

Sensors 2015, 15, 13459-13476; doi:10.3390/s150613459

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Multiple Human Tracking Using Binary Infrared Sensors

Toshiaki Miyazaki * and Yuki Kasama

The University of Aizu, Aizuwakamatsu, Fukushima 965-8580, Japan;

E-Mail: m5151122@gmail.com

* Author to whom correspondence should be addressed; E-Mail: miyazaki@u-aizu.ac.jp;

Tel.: + 81-242-37-2572; Fax: + 81-242-37-2598.

Academic Editor: Yoshiteru Ishida

Received: 31 March 2015 / Accepted: 1 June 2015 / Published: 8 June 2015

Abstract: To create a context-aware environment, human locations and movement paths

must be considered. In this paper, we propose an algorithm that tracks human movement

paths using only binary sensed data obtained by infrared (IR) sensors attached to the ceiling

of a room. Our algorithm can estimate multiple human movement paths without a priori

knowledge of the number of humans in the room. By repeating predictions and estimations

of human positions and links from the previous human positions to the estimated ones at each

time period, human movement paths can be estimated. Simulation-based evaluation results

show that our algorithm can dynamically trace human movement paths.

Keywords: infrared sensor; multiple human tracking; privacy

1. Introduction

Human tracking technologies have attracted considerable attention over the years. For example, with

real-time human tracking technology, air conditioners and lights can be controlled smartly by

considering the requirements of each human. In addition, elderly people or children can be monitored

for safety reasons [1,2]. Consequently, many human tracking systems and algorithms have been

proposed [3–20]. One popular method involves camera-based systems [3–10]. However, they are often

not acceptable for monitoring elderly people or other similar applications whose objective is to observe

humans without invading their privacy. This is because people may be uncomfortable with monitoring

using video cameras, even if the original image data are modified and not used directly to perform human

tracking. In addition, the size of video data is large compared to other sensor data; therefore,

OPEN ACCESS

Sensors 2015, 15 13460

camera-based systems are not suitable for long-term observations. In other popular methods, IC tags or

radio frequency identification devices (RFIDs) [11,12] are used. A person wears a RFID, which is then

detected by nearby RFID receivers located on the floor or ceiling of the monitored area. Thus, using data

stored in the RFID receivers, the person can be tracked. Although the RFID-based systems can be

considered to enhance privacy, they force people to carry the RFID devices.

For these reasons, some human tracking methods use infrared (IR) sensors [13–20]. The IR sensor

produces a “1” if it detects a human, and a “0” otherwise [21]. Thus, using the IR sensors, the movement

paths of subjects can be estimated without sacrificing their privacy. In addition, IR sensors are low-cost

and their installation is relatively simple. However, IR sensors have a deficiency—they react regardless

of whether they detect one or multiple persons. Therefore, almost all human tracking methods using IR

sensors assume that the number of humans in the room is known beforehand. However, from the

perspective of practical application development, the number of humans in a room is often unknown.

We previously proposed an algorithm that can simultaneously estimate both the number of humans

and their movement paths [22,23], however, the method still had some drawbacks. Thus, the algorithm

is invoked after all sensed data are collected, making it difficult to estimate the human movement in real

time. In addition, the estimated human position must be the position of a fired IR sensor or the midpoint

of the overlapped detection areas of multiple fired IR sensors; thus, the method lacks flexibility.

To address these issues we now propose a novel method that can overcome the aforementioned

problems [24]. The method dynamically estimates human positions using the weighted centers of

grouped fired IR sensors, instead of simply using the position of a fired IR sensor or the midpoint of the

overlapped detection areas of multiple fired IR sensors in the previous methods. Thus, by using the new

method, we can estimate multiple human movement paths in a timely manner, and the estimated

human positions are not restricted by the locations of the IR sensors, thus improving the human

tracking accuracy.

The remainder of this paper is organized as follows: in Section 2, a model of the assumed IR sensor

system is described. Next, the details of the proposed algorithm are explained in Section 3. Then,

evaluation results are shown in Section 4. Finally, our conclusions and future studies are described

in Section 5.

2. Model of IR Sensor System

In this paper, we consider a system constructed using IR sensors and a PC. The IR sensors are

randomly installed on the ceiling of a room, but their locations are known. In addition, each IR sensor

has a non-directional and circular detection range, the radius of which is r. Here, r is typically several

meters, if we use commercially available IR sensors [21]. We assume r = 2.0 m in this paper. The sensor

outputs binary data, i.e., it produces a “1” if it detects one or more humans and a “0” otherwise.

Moreover, all the IR sensors are connected to the PC using a wired or wireless communication network.

Thus, data obtained from the IR sensors are collected in the PC. The data sampling rate is 6 Hz, and the

sensed data are saved on the PC with a time stamp. In addition, the positional coordinates of each sensor

is known. Furthermore, the detection ranges of the IR sensors should cover the entire area to detect

human movements. Note that some IR sensor arrays have been proposed recently [25], and they can

detect human movements, but their detection range is typically several meters. Thus, even if using the

Sensors 2015, 15 13461

IR sensor array, it is difficult to cover a large area. Furthermore, the method proposed in this paper can

naturally handle the IR sensor array by treating it as a set of densely deployed IR sensors, if the sensor

array produces a set of {0, 1}-data depending on human detection.

3. Proposed Algorithm

We can trace a human movement path by connecting the positions of the fired sensors step by step,

if the position coordinates of each sensor is known. However, this method presents the problem that if

some of the IR sensors are close together, they often detect the same event and output “1” data at the

same time, which could make it difficult to track the human movements using the simple method

mentioned above. This is especially true when there is more than one person in the room. To solve this

problem, we propose a heuristic algorithm that can estimate multiple human movement paths using only

the binary sensed data.

3.1. Notations

First, to explain the procedures of our algorithm, we define the variables and parameters as follows:

· |*|: The number of elements in list *.

· CC(t): A set of the weighted center coordinates of the clusters at time t. CC(t) = {cci(t)|i = 1, …,

Cmax(t)}, where cci(t) = (x, y) and they are referred to as cci(t).x and cci(t).y, respectively.

· Cmax(t): The number of clusters at time t.

· ds(t): A binary sensed datum obtained by IR sensor s at time t. ds(t) ϵ {0, 1}.

· mdAVE(td.ID): An average of movement distance of target human “td.ID.” The details are

described later.

· mvt(td.ID): A coordinate set of the most recently estimated WS2 number of coordinates in

Path of “td.ID” at time t. mvt(td.ID) = {mci(td.ID)|i = 1, 2, … WS2}, where mci(td.ID) = (x, y). They

are referred to as mci(td.ID).x and mci(td.ID).y, respectively. mc1(td.ID) is more recent

than mc2(td.ID).
· MV(td.ID): A vector from coordinate mcWS2(td.ID) to coordinate mc1(td.ID), i.e., mcWS2(td.ID) →

mc1(td.ID). This vector is referred to as the movement vector of target human “td.ID” at time t.

· ORD(t): A binary dataset obtained by applying the logical-OR operation to RDL at time t.

ORD(t) = {os(t)|s = 1, …, S}, where os(t) = ⋃ dୱ୲ି୛ୗଵ	ା	ଵ୧ୀ୲ ሺiሻ, s = 1,… , S.

· r: The radius of the detection range of each IR sensor.

· RD(t): A set of sensed raw data at time t. RD(t) = {ds(t)|s = 1, …, S}. |RD(t)| = S.

· RDL: A list containing sets of the sensed raw data. At time t, RDL = {RD(t-WS1 + 1),

RD(t-WS1 + 2), …, RD(t-1), RD(t)}. |RDL| = WS1.

· S: The total number of IR sensors. S > 0.

· td: A data structure representing a target human. It contains ID, TTL, PC, and Path. They are referred

to as td.ID, td.TTL, td.PC, and td.Path, respectively.

· td.ID: A human ID. This is an integer value. Td.ID > 0.

· td.PC: A predicted coordinate of target human “td.ID” at time t, where td.PC = (x, y). They are

referred to as td.PC.x and td.PC.y, respectively.

Sensors 2015, 15 13462

· td.Path: A list of the estimated route coordinates of target human “td.ID.” By connecting all elements

in this list from the first to the last, the estimated movement path of human “td.ID” is obtained.

· td.TTL: A lifetime of target human “td.ID”. This is an integer value. The initial value of td.TTL

is “1,” and its maximum value is TTLMAX.

· TDL: A list of target humans who currently exist in the room.

· TTLMAX: A constant integer value. The maximum value of TTL (time to live). TTLMAX > 0.

· WL(t): A weight set of the sensors at time t. WL(t) ={ws(t)|s = 1, …, S}.

· ws(t): A weight of sensor s at time t. ws(t) = ∑ dୱ୲ି୛ୗଵ	ା	ଵ୧ୀ୲ ሺiሻ|s = 1,… , S. This is used to calculate the

weighted center coordinate of a cluster, to which sensor s belongs. The coordinate calculation method

will be defined later.

· WS1: Window size for the number of sensed raw datasets to which the logical-OR operation is applied.

This is a given integer value. WS1 > 0.

· WS2: Window size or the number of elements (coordinates) that construct movement vector

mvt(td.ID). This is a given integer value. WS2 > 1.

3.2. Main Procedure

Figure 1. Main procedure of the proposed algorithm.

//Initialization
RDL = {}; TDL = {}; t = 0;
h = 0; // human ID

// Preparation of raw dataset
// to estimate the location of each human at time t
RD(t) = get a set of sensed raw data obtained at time t;
Append RD(t) to RDL;

// Location estimation step
Apply logical-OR operation and summation to RDL,
and obtain ORD(t) and WL(t);
call Clustering(ORD(t)) shown in Figure 3, and
calculate CC(t) using clustering results C_new and WL(t);

t++;

// Path estimation step
PathEstimation(); //See Figure 5

START Main()

|RDL| < WS1 ?

|RDL| > WS1 ?

Remove the first element of RDL;

yes

no

no

yes

Set up the raw
 data to R

D
L

Sensors 2015, 15 13463

The main procedure of the proposed algorithm is shown in Figure 1. It mainly consists of two

processing steps: the location estimation step and path estimation step. The former is described as a part

of the main procedure, whereas the latter step will be shown later. At each time t, the two steps are

invoked sequentially, and a link from the current to the next human position is estimated. First, as the

location estimation step, the candidates for human positions are listed using a clustering technique. Then,

in the path estimation step, the links are determined by selecting reasonable positions among the

candidates obtained in the location estimation step. At time t, the position of each human is estimated

using the candidate sets, i.e., the sets of the weighted centers of clusters, obtained from t-WS2 + 1 to t.

Here, WS2 is relatively small. Thus, our algorithm can trace the human movement paths almost in

real time, without knowing the number of humans in the room. Our previous algorithm could not do

this [22,23]. In addition, the framework of the proposed algorithm is the same as that of the algorithm

introduced in [24], except that both the location estimation and path estimation steps are modified to

improve human tracking accuracy. In the following subsections, the detailed procedure of each step will

be explained.

3.3. Location Estimation Step

The main purpose of this step is to provide a candidate list containing the next locations of the humans

in the room. To achieve this, logical-OR operations and summations are applied to list RDL that contains

all sensed raw data in time period [t, t-WS1 + 1], and ORD(t) and WL(t) are obtained. Figure 2 shows

an example. In this example, S = 6, and WS1 = 7. RDL = {(0,0,0,0,1,0), (1,0,0,0,1,0), …, (0,1,0,0,1,1)}.

Thus, ORD(t) becomes {1,1,0,0,1,1} after applying a logical-OR operation to RDL, and WL(t)

becomes {3,5,0,0,6,1} by summing up the corresponding sensed raw data in RDL. Here, in the case of

S = 1, we cannot estimate human movements actually. However, we can detect if humans exist in the

detection area of the IR sensor. It is often called “proximity” position detection. To simplify the

discussion, we treat S = 1 case as a human-trackable case in this paper.

Figure 2. Example of sensed raw data processing.

Sensors 2015, 15 13464

Next, using ORD(t) and WL(t), the fired sensors during time period [t, t-WS1 + 1] are grouped using

a clustering method. Finally, the weighted centers of the clusters are calculated, and they are used in the

path estimation step as the candidates for the next human positions. The clustering algorithm is shown

in Figure 3. The algorithm is based on the Ward method [26]; however, the termination condition of our

algorithm is different from that of the original method. While the original Ward method tries to merge

the nearest pair of clusters until all initial clusters are merged into one cluster, our algorithm stops the

cluster merging if Equation (3), i.e., the termination condition, is no longer satisfied. The geometrical

distance between the centers of any two clusters in the finally obtained cluster set will be longer than the

radius of the detection range of IR sensor r.

Here, we assume that a person exists in each obtained cluster, and his/her position is the weighted

center of the cluster. The weighted center coordinate cci(t) = (xi(t), yi(t)) of cluster ci(t) at time t is

calculated using Equation (4).

Note that each element can belong to more than one cluster in our new clustering method, contrary to

that used in our previous algorithm [24]. Thus, we can manage the case that multiple humans exist

in the detection range of the same IR sensor, which cannot be managed by our previous algorithm

introduced in [24]:

, ;
min (,) () () ()

i j
i j i j j j

c c C i j
c c E c c E c E c

∀ ∀ ∈ ≠
Δ = ∪ − − (1)

2 2() {() () }k k
k c

E c x X y Y
∀ ∈

= − + − (2)

1 1
,

| | | |k k
k c k c

X x Y y
c c∀ ∈ ∀ ∈

= = 

where)(kk ,yx is the coordinate of element k , and || c is the number of elements in cluster c:

2 1
()

| | i j
i j

r E c c
c c

< ∪
∪

 (3)

() ()

() ()

() () () ()

() , ()
() ()

i i

i i

s s s s
s c t s c t

i i
s s

s c t s c t

w t x t w t y t

x t y t
w t w t

∀ ∈ ∀ ∈

∀ ∈ ∀ ∈

⋅ ⋅
= =
 
 

 (4)

where “s” is a sensor ID. The weighted centers of all clusters are set to CC(t). They become candidates

for human positions at time t. Figure 4 shows an example. In the example, cluster c1(t) consists of sensors

s = 1, s = 2, and s = 3. If the position coordinates of the sensors are (10, 10), (9, 5), and (14, 8), and their

weights are w1(t) = 4, w2(t) = 1, and w3(t) = 2, the center coordinate cc1(t) will be (11.0, 8.7), i.e.,

x1(t) = (4 × 10 + 1 × 9 + 2 × 14)/(4 + 1 + 2) and y1(t) = (4 × 10 + 1 × 5 + 2 × 8)/(4 + 1 + 2). Furthermore,

sensor s = 2 belongs to another cluster c3(t). Thus, the coordinate of s = 2 is also used to calculate the

weighted center cc3(t) of cluster c3(t). If a cluster contains only one sensor, like cluster c2(t) in Figure 4,

the center position coordinate is simply the position of the sensor. After all weighted center coordinates

of the clusters are calculated and set to CC(t), the path estimation step will be initiated.

Sensors 2015, 15 13465

Figure 3. Clustering algorithm.

Figure 4. Example of clustering.

3.4. Path Estimation Step

The procedure of this step is described in detail in Figures 5 and 6. In the main procedure,

PathEstimation(), if TDL is empty, NewTarget() is called to create new humans. Their starting points

//Input
ORD(t)

C = Make a cluster set in which
each cluster has a fired sensor in ORD(t);

C_new = {}; // Finally obtained cluster set

Remove duplicative cluster from C_new;

START Clustering()

END Clustering()

foreach c1 in C {
C_temp = C; // copy
Remove c1 from C_temp;
repeat{

c2 = null;
value = Maximum value;
// Find a cluster c2 from C_temp
foreach c in C_temp{

value_temp = Calculate Δ(c1, c) using Equations (1) and (2);
if(value > value_temp){

c2 = c;
value = value_temp;

}
}
if (c1 and c2 satisfy Equation (3)){

c1 = merge c1 and c2 into one cluster;
Remove c2 from C_temp;

}
else break;

} // End of repeat
Add c1 to C_new;

}

Sensors 2015, 15 13466

are simply the weighted center coordinate of CC, respectively. Here, TDL represents humans currently

existing in the room. If some humans exist, i.e., TDL is not empty, TrackTarget() in Figure 6 is invoked

to obtain the next position coordinate of each human. TrackTarget(), which has been changed from our

previous one introduced in [24], contains two sub-processes: prediction and modification. In the

prediction sub-process, a predicted coordinate, td.PC, is provided for each human as the next position

coordinate at time t (see “Block 2” in Figure 6). First, a movement angle α of each human at time t is

calculated using a movement vector MV(td.ID). Here, the movement vector represents the expected

direction of the corresponding human, and is calculated using the most recently estimated WS2 number

of the position coordinates of the human, i.e., mvt(td.ID). Here, equal values for mcWS2(td.ID) and

mc1(td.ID) indicate that the target human did not move. Therefore, the predicted coordinate td.PC is

simply treated as mc1(td.ID). Otherwise, the prediction is calculated. Figure 7 shows an example. First,

an average of movement distance mdAVE(td.ID) is calculated using mvt(td.ID), defined as:
2

2 2
1 1

2

1
(.) (' ') (' ')

2 1

WS

AVE i i i i
i

md td ID x x y y
WS − −

=

= − + −
−  (5)

where x’i = mci(td.ID).x and y’i = mci(td.ID).y. Using the movement angle α and mdAVE(td.ID), the

predicted coordinate td.PC is calculated (see also procedure for TrackTarget() shown in Figure 6).

Figure 5. Procedure of the path estimation step.

// A structure saving data related to the corresponding human
struct td{

ID; // ID number
TTL = 1; // TTL for this human

// If TTL < 0, the human data should be deleted.
PC = null; // A predicted coordinate at time t
Path ={}; // For saving movement path of this human

}

TDL == {} ?

//To create new targets, call the following procedure
NewTarget(){
foreach cc in CC {
h++; // New human ID
Create a new struct td;
td.ID = h;
td.Path ={};

// Set up the weighted center coordinate
// as the start position of the human
Append cc to td.Path;
td.PC = cc;
td.TTL = 1;
Append td to TDL;

}
}

call TrackTarget();
//See Figure 6

START PathEstimation()

END PathEstimation()

yes

no

Sensors 2015, 15 13467

Figure 6. Procedure to estimate the next position of each human.

START TrackTarget()

TDL_bk = {}; // Used as temporary backup of TDL

// “Prediction sub-process”
foreach td in TDL{

// Coordinate of the last element of td.Path
x = mc1(td.ID).x; y = mc1(td.ID).y; // X and Y coordinate
α = the relative angle between “mcWS2(td.ID) → mc1(td.ID)” and x-axis;
if(mcWS2(td.ID) == mc1(td.ID)){ // target human did not move

td.PC.x = x; td.PC.y = y;
} else{

td.PC.x = x + (cos(α) * mdAVE(td.ID)); td.PC.y = y + (sin(α) * mdAVE(td.ID));
}

}

// “Modification sub-process”
repeat{

d = r; // r = radius of the detection range of IR sensor
θ = 180; ttl = 0; i_best = 0; j_best = 0;
for(i = 1; i <= |TDL|; i++){

for(n = 1; n <= |CC|; n++){
td = TDL[i]; cc = CC[j];
d_temp = Calculate the distance between td.PC and cc;
θ_temp = Calculate the relative angle between “mc1(td.ID) → td.PC” and “mc1(td.ID) → cc”
if(d < d_temp || θ < θ_ temp || ttl > td.TTL) continue;

// Save the best combination of “td” and “cc” up to now
i_best = i; j_best = j; d = d_temp; θ = θ_temp; ttl = td.TTL;

}
}
// Actual modification is applied

if(i_best > 0 && j_best > 0){ // If the best combination was found
td = TDL[i_best]; cc = CC[j_best]; td.TTL++;
if(td.TTL > TTLMAX) td.TTL = TTLMAX;
// Next movement coordinate is set as the center between cc and td.PC
new_c.x = (td.PC.x + cc.x) / 2; new_c.y = (td.PC.y + cc.y) / 2;
// Save it temporarily as an active human
Append new_c to td.Path; Append td to TDL_bk; Remove td from TDL; Remove cc from CC;

}
else break; // The best combination is NOT found

} // End of repeat

// Containing human who could not find a next coordinate
if(TDL≠{}){

foreach td in TDL{
td.TTL--;
if(td.TTL < 0) continue; // Remove as non-active human
// Save it temporarily as an active human
Append td to TDL_bk;

}
}
TDL = TDL_bk;

if(CC ≠{}) // Containing unselected coordinates
call NewTarget() shown in Figure 5; // Assume a human coming in the room

END TrackTarget()

Block 1

Block 2

Block 3

Block 4

Block 5

Sensors 2015, 15 13468

Figure 7. Example of the calculation of predicted next coordinate.

Next, as the modification sub-process, all pairs of the weighted coordinates in CC and target humans

in TDL are examined, and the best pair is selected in consideration of distance d, angle θ, and time to

live (TTL) of “td.” Here, “d” is the distance between td.PC and cc. “θ” is the relative angle between
“mc1(td.ID) → td.PC” and “mc1(td.ID) → cc.” A pair that minimizes “d” and “θ” and maximizes TTL

at the same time is finally selected as the best pair.

Actual modification is, then, applied for the best pair found in the prediction sub-process, and the

next movement position coordinate is obtained as the center of td.PC and cc of the best pair (see also

“Block 3” in Figure 6). The obtained next position is appended to the td.Path of the corresponding target

human. The elements representing the selected pair of the weighted center coordinate cc and target td

are removed from CC and TDL. The aforementioned best-pair selection process is repeated until no

more selected pairs exist. In addition, if the next position of a human can be successfully found, the TTL

value of the human is incremented; otherwise, it is decremented. Here, the initial value of TTL is “1,”

and its maximum value is TTLMAX. The TTL value never exceeds TTLMAX. If the TTL of a human

becomes less than 0, the human is removed from the TDL as he/she has left the room. In addition, if an

unselected coordinate is contained in CC, NewTarget() is invoked and a human is appended to TDL as

he/she enters the room. Due to this mechanism, even if the number of humans is not estimated correctly

using the clustering algorithm in the location estimation step shown in Figures 1 and 3, and some

humans have accidentally been generated by NewTarget() at this point, they will be removed within a

short period.

Figure 8 shows an example of the Path Estimation step. Here, TDL = {td1, td2} and CC = {cc1(t),

cc2(t), cc3(t)}. First, a pair of td1.pc and cc1(t) is selected. The distance between them is smaller than that

between others, and the angle is less than 180° and smaller than that between others. Thus, the center

coordinate of td1.PC and cc1(t) is calculated, and it is appended to td1.Path. In addition, td1.TTL is

incremented. In the next step, because TDL = {td2} and CC = {cc2(t), cc3(t)}, a pair of td2.PC and cc2(t)

is selected, and the process described above is applied to the pair.

mdAVE

Movement distance:
md

Movement vector:
mvt(td.ID)

Estimated coordinate at previous time

Predicted coordinate at time t

mc1(td.ID)

mcWS2(td.ID)

td.PC

Angle: α

Sensors 2015, 15 13469

Figure 8. Example of TrackTarget().

Our path estimation algorithm shown in Figure 6 can be formulated using Equations (6) and (7).

Assume that p୲ is the position of a target human at time t, p୲ = ሾx୲ y୲ሿ. Then, a prediction at time t is

given by:

1ˆ t t tp p Bu−= + (6)

where pො୲ is a predicted coordinate at time t; in this paper, it is the same as td.PC: pො୲ 	= ሾx୲ y୲ሿ. In

addition, B is the average of the movement distance mdAVE(td.ID) of the target human, and u୲ is the

x-y component form of the predicted movement distance at time t. u୲ = ሾsin ߙ cos ሿ. Here, α isߙ

the angle of the movement vector MV(td.ID) at time t. Furthermore, the modified position at time t is

given by:

1
ˆ()

2t t tp p z= + (7)

where z୲ is a measurement of the target human at time t and is the same as the center position coordinate

cc(t), which is obtained by the best-pair selection. z୲ = ሾx୲ y୲ሿ.
Equation (6) is similar in form to the Kalman filter, which is used in related work [19,20]. However,

as compared to the original Kalman filter, in our proposed algorithm, pො୲ and z୲ are calculated as

mentioned previously, not using the method for obtaining the Kalman gain. Since the system

environment is drastically changed by the numbers of IR sensors and humans in a room and the detection

range and distribution density of IR sensors, we cannot apply the calculation method to obtain the

Kalman gain.

Distance

Angle

Weighted center coordinate

Predicted coordinate

cc1(t)

cc2(t)

cc3(t)

td.ID=2

td.ID=1

Center coordinate which
is moving coordinate

Sensors 2015, 15 13470

4. Evaluation

4.1. Evaluation Environment

To evaluate our algorithm, we used generated simulation data. The details are as follows. First, the

density of IR sensors “D” is defined by:
2S π

D
A

r⋅ ⋅= (8)

where “S” is the number of IR sensors; “r” is the radius of the IR sensor detection range, r = 2.0 m; and

“A” is the entire area of the room monitored, A = 100 m2 (10 m × 10 m). We assume that the entire area

A should be covered with the minimum number of IR sensors. Thus, if we fix the density D as 2.0, 3.0,

4.0, or 5.0, the number of IR sensors S that should be deployed is calculated using Equation (8). The

corresponding value of S is actually 16, 24, 32, or 40 as shown in Table 1. Here, “S” sensors should be

randomly deployed in the area.

Table 1. Number of deployed IR sensors S used for experiments. It is related to the density

of the sensors D.

D S

2.0 16
3.0 24
4.0 32
5.0 40

r = 2.0 m

The number of humans “H” is changed from one to four, and the human movement data are created

for each case. The human movement scenario is as follows. After a random waiting time from 0 to 30 s,

each human should enter an area through a door and walk around randomly. The walking scenarios are

as follows. The human decides a destination position and walks toward it using the shortest path. Then,

the human either stops at the destination position, or walks to a new random destination. Here, the human

does not return quickly. After 60 s, the human should exit through the door. The walking speed of each

human is randomly changed from 1.25 m/s to 1.75 m/s. For each “H,” 50 different variations of data

were generated. In total, 800 (4 different H × 4 different S × 50 different variations) different input data

were generated and used for the evaluation of the proposed algorithm. Here, the parameters of our

algorithm are WS1 = 4, WS2 = 24, and TTLMAX = 18. According to our preliminary estimations, these

combinations of values produce good path estimations.

4.2. Evaluation Results and Remarks

Our method estimates the number of humans and their movement paths simultaneously. Thus, it is

difficult to evaluate the method using tracking errors like in other human tracking methods, which

assume that the number of humans is fixed and known [20,27]. To evaluate our method, we introduced

four metrics: success estimation rate, averaged error, averaged tracking rate, and success rate of the

number of humans. The details are as follows: Tables 2–5 show the evaluation results. For comparison,

Sensors 2015, 15 13471

we also evaluated the previously proposed algorithm [24]. In the tables, the upper values represent the

results of the proposed algorithm and the lower ones represent the results of the previous one.

(1) Success estimation rate

Table 2 represents the percentage of 50 input patterns provided for each different case that were

estimated correctly by our algorithm. For H = 1, both algorithms estimated all human movement paths

correctly for all different densities. For H = 2, the success estimation rate of the proposed and previous

algorithms were 60% and 57% on average, respectively. In addition, for H = 3 and H = 4, both the

estimation rates were decreased to less than 34%. If the number of humans increase, their movement

paths are often overlapped, which makes it difficult to estimate individual human movement. Thus, the

success estimation rate decreases with the increase in the number of humans in a room, regardless of the

path estimation methods being compared.

Table 2. Success estimation rate (Unit: %).

Density (D)
Number of Humans (H)

H = 1 H = 2 H = 3 H = 4

D = 2.0
100 56 34 6
100 66 28 6

D = 3.0
100 64 22 4
100 60 32 4

D = 4.0
100 64 24 10
100 46 20 10

D = 5.0
100 56 28 14
100 56 22 6

Average
100.0 60.0 27.0 8.5
100.0 57.0 25.5 6.5

Upper value: The result obtained by the proposed algorithm; Lower value The result obtained by the previous

algorithm [24].

(2) Averaged error

Table 3 shows the averaged error of the estimated human movement paths compared to the true

human movement paths among the successfully estimated data. In our algorithm, a position coordinate

of the IR sensor was basically used. Therefore, an error in the detection range of the IR sensor is

contained during the initial stage of the path estimation. Even so, for H = 1 and H = 2, the proposed

method can trace the human movement path accurately for less than 0.60 m and 1.42 m on average,

respectively. However, although our previous algorithm can trace one human for less than 0.68 m, the

averaged error is more than 2.08 m when H = 2. In other cases, it could not trace the human movement

paths correctly.

(3) Averaged tracking rate

In Table 4, the averaged tracking rate for each target human is described. The tracking rate is defined

as the ratio of the length of the correctly estimated route to the total length of the actual human movement

path. If the rate is high, it indicates that the human path is estimated well for a long time. For H = 1, the

human was tracked with an accuracy rate of more than 94% in both algorithms. In other cases, if the

Sensors 2015, 15 13472

density was high, the tracking rate was also high. This implies that many sensors are needed to estimate

multiple humans.

Table 3. Averaged error of the estimated path (Unit: m).

Density (D)
Number of Humans (H)

H = 1 H = 2 H = 3 H = 4

D = 2.0
0.60 (0.32) 1.22 (0.89) 2.05 (1.50) 3.09 (2.09)
0.68 (0.36) 2.08 (1.69) 3.11 (2.23) 3.42 (2.28)

D = 3.0
0.59 (0.29) 1.27 (0.88) 1.97 (1.43) 1.52 (1.04)
0.66 (0.34) 2.24 (1.73) 3.12 (2.27) 3.90 (2.32)

D = 4.0
0.59 (0.31) 1.42 (0.94) 1.44 (1.02) 2.04 (1.43)
0.66 (0.35) 2.43 (1.84) 3.21 (2.22) 3.18 (2.26)

D = 5.0
0.54 (0.27) 1.38 (1.11) 2.01 (1.42) 2.62 (1.63)
0.61 (0.30) 3.20 (2.35) 3.03 (2.26) 2.69 (2.39)

Average
0.58 (0.30) 1.32 (0.96) 1.87 (1.34) 2.32 (1.55)
0.65 (0.34) 2.49 (1.90) 3.12 (2.25) 3.30 (2.31)

Upper value: The result obtained by the proposed algorithm; Lower value The result obtained by the previous

algorithm [24]; (): standard deviation.

Table 4. Averaged tracking rate (Unit: %).

Density (D)
Number of Humans (H)

H = 1 H = 2 H = 3 H = 4

D = 2.0
97.98 (7.33) 57.22 (14.04) 35.40 (5.60) 33.56 (2.73)

94.63 (13.31) 61.34 (17.19) 43.30 (8.87) 42.90 (2.38)

D = 3.0
99.78 (0.09) 66.94 (16.34) 55.12 (11.15) 43.47 (5.13)
99.55 (0.10) 69.67 (12.97) 58.22 (8.06) 54.60 (1.34)

D = 4.0
99.78 (0.06) 75.39 (13.19) 58.46 (9.13) 48.46 (5.11)
99.55 (0.07) 71.77 (15.41) 54.64 (4.07) 55.06 (7.89)

D = 5.0
99.78 (0.07) 83.20 (14.34) 64.51 (14.57) 51.57 (6.82)
99.55 (0.07) 73.69 (13.02) 59.29 (4.40) 58.39 (2.70)

Average
99.33 (1.89) 70.69 (14.48) 53.37 (10.11) 44.27 (4.95)
98.32 (3.39) 69.12 (14.65) 53.86 (6.35) 52.74 (3.58)

Upper value: The result obtained by the proposed algorithm; Lower value The result obtained by the previous

algorithm [24]; (): standard deviation.

(4) Success rate of the number of humans

Table 5 shows what percentage of the number of humans correctly estimated in the room at each time.

It is directly related to our clustering algorithm. Using the proposed algorithm, when H = 1 and

H = 2, the success rates of H were more than 97% and 76%, respectively. However, for H = 3 and

H = 4, these rates were from 45% to 60%. If the number of humans increases, the probability that some

of them are walking close together increases. Therefore, the performance of the clustering algorithm

decreases. Compared to our previous algorithm, the newly proposed clustering algorithm does not

perform well.

Sensors 2015, 15 13473

Table 5. Success detection rate of number of humans (Unit: %).

Density (D)
Number of Humans (H)

H = 1 H = 2 H = 3 H = 4

D = 2.0
97.76 (0.95) 83.15 (5.58) 60.32 (5.58) 52.79 (1.81)
98.87 (0.64) 85.79 (6.36) 59.77 (6.62) 44.63 (4.07)

D = 3.0
97.87 (1.01) 76.76 (9.58) 58.97 (8.43) 55.69 (6.29)
99.03 (0.59) 84.17 (9.64) 69.65 (9.13) 50.08 (0.08)

D = 4.0
98.86 (0.54) 81.62 (8.53) 55.01 (9.76) 51.20 (1.83)
99.54 (0.31) 88.17 (8.39) 61.91 (11.76) 54.41 (3.68)

D = 5.0
99.10 (0.38) 78.22 (6.65) 57.73 (7.74) 45.62 (3.49)
99.68 (0.17) 88.83 (6.35) 71.43 (7.61) 53.90 (9.94)

Average
98.40 (0.72) 79.94 (7.59) 58.01 (7.88) 51.13 (3.35)
99.28 (0.43) 86.74 (7.68) 65.69 (8.78) 50.76 (4.44)

Upper value: The result obtained by the proposed algorithm; Lower value The result obtained by the previous

algorithm [24]; (): standard deviation.

According to these results, if the number of humans in the room increased, the tracking accuracy of

our method decreased. This is because our clustering algorithm does not work well if some humans walk

closely together. In addition, if relatively many humans exist, e.g., when H = 3 and H = 4 in our

experiments, almost all the IR sensors are fired simultaneously. In such cases, no algorithm can estimate

the number of humans correctly. However, as shown for H = 2, our algorithm can estimate the human

movement paths well with a 1.42 m averaged error. In addition, our human-location-estimation

algorithm based on a clustering method performs with a success rate of greater than 76% even for the

complicated case when two persons enter and exit the room at different times. Compared to our previous

algorithm, the clustering method itself in the proposed algorithm does not perform well, because the new

clustering method allows a position candidate to belong to more than one cluster. However, owing to

this fact, the averaged accuracy of the final human tracking is improved. As shown in Table 3, the

averaged errors of the estimated human movement paths are improved two-fold for H = 2.

Figure 9 illustrates an example of the estimated human movement paths for H = 2. The solid line is

the true path of the first human, and the dotted line is the true path of the second human. They are

indicated by “TruePath1” and “TruePath2” in Figure 9. Two different kinds of markers represent the

estimated locations of two persons, respectively. They are “EstPath1” and “EstPath2” in the figure. The

start and goal locations of both persons are the same, which is indicated as “Door” in the figure. As

shown in Figure 9, our proposed algorithm can trace human movement well. This is the best result among

50 different input data generated with the same condition, D = 5.0. That is, 40 sensors were deployed in

the field. The numerical results for the case shown in Figure 9 are as follows: the averaged error of the

estimated paths, corresponding to Table 3, is 0.56 m. The averaged tracking error, corresponding to

Table 4, is 99.89%. Success detection rate of number of humans, corresponding to Table 5, is 86.85%.

Sensors 2015, 15 13474

Figure 9. Example of the path estimation results.

5. Conclusions

We have proposed an algorithm that can track the human movement paths using only the binary

sensing data obtained from infrared sensors attached to the ceiling. The human positions are estimated

at each timepoint based on a clustering method. Thus, the proposed algorithm can track multiple humans

even if the number of humans in the room is changed dynamically, which was difficult to realize using

methods proposed in related studies. According to simulation-based evaluations, our algorithm can trace

real human movement paths with a 1.32 m error on average if two humans are in the room. In future

studies, we will evaluate our algorithm using real sensed data obtained from a real infrared sensor system.

Acknowledgments

This work was partly supported by Strategic Information and Communications R&D Promotion

Programme (SCOPE No. 121802001).

Author Contributions

The method was developed by both authors. T. Miyazaki contributed to writing the paper, while

Y. Kasama evaluated the proposed method and prepared the evaluation results.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Bhagat, K.; Wermter, S.; Burn, K. Hybrid learning architecture for unobtrusive infrared tracking

support. In Proceedings of the IEEE International Joint Conference on Neural Networks 2008

(IJCNN 2008), Brisbane, Australia, 1–8 June 2008; pp. 2703–2709.

0

2

4

6

8

10

0 2 4 6 8 10

EstPath1

EstPath2

TruePath1

TruePath2

(m)

(m)

Door

Sensors 2015, 15 13475

2. Seki, H.; Tadakuma, S. Abnormality detection monitoring system for elderly people in sensing and

robotic support roomt. In Proceedings of the 10th IEEE International Workshop on Advanced

Motion Control 2008 (AMC ’08), Trento, Italy, 26–28 March 2008; pp. 56–61.

3. Hu, W.; Tan, T.; Wang, L.; Maybank, S. A survey on visual surveillance of object motion and

behaviors. IEEE Trans. Syst. Man Cybernet. Part C Appl. Rev. 2004, 34, 334–352.

4. Lin, D.T.; Huang, K.Y. Collaborative pedestrian tracking with multiple cameras: Data fusion and

visualization. In Proceedings of the International Joint Conference on Neural Networks

(IJCNN2010), Barcelona, Spain, 18–23 July 2010; pp. 1–8.

5. Watada, J.; Musaand, Z.B. Tracking human motions for security system. In Proceedings of the SICE

Annual Conference 2008, Tokyo, Japan, 20–22 August 2008; pp. 3344–3349.

6. Changjiang, Y.; Duraiswami, R.; Davis, L. Fast multiple object tracking via a hierarchical particle

filter. In Proceedings of the 10th IEEE International Conference on Computer Vision (ICCV 2005),

Ottawa, ON, Canada, 17–21 October 2005; Volume 1, pp. 212–219.

7. Deng, M.; Guan, Q.; Xu, S. Intelligent video target tracking system based on DSP. In Proceedings

of the 2010 International Conference on Computational Problem-Solving (ICCP2010), Li Jiang,

China, 3–5 December 2010; pp. 366–369.

8. Dhou, S.; Motai, Y. Scale-Invariant Tracking Predictor Using a Pan-Tilt-Zoom Camera. Robotica

2015, doi:10.1017/S0263574714002665

9. Lin, D.-T.; Huang, K.-Y. Collaborative Pedestrian Tracking and Data Fusion with Multiple

Cameras. IEEE Trans. Inf. Forensics Secur. 2011, 6, 1432–1444.

10. Han, J.; Pauwels, E.J.; de Zeeuw, P.M.; de With, P.H.N. Employing a RGB-D Sensor for

Real-Time Tracking of Humans across Multiple Re-Entries in a Smart Environment. IEEE Trans.

Consum. Electron. 2012, 58, 255–263.

11. Alberto, I.; Sergio, R.; de Lopez, A.J.; Aritz, V. Location, tracking and identification with RFID and

vision data fusion. In Proceedings of the European Workshop on Smart Objects: Systems,

Technologies, and Applications (RFID Sys Tech 2010), Ciudad, Spain, 15–16 June 2010; pp. 1–6.

12. Mori, T.; Suemasu, Y.; Noguchi, H.; Sato, T. Multiple people tracking by integrating distributed

floor pressure sensors and RFID system. In Proceedings of the IEEE International Conference

on Systems, Man, and Cybernetics, San Diego, CA, USA, 10–13 October 2004; Volume 6;

pp. 5271–5278.

13. Shrivastava, N.; Mudumbai, R.; Madhow, U.; Suri, S. Target tracking with binary proximity

sensors. ACM Trans. Sens. Netw. 2009, 5, 1–33.

14. Honda, S.; Fukui, K.; Moriyama, K.; Kurihara, S.; Numao, M. Extracting human behaviors with

infrared sensor network. In Proceedings of the Fourth International Conference on Networked

Sensing Systems (INSS ’07), Braunschweig, Germany, 6–8 June 2007; pp. 122–125.

15. Watanabe, Y.; Kurihara, S.; Sugawara, T. Sensor network topology estimation using time-series

data from infrared human presence sensors. In Proceedings of the IEEE Sensors 2010, Kona, HI,

USA, 1 November 2010; pp. 664–667.

16. Byunghun, S.; Haksoo, C.; Hyung, S.L. Surveillance tracking system using passive infrared motion

sensors in wireless sensor network. In Proceedings of the International Conference on Information

Networking 2008 (ICOIN2008), Busan, Korea, 23–25 January 2008; pp. 1–5.

Sensors 2015, 15 13476

17. Wang, Z.; Bulut, E.; Szymanski, E.K. Distributed target tracking with directional binary sensor

networks. In Proceedings of the IEEE Global Telecommunications Conference 2009 (GLOBECOM

2009), Honolulu, HI, USA, 30 November–4 December 2009; pp. 1–6.

18. Hao, Q.; Hu, F.; Xiao, Y. Multiple human tracking and identification with wireless distributed

pyroelectric sensor systems. IEEE Syst. J. 2009, 3, 428–439.

19. Nithya, V.S.; Sheshadri, K.; Kumar, A.; Hari, K.V.S. Model based target tracking in a wireless

network of passive infrared sensor nodes. In Proceedings of the 2010 International Conference on

Signal Processing and Communications (SPCOM2010), Bangalore, India, 18–21 July 2010;

pp. 1–5.

20. Luo, X.; Shen, B.; Guo, X.; Luo, G.; Wang, G. Human tracking using ceiling pyroelectric infrared

sensors. In Proceedings of the IEEE International Conference on Control and Automation 2009

(ICCA 2009), Kunming, China, 9–11 December 2009; pp. 1716–1721.

21. Panasonic MP Motion Sensor NaPiOn. Available online: http://www3.panasonic.biz/

ac/e/control/sensor/human/napion/index.jsp (accessed on 22 May, 2015).

22. Kasama, Y.; Miyazaki, T. Simultaneous estimation of the number of humans and their movement

loci in a room using infrared sensors. In Proceedings of the IEEE 26th International Conference on

Advanced Information Networking and Applications Workshops (WAINA2012), Fukuoka, Japan,

26–29 March 2012; pp. 508–513.

23. Miyazaki, T.; Kasama, Y. Estimation of the number of humans and their movement paths in a room

using binary infrared sensors. In Proceedings of the ACM International Conference on Ubiquitous

Information Management and Communication (ICUIMC2012), Kuala Lumpur, Malaysia,

20–23 February 2012.

24. Kasama, Y.; Miyazaki, T. Movement path estimation for multiple humans in a room using binary

infrared sensors. In Proceedings of the IEEE 27th International Conference on Information

Networking (ICOIN2013), Bangkok, Thailand, 27–30 January 2013; pp. 42–47.

25. Panasonic Infrared Array Sensor Grid-EYE. Available online: https://industrial.panasonic.com/

ww/products/sensors/built-in-sensors/grid-eye (accessed on 22 May, 2015).

26. Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963,

58, 236–244.

27. Hao, Q.; Brady, D.J.; Guenther, B.D.; Burchett, J.B.; Shankar, M.; Feller, S. Human Tracking With

Wireless Distributed Pyroelectric Sensors. IEEE Sens. J. 2006, 6, 1683–1696.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

