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Abstract: To create a context-aware environment, human locations and movement paths 

must be considered. In this paper, we propose an algorithm that tracks human movement 

paths using only binary sensed data obtained by infrared (IR) sensors attached to the ceiling 

of a room. Our algorithm can estimate multiple human movement paths without a priori 

knowledge of the number of humans in the room. By repeating predictions and estimations 

of human positions and links from the previous human positions to the estimated ones at each 

time period, human movement paths can be estimated. Simulation-based evaluation results 

show that our algorithm can dynamically trace human movement paths. 

Keywords: infrared sensor; multiple human tracking; privacy 

 

1. Introduction  

Human tracking technologies have attracted considerable attention over the years. For example, with 

real-time human tracking technology, air conditioners and lights can be controlled smartly by 

considering the requirements of each human. In addition, elderly people or children can be monitored 

for safety reasons [1,2]. Consequently, many human tracking systems and algorithms have been 

proposed [3–20]. One popular method involves camera-based systems [3–10]. However, they are often 

not acceptable for monitoring elderly people or other similar applications whose objective is to observe 

humans without invading their privacy. This is because people may be uncomfortable with monitoring 

using video cameras, even if the original image data are modified and not used directly to perform human 

tracking. In addition, the size of video data is large compared to other sensor data; therefore,  
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camera-based systems are not suitable for long-term observations. In other popular methods, IC tags or 

radio frequency identification devices (RFIDs) [11,12] are used. A person wears a RFID, which is then 

detected by nearby RFID receivers located on the floor or ceiling of the monitored area. Thus, using data 

stored in the RFID receivers, the person can be tracked. Although the RFID-based systems can be 

considered to enhance privacy, they force people to carry the RFID devices. 

For these reasons, some human tracking methods use infrared (IR) sensors [13–20]. The IR sensor 

produces a “1” if it detects a human, and a “0” otherwise [21]. Thus, using the IR sensors, the movement 

paths of subjects can be estimated without sacrificing their privacy. In addition, IR sensors are low-cost 

and their installation is relatively simple. However, IR sensors have a deficiency—they react regardless 

of whether they detect one or multiple persons. Therefore, almost all human tracking methods using IR 

sensors assume that the number of humans in the room is known beforehand. However, from the 

perspective of practical application development, the number of humans in a room is often unknown.  

We previously proposed an algorithm that can simultaneously estimate both the number of humans 

and their movement paths [22,23], however, the method still had some drawbacks. Thus, the algorithm 

is invoked after all sensed data are collected, making it difficult to estimate the human movement in real 

time. In addition, the estimated human position must be the position of a fired IR sensor or the midpoint 

of the overlapped detection areas of multiple fired IR sensors; thus, the method lacks flexibility.  

To address these issues we now propose a novel method that can overcome the aforementioned  

problems [24]. The method dynamically estimates human positions using the weighted centers of 

grouped fired IR sensors, instead of simply using the position of a fired IR sensor or the midpoint of the 

overlapped detection areas of multiple fired IR sensors in the previous methods. Thus, by using the new 

method, we can estimate multiple human movement paths in a timely manner, and the estimated  

human positions are not restricted by the locations of the IR sensors, thus improving the human  

tracking accuracy.  

The remainder of this paper is organized as follows: in Section 2, a model of the assumed IR sensor 

system is described. Next, the details of the proposed algorithm are explained in Section 3. Then, 

evaluation results are shown in Section 4. Finally, our conclusions and future studies are described  

in Section 5. 

2. Model of IR Sensor System 

In this paper, we consider a system constructed using IR sensors and a PC. The IR sensors are 

randomly installed on the ceiling of a room, but their locations are known. In addition, each IR sensor 

has a non-directional and circular detection range, the radius of which is r. Here, r is typically several 

meters, if we use commercially available IR sensors [21]. We assume r = 2.0 m in this paper. The sensor 

outputs binary data, i.e., it produces a “1” if it detects one or more humans and a “0” otherwise. 

Moreover, all the IR sensors are connected to the PC using a wired or wireless communication network. 

Thus, data obtained from the IR sensors are collected in the PC. The data sampling rate is 6 Hz, and the 

sensed data are saved on the PC with a time stamp. In addition, the positional coordinates of each sensor 

is known. Furthermore, the detection ranges of the IR sensors should cover the entire area to detect 

human movements. Note that some IR sensor arrays have been proposed recently [25], and they can 

detect human movements, but their detection range is typically several meters. Thus, even if using the 
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IR sensor array, it is difficult to cover a large area. Furthermore, the method proposed in this paper can 

naturally handle the IR sensor array by treating it as a set of densely deployed IR sensors, if the sensor 

array produces a set of {0, 1}-data depending on human detection. 

3. Proposed Algorithm 

We can trace a human movement path by connecting the positions of the fired sensors step by step, 

if the position coordinates of each sensor is known. However, this method presents the problem that if 

some of the IR sensors are close together, they often detect the same event and output “1” data at the 

same time, which could make it difficult to track the human movements using the simple method 

mentioned above. This is especially true when there is more than one person in the room. To solve this 

problem, we propose a heuristic algorithm that can estimate multiple human movement paths using only 

the binary sensed data. 

3.1. Notations 

First, to explain the procedures of our algorithm, we define the variables and parameters as follows: 

· |*|: The number of elements in list *. 

· CC(t): A set of the weighted center coordinates of the clusters at time t. CC(t) = {cci(t)|i = 1, …, 

Cmax(t)}, where cci(t) = (x, y) and they are referred to as cci(t).x and cci(t).y, respectively. 

· Cmax(t): The number of clusters at time t. 

· ds(t): A binary sensed datum obtained by IR sensor s at time t. ds(t) ϵ {0, 1}. 

· mdAVE(td.ID): An average of movement distance of target human “td.ID.” The details are  

described later. 

· mvt(td.ID): A coordinate set of the most recently estimated WS2 number of coordinates in  

Path of “td.ID” at time t. mvt(td.ID) = {mci(td.ID)|i = 1, 2, … WS2}, where mci(td.ID) = (x, y). They 

are referred to as mci(td.ID).x and mci(td.ID).y, respectively. mc1(td.ID) is more recent  

than mc2(td.ID). 
· MV(td.ID): A vector from coordinate mcWS2(td.ID) to coordinate mc1(td.ID), i.e., mcWS2(td.ID) → 

mc1(td.ID). This vector is referred to as the movement vector of target human “td.ID” at time t. 

· ORD(t): A binary dataset obtained by applying the logical-OR operation to RDL at time t.  

ORD(t) = {os(t)|s = 1, …, S}, where os(t) = ⋃ dୱ୲ି୛ୗଵ	ା	ଵ୧ୀ୲ ሺiሻ, s = 1,… , S. 

· r: The radius of the detection range of each IR sensor. 

· RD(t): A set of sensed raw data at time t. RD(t) = {ds(t)|s = 1, …, S}. |RD(t)| = S. 

· RDL: A list containing sets of the sensed raw data. At time t, RDL = {RD(t-WS1 + 1),  

RD(t-WS1 + 2), …, RD(t-1), RD(t)}. |RDL| = WS1. 

· S: The total number of IR sensors. S > 0. 

· td: A data structure representing a target human. It contains ID, TTL, PC, and Path. They are referred 

to as td.ID, td.TTL, td.PC, and td.Path, respectively. 

· td.ID: A human ID. This is an integer value. Td.ID > 0. 

· td.PC: A predicted coordinate of target human “td.ID” at time t, where td.PC = (x, y). They are 

referred to as td.PC.x and td.PC.y, respectively.  
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· td.Path: A list of the estimated route coordinates of target human “td.ID.” By connecting all elements 

in this list from the first to the last, the estimated movement path of human “td.ID” is obtained. 

· td.TTL: A lifetime of target human “td.ID”. This is an integer value. The initial value of td.TTL  

is “1,” and its maximum value is TTLMAX. 

· TDL: A list of target humans who currently exist in the room. 

· TTLMAX: A constant integer value. The maximum value of TTL (time to live). TTLMAX > 0. 

· WL(t): A weight set of the sensors at time t. WL(t) ={ws(t)|s = 1, …, S}. 

· ws(t): A weight of sensor s at time t. ws(t) = ∑ dୱ୲ି୛ୗଵ	ା	ଵ୧ୀ୲ ሺiሻ|s = 1,… , S. This is used to calculate the 

weighted center coordinate of a cluster, to which sensor s belongs. The coordinate calculation method 

will be defined later. 

· WS1: Window size for the number of sensed raw datasets to which the logical-OR operation is applied. 

This is a given integer value. WS1 > 0. 

· WS2: Window size or the number of elements (coordinates) that construct movement vector 

mvt(td.ID). This is a given integer value. WS2 > 1. 

3.2. Main Procedure 

 

Figure 1. Main procedure of the proposed algorithm.  

//Initialization
RDL = {}; TDL = {}; t = 0;
h = 0; // human ID

// Preparation of raw dataset 
// to estimate the location of each human at time t
RD(t) = get a set of sensed raw data obtained at time t;
Append RD(t) to RDL;

// Location estimation step 
Apply logical-OR operation and summation to RDL, 
and obtain ORD(t) and WL(t);
call Clustering(ORD(t)) shown in Figure 3, and
calculate CC(t) using clustering results C_new and WL(t);

t++;

// Path estimation step
PathEstimation(); //See Figure 5

START Main()

|RDL| < WS1 ?

|RDL| > WS1 ?

Remove the first element of RDL;

yes

no

no

yes

Set up the raw
 data to R

D
L
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The main procedure of the proposed algorithm is shown in Figure 1. It mainly consists of two 

processing steps: the location estimation step and path estimation step. The former is described as a part 

of the main procedure, whereas the latter step will be shown later. At each time t, the two steps are 

invoked sequentially, and a link from the current to the next human position is estimated. First, as the 

location estimation step, the candidates for human positions are listed using a clustering technique. Then, 

in the path estimation step, the links are determined by selecting reasonable positions among the 

candidates obtained in the location estimation step. At time t, the position of each human is estimated 

using the candidate sets, i.e., the sets of the weighted centers of clusters, obtained from t-WS2 + 1 to t. 

Here, WS2 is relatively small. Thus, our algorithm can trace the human movement paths almost in  

real time, without knowing the number of humans in the room. Our previous algorithm could not do  

this [22,23]. In addition, the framework of the proposed algorithm is the same as that of the algorithm 

introduced in [24], except that both the location estimation and path estimation steps are modified to 

improve human tracking accuracy. In the following subsections, the detailed procedure of each step will 

be explained. 

3.3. Location Estimation Step 

The main purpose of this step is to provide a candidate list containing the next locations of the humans 

in the room. To achieve this, logical-OR operations and summations are applied to list RDL that contains 

all sensed raw data in time period [t, t-WS1 + 1], and ORD(t) and WL(t) are obtained. Figure 2 shows 

an example. In this example, S = 6, and WS1 = 7. RDL = {(0,0,0,0,1,0), (1,0,0,0,1,0), …, (0,1,0,0,1,1)}. 

Thus, ORD(t) becomes {1,1,0,0,1,1} after applying a logical-OR operation to RDL, and WL(t) 

becomes {3,5,0,0,6,1} by summing up the corresponding sensed raw data in RDL. Here, in the case of 

S = 1, we cannot estimate human movements actually. However, we can detect if humans exist in the 

detection area of the IR sensor. It is often called “proximity” position detection. To simplify the 

discussion, we treat S = 1 case as a human-trackable case in this paper. 

 

Figure 2. Example of sensed raw data processing. 
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Next, using ORD(t) and WL(t), the fired sensors during time period [t, t-WS1 + 1] are grouped using 

a clustering method. Finally, the weighted centers of the clusters are calculated, and they are used in the 

path estimation step as the candidates for the next human positions. The clustering algorithm is shown 

in Figure 3. The algorithm is based on the Ward method [26]; however, the termination condition of our 

algorithm is different from that of the original method. While the original Ward method tries to merge 

the nearest pair of clusters until all initial clusters are merged into one cluster, our algorithm stops the 

cluster merging if Equation (3), i.e., the termination condition, is no longer satisfied. The geometrical 

distance between the centers of any two clusters in the finally obtained cluster set will be longer than the 

radius of the detection range of IR sensor r.  

Here, we assume that a person exists in each obtained cluster, and his/her position is the weighted 

center of the cluster. The weighted center coordinate cci(t) = (xi(t), yi(t)) of cluster ci(t) at time t is 

calculated using Equation (4). 

Note that each element can belong to more than one cluster in our new clustering method, contrary to 

that used in our previous algorithm [24]. Thus, we can manage the case that multiple humans exist  

in the detection range of the same IR sensor, which cannot be managed by our previous algorithm  

introduced in [24]: 

, ;
min ( , ) ( ) ( ) ( )

i j
i j i j j j

c c C i j
c c E c c E c E c

∀ ∀ ∈ ≠
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where “s” is a sensor ID. The weighted centers of all clusters are set to CC(t). They become candidates 

for human positions at time t. Figure 4 shows an example. In the example, cluster c1(t) consists of sensors 

s = 1, s = 2, and s = 3. If the position coordinates of the sensors are (10, 10), (9, 5), and (14, 8), and their 

weights are w1(t) = 4, w2(t) = 1, and w3(t) = 2, the center coordinate cc1(t) will be (11.0, 8.7), i.e.,  

x1(t) = (4 × 10 + 1 × 9 + 2 × 14)/(4 + 1 + 2) and y1(t) = (4 × 10 + 1 × 5 + 2 × 8)/(4 + 1 + 2). Furthermore, 

sensor s = 2 belongs to another cluster c3(t). Thus, the coordinate of s = 2 is also used to calculate the 

weighted center cc3(t) of cluster c3(t). If a cluster contains only one sensor, like cluster c2(t) in Figure 4, 

the center position coordinate is simply the position of the sensor. After all weighted center coordinates 

of the clusters are calculated and set to CC(t), the path estimation step will be initiated. 
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Figure 3. Clustering algorithm.  

 

Figure 4. Example of clustering. 

3.4. Path Estimation Step 

The procedure of this step is described in detail in Figures 5 and 6. In the main procedure, 

PathEstimation(), if TDL is empty, NewTarget() is called to create new humans. Their starting points 

//Input 
ORD(t) 

C = Make a cluster set in which
each cluster has a fired sensor in ORD(t);

C_new = {}; // Finally obtained cluster set

Remove duplicative cluster from C_new; 

START Clustering()

END Clustering()

foreach c1 in C {
C_temp = C; // copy
Remove c1 from C_temp;
repeat{

c2 = null;
value = Maximum value;
// Find a cluster c2 from C_temp
foreach c in C_temp{

value_temp = Calculate Δ(c1, c) using Equations (1) and (2);
if( value > value_temp ){

c2 = c;
value = value_temp;

}
}
if ( c1 and c2 satisfy Equation (3) ){

c1 = merge c1 and c2 into one cluster;
Remove c2 from C_temp;

}
else break;

} // End of repeat
Add c1 to C_new;

}
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are simply the weighted center coordinate of CC, respectively. Here, TDL represents humans currently 

existing in the room. If some humans exist, i.e., TDL is not empty, TrackTarget() in Figure 6 is invoked 

to obtain the next position coordinate of each human. TrackTarget(), which has been changed from our 

previous one introduced in [24], contains two sub-processes: prediction and modification. In the 

prediction sub-process, a predicted coordinate, td.PC, is provided for each human as the next position 

coordinate at time t (see “Block 2” in Figure 6). First, a movement angle α of each human at time t is 

calculated using a movement vector MV(td.ID). Here, the movement vector represents the expected 

direction of the corresponding human, and is calculated using the most recently estimated WS2 number 

of the position coordinates of the human, i.e., mvt(td.ID). Here, equal values for mcWS2(td.ID) and 

mc1(td.ID) indicate that the target human did not move. Therefore, the predicted coordinate td.PC is 

simply treated as mc1(td.ID). Otherwise, the prediction is calculated. Figure 7 shows an example. First, 

an average of movement distance mdAVE(td.ID) is calculated using mvt(td.ID), defined as: 
2

2 2
1 1

2

1
( . ) ( ' ' ) ( ' ' )

2 1

WS

AVE i i i i
i

md td ID x x y y
WS − −

=

= − + −
−   (5)

where x’i = mci(td.ID).x and y’i = mci(td.ID).y. Using the movement angle α and mdAVE(td.ID), the 

predicted coordinate td.PC is calculated (see also procedure for TrackTarget() shown in Figure 6).  

 

Figure 5. Procedure of the path estimation step.  

// A structure saving data related to the corresponding human
struct td{

ID; // ID number
TTL = 1; // TTL for this human

// If TTL < 0, the human data should be deleted.
PC = null; // A predicted coordinate at time t
Path ={}; // For saving movement path of this human

}

TDL == {} ?

//To create new targets, call the following procedure 
NewTarget(){
foreach cc in CC {
h++; // New human ID
Create a new struct td;
td.ID = h;
td.Path ={};

// Set up the weighted center coordinate 
// as the start position of the human
Append cc to td.Path; 
td.PC = cc;
td.TTL = 1;
Append td to TDL;

}
}

call TrackTarget(); 
//See Figure 6

START PathEstimation()

END PathEstimation()

yes

no



Sensors 2015, 15 13467 

 

 

 

Figure 6. Procedure to estimate the next position of each human. 

START TrackTarget()

TDL_bk = {}; // Used as temporary backup of TDL

// “Prediction sub-process”
foreach td in TDL{

// Coordinate of the last element of td.Path
x = mc1(td.ID).x; y = mc1(td.ID).y; //  X and Y coordinate
α = the relative angle between “mcWS2(td.ID) → mc1(td.ID)” and x-axis;
if( mcWS2(td.ID) == mc1(td.ID) ){ // target human did not move

td.PC.x = x; td.PC.y = y;
} else{

td.PC.x = x + ( cos(α) * mdAVE(td.ID) ); td.PC.y = y + ( sin(α) * mdAVE(td.ID) );
}

}

// “Modification sub-process”
repeat{

d = r; // r = radius of the detection range of IR sensor
θ = 180;  ttl = 0;  i_best = 0;  j_best = 0;
for( i = 1; i <= |TDL|; i++ ){

for( n = 1; n <= |CC|; n++ ){
td = TDL[i]; cc = CC[j];
d_temp = Calculate the distance between td.PC and cc;
θ_temp = Calculate the relative angle between “mc1(td.ID) → td.PC” and “mc1(td.ID) → cc”
if( d < d_temp || θ < θ_ temp || ttl > td.TTL ) continue;

// Save the best combination of “td” and “cc” up to now
i_best = i;  j_best = j; d = d_temp; θ = θ_temp;  ttl = td.TTL;

}
}
// Actual modification is applied

if( i_best > 0 && j_best > 0){ // If the best combination was found
td = TDL[i_best]; cc = CC[j_best]; td.TTL++;
if(td.TTL > TTLMAX ) td.TTL = TTLMAX;
// Next movement coordinate is set as the center between cc and td.PC 
new_c.x = ( td.PC.x + cc.x ) / 2; new_c.y = ( td.PC.y + cc.y ) / 2;
// Save it temporarily as an active human
Append new_c to td.Path; Append td to TDL_bk; Remove td from TDL;  Remove cc from CC;

}
else break; // The best combination is NOT found

} // End of repeat

// Containing human who could not find a next coordinate
if( TDL≠{} ){ 

foreach td in TDL{
td.TTL--;
if(td.TTL < 0) continue; // Remove as non-active human
// Save it temporarily as an active human
Append td to TDL_bk;

}
}
TDL = TDL_bk;

if( CC ≠{} ) // Containing unselected coordinates
call NewTarget() shown in Figure 5; // Assume a human coming in the room

END TrackTarget()

Block 1

Block 2

Block 3

Block 4

Block 5
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Figure 7. Example of the calculation of predicted next coordinate. 

Next, as the modification sub-process, all pairs of the weighted coordinates in CC and target humans 

in TDL are examined, and the best pair is selected in consideration of distance d, angle θ, and time to 

live (TTL) of “td.” Here, “d” is the distance between td.PC and cc. “θ” is the relative angle between 
“mc1(td.ID) → td.PC” and “mc1(td.ID) → cc.” A pair that minimizes “d” and “θ” and maximizes TTL 

at the same time is finally selected as the best pair.  

Actual modification is, then, applied for the best pair found in the prediction sub-process, and the 

next movement position coordinate is obtained as the center of td.PC and cc of the best pair (see also 

“Block 3” in Figure 6). The obtained next position is appended to the td.Path of the corresponding target 

human. The elements representing the selected pair of the weighted center coordinate cc and target td 

are removed from CC and TDL. The aforementioned best-pair selection process is repeated until no 

more selected pairs exist. In addition, if the next position of a human can be successfully found, the TTL 

value of the human is incremented; otherwise, it is decremented. Here, the initial value of TTL is “1,” 

and its maximum value is TTLMAX. The TTL value never exceeds TTLMAX. If the TTL of a human 

becomes less than 0, the human is removed from the TDL as he/she has left the room. In addition, if an 

unselected coordinate is contained in CC, NewTarget() is invoked and a human is appended to TDL as 

he/she enters the room. Due to this mechanism, even if the number of humans is not estimated correctly 

using the clustering algorithm in the location estimation step shown in Figures 1 and 3, and some  

humans have accidentally been generated by NewTarget() at this point, they will be removed within a  

short period. 

Figure 8 shows an example of the Path Estimation step. Here, TDL = {td1, td2} and CC = {cc1(t), 

cc2(t), cc3(t)}. First, a pair of td1.pc and cc1(t) is selected. The distance between them is smaller than that 

between others, and the angle is less than 180° and smaller than that between others. Thus, the center 

coordinate of td1.PC and cc1(t) is calculated, and it is appended to td1.Path. In addition, td1.TTL is 

incremented. In the next step, because TDL = {td2} and CC = {cc2(t), cc3(t)}, a pair of td2.PC and cc2(t) 

is selected, and the process described above is applied to the pair. 

mdAVE

Movement distance: 
md

Movement vector:
mvt(td.ID)

Estimated coordinate at previous time

Predicted coordinate at time t

mc1(td.ID) 

mcWS2(td.ID) 

td.PC

Angle: α
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Figure 8. Example of TrackTarget(). 

Our path estimation algorithm shown in Figure 6 can be formulated using Equations (6) and (7). 

Assume that p୲ is the position of a target human at time t, p୲ = ሾx୲ y୲ሿ. Then, a prediction at time t is 

given by: 

1ˆ t t tp p Bu−= +  (6)

where pො୲ is a predicted coordinate at time t; in this paper, it is the same as td.PC: pො୲ 	= ሾx୲ y୲ሿ. In 

addition, B is the average of the movement distance mdAVE(td.ID) of the target human, and u୲ is the  

x-y component form of the predicted movement distance at time t. u୲ = ሾsin ߙ cos   ሿ. Here, α isߙ

the angle of the movement vector MV(td.ID) at time t. Furthermore, the modified position at time t is  

given by: 

1
ˆ( )

2t t tp p z= +  (7)

where z୲ is a measurement of the target human at time t and is the same as the center position coordinate 

cc(t), which is obtained by the best-pair selection. z୲ = ሾx୲ y୲ሿ.  
Equation (6) is similar in form to the Kalman filter, which is used in related work [19,20]. However, 

as compared to the original Kalman filter, in our proposed algorithm, pො୲  and z୲  are calculated as 

mentioned previously, not using the method for obtaining the Kalman gain. Since the system 

environment is drastically changed by the numbers of IR sensors and humans in a room and the detection 

range and distribution density of IR sensors, we cannot apply the calculation method to obtain the 

Kalman gain.  
  

Distance

Angle

Weighted center coordinate

Predicted coordinate

cc1(t)

cc2(t)

cc3(t)

td.ID=2

td.ID=1

Center coordinate which
is moving coordinate



Sensors 2015, 15 13470 

 

 

4. Evaluation 

4.1. Evaluation Environment 

To evaluate our algorithm, we used generated simulation data. The details are as follows. First, the 

density of IR sensors “D” is defined by: 
2S π

D
A

r⋅ ⋅=  (8) 

where “S” is the number of IR sensors; “r” is the radius of the IR sensor detection range, r = 2.0 m; and 

“A” is the entire area of the room monitored, A = 100 m2 (10 m × 10 m). We assume that the entire area 

A should be covered with the minimum number of IR sensors. Thus, if we fix the density D as 2.0, 3.0, 

4.0, or 5.0, the number of IR sensors S that should be deployed is calculated using Equation (8). The 

corresponding value of S is actually 16, 24, 32, or 40 as shown in Table 1. Here, “S” sensors should be 

randomly deployed in the area. 

Table 1. Number of deployed IR sensors S used for experiments. It is related to the density 

of the sensors D.  

D S 

2.0 16 
3.0 24 
4.0 32 
5.0 40 

r = 2.0 m 

The number of humans “H” is changed from one to four, and the human movement data are created 

for each case. The human movement scenario is as follows. After a random waiting time from 0 to 30 s, 

each human should enter an area through a door and walk around randomly. The walking scenarios are 

as follows. The human decides a destination position and walks toward it using the shortest path. Then, 

the human either stops at the destination position, or walks to a new random destination. Here, the human 

does not return quickly. After 60 s, the human should exit through the door. The walking speed of each 

human is randomly changed from 1.25 m/s to 1.75 m/s. For each “H,” 50 different variations of data 

were generated. In total, 800 (4 different H × 4 different S × 50 different variations) different input data 

were generated and used for the evaluation of the proposed algorithm. Here, the parameters of our 

algorithm are WS1 = 4, WS2 = 24, and TTLMAX = 18. According to our preliminary estimations, these 

combinations of values produce good path estimations. 

4.2. Evaluation Results and Remarks 

Our method estimates the number of humans and their movement paths simultaneously. Thus, it is 

difficult to evaluate the method using tracking errors like in other human tracking methods, which 

assume that the number of humans is fixed and known [20,27]. To evaluate our method, we introduced 

four metrics: success estimation rate, averaged error, averaged tracking rate, and success rate of the 

number of humans. The details are as follows: Tables 2–5 show the evaluation results. For comparison, 
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we also evaluated the previously proposed algorithm [24]. In the tables, the upper values represent the 

results of the proposed algorithm and the lower ones represent the results of the previous one. 

(1) Success estimation rate 

Table 2 represents the percentage of 50 input patterns provided for each different case that were 

estimated correctly by our algorithm. For H = 1, both algorithms estimated all human movement paths 

correctly for all different densities. For H = 2, the success estimation rate of the proposed and previous 

algorithms were 60% and 57% on average, respectively. In addition, for H = 3 and H = 4, both the 

estimation rates were decreased to less than 34%. If the number of humans increase, their movement 

paths are often overlapped, which makes it difficult to estimate individual human movement. Thus, the 

success estimation rate decreases with the increase in the number of humans in a room, regardless of the 

path estimation methods being compared. 

Table 2. Success estimation rate (Unit: %). 

Density (D) 
Number of Humans (H) 

H = 1 H = 2 H = 3 H = 4 

D = 2.0 
100 56 34 6 
100 66 28 6 

D = 3.0 
100 64 22 4 
100 60 32 4 

D = 4.0 
100 64 24 10 
100 46 20 10 

D = 5.0 
100 56 28 14 
100 56 22 6 

Average 
100.0 60.0 27.0 8.5 
100.0 57.0 25.5 6.5 

Upper value: The result obtained by the proposed algorithm; Lower value The result obtained by the previous 

algorithm [24]. 

(2) Averaged error 

Table 3 shows the averaged error of the estimated human movement paths compared to the true 

human movement paths among the successfully estimated data. In our algorithm, a position coordinate 

of the IR sensor was basically used. Therefore, an error in the detection range of the IR sensor is 

contained during the initial stage of the path estimation. Even so, for H = 1 and H = 2, the proposed 

method can trace the human movement path accurately for less than 0.60 m and 1.42 m on average, 

respectively. However, although our previous algorithm can trace one human for less than 0.68 m, the 

averaged error is more than 2.08 m when H = 2. In other cases, it could not trace the human movement 

paths correctly. 

(3) Averaged tracking rate 

In Table 4, the averaged tracking rate for each target human is described. The tracking rate is defined 

as the ratio of the length of the correctly estimated route to the total length of the actual human movement 

path. If the rate is high, it indicates that the human path is estimated well for a long time. For H = 1, the 

human was tracked with an accuracy rate of more than 94% in both algorithms. In other cases, if the 
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density was high, the tracking rate was also high. This implies that many sensors are needed to estimate 

multiple humans. 

Table 3. Averaged error of the estimated path (Unit: m). 

Density (D) 
Number of Humans (H) 

H = 1 H = 2 H = 3 H = 4 

D = 2.0 
0.60 (0.32) 1.22 (0.89) 2.05 (1.50) 3.09 (2.09) 
0.68 (0.36) 2.08 (1.69) 3.11 (2.23) 3.42 (2.28) 

D = 3.0 
0.59 (0.29) 1.27 (0.88) 1.97 (1.43) 1.52 (1.04) 
0.66 (0.34) 2.24 (1.73) 3.12 (2.27) 3.90 (2.32) 

D = 4.0 
0.59 (0.31) 1.42 (0.94) 1.44 (1.02) 2.04 (1.43) 
0.66 (0.35) 2.43 (1.84) 3.21 (2.22) 3.18 (2.26) 

D = 5.0 
0.54 (0.27) 1.38 (1.11) 2.01 (1.42) 2.62 (1.63) 
0.61 (0.30) 3.20 (2.35) 3.03 (2.26) 2.69 (2.39) 

Average 
0.58 (0.30) 1.32 (0.96) 1.87 (1.34) 2.32 (1.55) 
0.65 (0.34) 2.49 (1.90) 3.12 (2.25) 3.30 (2.31) 

Upper value: The result obtained by the proposed algorithm; Lower value The result obtained by the previous 

algorithm [24]; ( ): standard deviation. 

Table 4. Averaged tracking rate (Unit: %). 

Density (D) 
Number of Humans (H) 

H = 1 H = 2 H = 3 H = 4 

D = 2.0 
97.98 (7.33) 57.22 (14.04) 35.40 (5.60) 33.56 (2.73) 

94.63 (13.31) 61.34 (17.19) 43.30 (8.87) 42.90 (2.38) 

D = 3.0 
99.78 (0.09) 66.94 (16.34) 55.12 (11.15) 43.47 (5.13) 
99.55 (0.10) 69.67 (12.97) 58.22 (8.06) 54.60 (1.34) 

D = 4.0 
99.78 (0.06) 75.39 (13.19) 58.46 (9.13) 48.46 (5.11) 
99.55 (0.07) 71.77 (15.41) 54.64 (4.07) 55.06 (7.89) 

D = 5.0 
99.78 (0.07) 83.20 (14.34) 64.51 (14.57) 51.57 (6.82) 
99.55 (0.07) 73.69 (13.02) 59.29 (4.40) 58.39 (2.70) 

Average 
99.33 (1.89) 70.69 (14.48) 53.37 (10.11) 44.27 (4.95) 
98.32 (3.39) 69.12 (14.65) 53.86 (6.35) 52.74 (3.58) 

Upper value: The result obtained by the proposed algorithm; Lower value The result obtained by the previous 

algorithm [24]; ( ): standard deviation. 

(4) Success rate of the number of humans 

Table 5 shows what percentage of the number of humans correctly estimated in the room at each time. 

It is directly related to our clustering algorithm. Using the proposed algorithm, when H = 1 and  

H = 2, the success rates of H were more than 97% and 76%, respectively. However, for H = 3 and  

H = 4, these rates were from 45% to 60%. If the number of humans increases, the probability that some 

of them are walking close together increases. Therefore, the performance of the clustering algorithm 

decreases. Compared to our previous algorithm, the newly proposed clustering algorithm does not 

perform well. 
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Table 5. Success detection rate of number of humans (Unit: %). 

Density (D) 
Number of Humans (H) 

H = 1 H = 2 H = 3 H = 4 

D = 2.0 
97.76 (0.95) 83.15 (5.58) 60.32 (5.58) 52.79 (1.81) 
98.87 (0.64) 85.79 (6.36) 59.77 (6.62) 44.63 (4.07) 

D = 3.0 
97.87 (1.01) 76.76 (9.58) 58.97 (8.43) 55.69 (6.29) 
99.03 (0.59) 84.17 (9.64) 69.65 (9.13) 50.08 (0.08) 

D = 4.0 
98.86 (0.54) 81.62 (8.53) 55.01 (9.76) 51.20 (1.83) 
99.54 (0.31) 88.17 (8.39) 61.91 (11.76) 54.41 (3.68) 

D = 5.0 
99.10 (0.38) 78.22 (6.65) 57.73 (7.74) 45.62 (3.49) 
99.68 (0.17) 88.83 (6.35) 71.43 (7.61) 53.90 (9.94) 

Average 
98.40 (0.72) 79.94 (7.59) 58.01 (7.88) 51.13 (3.35) 
99.28 (0.43) 86.74 (7.68) 65.69 (8.78) 50.76 (4.44) 

Upper value: The result obtained by the proposed algorithm; Lower value The result obtained by the previous 

algorithm [24]; ( ): standard deviation. 

According to these results, if the number of humans in the room increased, the tracking accuracy of 

our method decreased. This is because our clustering algorithm does not work well if some humans walk 

closely together. In addition, if relatively many humans exist, e.g., when H = 3 and H = 4 in our 

experiments, almost all the IR sensors are fired simultaneously. In such cases, no algorithm can estimate 

the number of humans correctly. However, as shown for H = 2, our algorithm can estimate the human 

movement paths well with a 1.42 m averaged error. In addition, our human-location-estimation 

algorithm based on a clustering method performs with a success rate of greater than 76% even for the 

complicated case when two persons enter and exit the room at different times. Compared to our previous 

algorithm, the clustering method itself in the proposed algorithm does not perform well, because the new 

clustering method allows a position candidate to belong to more than one cluster. However, owing to 

this fact, the averaged accuracy of the final human tracking is improved. As shown in Table 3, the 

averaged errors of the estimated human movement paths are improved two-fold for H = 2. 

Figure 9 illustrates an example of the estimated human movement paths for H = 2. The solid line is 

the true path of the first human, and the dotted line is the true path of the second human. They are 

indicated by “TruePath1” and “TruePath2” in Figure 9. Two different kinds of markers represent the 

estimated locations of two persons, respectively. They are “EstPath1” and “EstPath2” in the figure. The 

start and goal locations of both persons are the same, which is indicated as “Door” in the figure. As 

shown in Figure 9, our proposed algorithm can trace human movement well. This is the best result among 

50 different input data generated with the same condition, D = 5.0. That is, 40 sensors were deployed in 

the field. The numerical results for the case shown in Figure 9 are as follows: the averaged error of the 

estimated paths, corresponding to Table 3, is 0.56 m. The averaged tracking error, corresponding to 

Table 4, is 99.89%. Success detection rate of number of humans, corresponding to Table 5, is 86.85%. 
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Figure 9. Example of the path estimation results. 

5. Conclusions 

We have proposed an algorithm that can track the human movement paths using only the binary 

sensing data obtained from infrared sensors attached to the ceiling. The human positions are estimated 

at each timepoint based on a clustering method. Thus, the proposed algorithm can track multiple humans 

even if the number of humans in the room is changed dynamically, which was difficult to realize using 

methods proposed in related studies. According to simulation-based evaluations, our algorithm can trace 

real human movement paths with a 1.32 m error on average if two humans are in the room. In future 

studies, we will evaluate our algorithm using real sensed data obtained from a real infrared sensor system. 
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