results of background subtraction by our method and previous one [37]. 

Upper and lower figures of (a,b) are the results with the visible light and thermal images, 

respectively: (a) Results by our method; (b) Results by previous method [37]. 

As shown in Tables 5 and 11, average recall and precision in visible light image by our background 

subtraction method are higher than those by previous method [37]. In addition, as shown in  

Tables 6 and 12, average recall and precision in thermal image by our background subtraction method 

are higher than those by previous method [37]. In addition, we compared the processing time of our 

background subtraction method with that by previous method [37]. The total processing time of our 

method is 16.84 ms (Steps (1)–(5), and (7)–(9) of Table 7) which is smaller than that by previous method 

(26.27 ms) [37]. From these results, we can confirm that our background subtraction method outperforms 

the previous one [37]. 

Table 11. Detection result using only visible light camera by previous method [37]. 

Environment #Frame #People #TP #FP Recall (%) Precision (%) 

Morning 500 899 464 32 51.61 93.55 

Afternoon 500 730 573 17 78.49 97.12 

Night 500 698 0 0 0 Cannot be calculated 

Rainy day 500 559 143 445 25.58 24.32 

Total 2000 2886 1180 494 40.89 70.49 

Table 12. Detection result using only thermal camera by previous method [37]. 

Environment #Frame #People #TP #FP Recall (%) Precision (%) 

Morning 500 899 500 379 55.62 56.88 

Afternoon 500 730 406 109 55.62 78.84 

Night 500 698 590 43 84.53 93.21 

Rainy day 500 559 109 653 19.50 14.30 

Total 2000 2886 1605 1184 55.61 57.55 
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In order to prove that our method is robust to the kinds of camera and database, we measured the 

performance by our method with another database. This additional database (database II) is collected by 

a new dual camera system as shown in Figure 15. The total number of images used in the experiment 

(database II) was 800. These images were obtained in various environments such as mornings of 2.9 °C 

(200 images), afternoons of 4.7 °C (200 images), nights of 1.2 °C (200 images), and rainy days of  

2.8 °C with precipitation of 5.5 mm (200 images). We captured the images where people naturally move 

without any instruction from us. Therefore, there exist various cases that some people are close together, 

cluttered, separated, etc. in our database. 

 

Figure 15. Proposed dual camera system which is used for collecting database II. 

Like the first system of dual cameras in Figure 1, we implement the dual camera system by combining 

visible light and thermal cameras in order to collect database II. A commercial thermal camera of FLIR 

Tau2 is used [38]. It can capture an image of 640 × 480 pixels having a resolution of 8 bits in the 

wavelength range of 7.5–13.5 μm. A 19 mm lens is used in the thermal camera, and the field of view 

(FOV) of the thermal camera is 32° and 26° in the horizontal and vertical directions, respectively.  

The dimension (height × width × depth) and weight of the thermal camera are 1.75" × 1.75" × 1.18" and 

approximately 70 g, respectively.  

The same web-camera of Figure 1 is used as the visible light camera [30]. The FOV of the visible 

light camera using a 6 mm lens is 42° and 32° in the horizontal and vertical directions, respectively, 

which is much wider than that of the visible light camera of Figure 1. Our system acquires both the 

visible light image of 800 × 600 pixels and the thermal image of 640 × 480 pixel at the capturing speed 

of 30 frames per sec. By using the lenses of wider FOV for the visible light and thermal cameras of 

Figure 15 than those of Figure 1, our additional database (database II) includes the images of wider FOV 

compared to those by the system of Figure 1 as shown in Figures 12 (database I) and 16 (database II). 

However, the size of people in the database II (Figure 16) becomes smaller than that in database I  

(Figure 12) due to the wider FOV. 



Sensors 2015, 15 10606 

 

 

  

(a) 

  

(b) 

  

(c) 

  

(d) 

Figure 16. Examples of collected images in database II. Left and right figures of (a–d) are 

the images by visible light and thermal cameras, respectively. Image captured (a) in the 

morning; (b) in the afternoon; (c) at night; (d) on a rainy day. 
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In order to reduce the image disparity between the two cameras, we make the two axes of visible light 

and thermal cameras parallel in the horizontal direction with minimum horizontal distance between the 

two cameras as shown in Figure 15. 

In Tables 13–15, we show the accuracies by our method with database II. 

Table 13. Detection results using dual camera systems by our method with database II. 

Environment #Frame #People #TP #FP Recall (%) Precision (%) 

Morning 200 167 135 1 80.84 99.26 

Afternoon 200 216 210 26 97.22 88.98 

Night 200 269 254 2 94.42 99.22 

Rainy day 200 181 180 72 99.45 71.43 

Total 800 833 779 101 93.52 88.52 

Table 14. Detection result using only visible light camera by our method with database II. 

Environment #Frame #People #TP #FP Recall (%) Precision (%) 

Morning 200 167 48 16 28.74 75.00 

Afternoon 200 216 132 28 61.11 82.50 

Night 200 269 0 0 0 Cannot be calculated 

Rainy day 200 181 142 70 78.45 66.98 

Total 800 833 322 114 38.66 73.85 

Table 15. Detection result using only thermal camera by our method with database II. 

Environment #Frame #People #TP #FP Recall (%) Precision (%) 

Morning 200 167 128 55 76.65 69.95 

Afternoon 200 216 149 119 68.98 55.60 

Night 200 269 241 35 89.59 87.32 

Rainy day 200 181 180 5 99.45 97.30 

Total 800 833 698 214 83.79 76.54 

For the next experiment, we measured the processing time of our method with database II as shown 

in Table 16. As shown in Table 16, the total processing time is about 27.04 ms and we find that our 

system can be operated at the speed of about 36.98 frames/s (1000/27.04). By comparing the processing 

time of Table 7, the processing time of Steps (1)–(4), (7) and (8) in Table 16 is much smaller than that 

of Table 7. That is because the thermal image in database I (used in Table 7) includes a lot of noises and 

additional median filtering is included in the Steps (1)–(4), (7) and (8) in Table 7. 

As the next test, we compare our algorithm with previous detectors [8,14,22] with database II. 

Because their method is for the pedestrian detection and tracking in thermal image [22], we compared 

the performance by our method in thermal image (Table 15) and that by their method. As shown in 

Tables 15 and 17, average recall and precision by our method are higher than those by previous method [22]. 

In addition, we compared the processing time of our method with that by previous method [22]. The 

total processing time of our method is 27.04 ms (Table 16) which is smaller than that by previous method 

(59.14 ms). From these results, we can confirm that our method outperforms the previous one [22]. 
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Table 16. Processing time of our method with database II. 

Steps of Figure 3 Processing Time (ms) 

Steps (1)–(4), (7) and (8) 0.003 

Steps (5) and (6) 1.60 

Steps (9)–(12) 18.10 

Step (13) 0.97 

Steps (14) and (15) 5.69 

Steps (16)–(18) 0.68 

Total 27.04 

Table 17. Detection result using only thermal camera by previous method [22] with database II. 

Environment #Frame #People #TP #FP Recall (%) Precision (%) 

Morning 200 167 80 103 47.90 43.72 

Afternoon 200 216 177 83 81.94 68.08 

Night 200 269 206 52 76.58 79.85 

Rainy day 200 181 150 10 82.87 93.75 

Total 800 833 613 248 73.59 71.20 

In the next experiment, we compared the performance by our method with that by previous  

detector [8,14]. Because their method can be applied to both the visible light and thermal  

images [8,14], we compared the performances by our method in visible light (Table 14) and thermal 

image (Table 15) and those by their method. As shown in Tables 14 and 18, average recall and precision 

in visible light image by our method are higher than those by previous method [8,14]. In addition, as 

shown in Tables 15 and 19, average recall and precision in thermal image by our method are higher than 

those by previous method [8,14]. In addition, we compared the processing time of our method with that 

by previous method [8,14]. The total processing time of our method is 27.04 ms (Table 16) which is 

smaller than that by previous method (54.55 ms). From these results, we can confirm that our method 

outperforms the previous one [8,14]. 

Table 18. Detection result using only visible light camera by previous method [8,14] with 

database II. 

Environment #Frame #People #TP #FP Recall (%) Precision (%) 

Morning 200 167 32 20 19.16 61.54 

Afternoon 200 216 117 45 54.17 72.22 

Night 200 269 0 0 0 Cannot be calculated 

Rainy day 200 181 147 92 81.22 61.51 

Total 800 833 296 157 35.53 65.34 
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Table 19. Detection result using only thermal camera by previous method [8,14] with database II. 

Environment #Frame #People #TP #FP Recall (%) Precision (%) 

Morning 200 167 108 48 64.67 69.23 

Afternoon 200 216 121 98 56.02 55.25 

Night 200 269 237 44 88.10 84.34 

Rainy day 200 181 177 19 97.79 90.31 

Total 800 833 643 209 77.19 75.47 

In addition, we compared the background subtraction by our method with that based on Gaussian 

background-subtraction approach which has been widely used [37] with database II. For fair 

comparisons, only the background update and subtraction (Steps (1)–(5) and (7)–(9) of Figure 3) are 

replaced by [37] when measuring the performance by previous method [37]. Because their method can 

be applied to both the visible light and thermal images, we compared the performances by our method 

in visible light (Table 14) and thermal image (Table 15) and those by their method.  

As shown in Tables 14 and 20, average recall and precision in visible light image by our background 

subtraction method are higher than those by previous method [37]. In addition, as shown in Tables 15 

and 21, average recall and precision in thermal image by our background subtraction method are higher 

than those by previous method [37]. In addition, we compared the processing time of our background 

subtraction method with that by previous method [37]. The total processing time of our method is  

7.73 ms (Steps (1)–(5), and (7)–(9) of Table 16) which is smaller than that by previous method  

(51.54 ms). From these results, we can confirm that our background subtraction method outperforms the 

previous one [37].  

Table 20. Detection result using only visible light camera by previous method [37] with database II. 

Environment #Frame #People #TP #FP Recall (%) Precision (%) 

Morning 200 167 27 0 16.17 100 

Afternoon 200 216 118 28 54.63 80.82 

Night 200 269 0 0 0 Cannot be calculated 

Rainy day 200 181 102 73 56.35 58.29 

Total 800 833 247 101 29.65 70.98 

Table 21. Detection result using only thermal camera by previous method [37] with database II. 

Environment #Frame #People #TP #FP Recall (%) Precision (%) 

Morning 200 167 129 50 77.25 72.07 

Afternoon 200 216 139 124 64.35 52.85 

Night 200 269 178 34 66.17 83.96 

Rainy day 200 181 180 5 99.45 97.30 

Total 800 833 626 213 75.15 74.61 

In our system, the background image (where no human area is included) is manually saved, and this 

procedure is performed one time only at the initial setup of our system. If the human area exists in the 

current input image, the pixel difference between the input and background images becomes large  

(the condition of Step 2 of Figure 3 makes a result of “Yes”), and the background update is not performed 
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as shown in the Step 2 of Figure 3, consequently. Therefore, even in the case that the human area remains 

steady in the current input images, the initial background (not including the human area) is not updated 

due to the condition of the Step 2 of Figure 3, and the human areas can be detected by our background 

subtraction between the input and background images. 

In previous researches [39,40], Serrano-Cuerda et al., proposed the method of human detection by 

the fusion of visible light and thermal videos. In their method, the detection result from the thermal or 

visible light images is adaptively selected based on the confidence level of the thermal or visible light 

image. Castillo et al., proposed the method of detecting dangerous situations at home, such as falls, by 

using color and thermal cameras [41]. In their method, the behavior of fall is recognized based on fuzzy 

system, and the recognition is done independently on the indoor images of visible light and thermal 

cameras, respectively. The two decisions (Yes or No) of the behavior of fall from the images of visible 

light and thermal cameras are combined in decision level fusion. 

In another research [42], they proposed the multi-agent system for infrared and color video fusion. 

They showed the method of adaptively selecting the detection result from the thermal or visible light 

images based on the confidence level of the thermal or visible light image like the researches [39,40]. 

However, they did not show the detail method of refining the detected area of human by fusing the 

positional information of two detected areas of human in visible light and thermal images. In other 

research [43], they proposed the method of extracting the ROI of human by combining the information 

of binarized input image and motion. They used only the thermal image without the visible light ones.  

The main characteristics of these researches are that they adaptively select the detection result of 

human from the thermal or visible light images based on the confidence level of the thermal or visible 

light image. The confidence level of the image is determined by the average gray value of the input 

image by visible light camera and the ratio of the average gray value of the input image by thermal 

camera to the standard deviation of the input image by thermal camera. However, in our research, as 

shown in Figures 7 and 9, we fuse the two detected areas (CWI and CSI) of human in visible light and 

thermal images by the mapping of pixel positions based on the geometric transform (of Equations (1) 

and (2)) between two cameras as shown in Figure 3. In addition, we quantitatively measured the accuracy 

of mapping of pixel positions based on the geometric transform as shown in Figures 10 and 11 and  

Tables 2 and 3. By combining the two detected areas of human as shown in the Step (16) of Figure 3, 

more refined areas of human can be obtained by our method. This is the 1st and main difference between 

our method and previous researches.  

For the second difference between our method and these previous researches, we adaptively update 

two background images for visible light and thermal cameras when the pixel difference between an input 

thermal image and pre-stored thermal background image is smaller than the threshold whereas the 

previous method used adaptive Gaussian background modeling [40]. In addition, we do not use the 

scheme of frame subtraction (motion information) whereas the previous researches adopted this  

scheme [39,40,43]. These schemes of Gaussian background modeling and frame subtraction have the 

disadvantage that they cannot cover the cases that human is not moved in all the frames. We overcome 

this disadvantage by fusing the two detected areas (CWI and CSI) of human in visible light and thermal 

images, and these two areas are obtained by adaptive updating of the background image (Steps (4) and 

(8) of Figure 3) and background subtraction (Steps (5), (9) and (14) of Figure 3).  
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In Figure 14 and Tables 5, 6, 11 and 12, we compared the accuracies of human detection with our 

method and Gaussian background modeling [37]. As shown in Figure 14 and Tables 11 and 12, we find 

that the accuracy in our method is higher than that by Gaussian background modeling. As mentioned 

before, the total processing time of our method is 7.73 ms (Steps (1)–(5), and (7)–(9) of Table 7) which 

is smaller than that by previous method (51.54 ms) [37]. From these results, we can confirm that our 

background subtraction method outperforms the previous one [37]. 

For the third difference, by using the background subtraction based on the adaptive thresholding for 

binarization considering the background temperature as shown in Equations (4)–(7), we can obtain the 

candidate region of human, which is less affected by the temperature of background.  

For the last difference between our method and these previous researches, in addition to the accuracies 

of human detection, we provide the processing speed of our method as shown in Table 7 considering the 

real-time application of intelligent surveillance system. However, previous researches did not show the 

results of processing speed [39–43]. 

The final goal of our research is to recognize the behavior of people in various environments outdoors, 

and this will be our next research. However, in the OSU thermal pedestrian database, OSU color-thermal 

database, and terravic motion IR database of OTCBVS dataset collection [33], the people size is so small 

that they are difficult to be used for behavioral recognition. In addition, in the pedestrian infrared/visible 

stereo video dataset of OTCBVS dataset collection [33], although the people size is large enough for 

behavioral recognition, they are collected indoors (not in various environments of outdoors). Therefore, 

we used our own database (database I) of 2000 images collected in various outdoor environments 

(morning, afternoon, nights and rainy day) as shown in Figure 12. In addition, we collected the additional 

database (database II which includes 800 images) as shown in Figure 16 for the experiments by using 

the dual cameras of wide FOV. Through the experimental results of Tables 4–21 and Figures 12–16 with 

databases I and II, we can confirm our method is robust to the kinds of camera and database, and the 

performance of our method is better than previous ones [8,14,22,37]. 

4. Conclusions 

In this research, we proposed a method for detecting pedestrians using a dual camera system by 

combining visible light and thermal cameras. We implemented the dual camera system where the two 

camera axes were horizontally parallel, and obtained the geometric transform matrix that represents the 

relationship between these two camera axes. Two background images for visible light and thermal 

cameras were adaptively updated when the pixel difference between an input thermal image and  

pre-stored thermal background image was smaller than the threshold. By background subtraction and 

further processing of visible light and thermal images, the CWI and CSI of pedestrians were located in 

these two images. Then, the final areas of pedestrian were detected by combining the CWI and CSI based 

on the OR operation. Through experiments in various environments, we proved the effectiveness of  

our system.  

In future work, we would apply our results of human detection to the field of behavioral recognition. 

In addition, we would research a method of combining the information from multiple dual camera systems. 
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