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Abstract: In this paper, a gyroscopic mounting method for crystal oscillators to reduce the 

impact of dynamic loads on their output stability has been proposed. In order to prove the 

efficiency of this mounting approach, each dynamic load-induced instability has been analyzed 

in detail. A statistical study has been performed on the elevation angle of the  

g-sensitivity vector of Stress Compensated-cut (SC-cut) crystals. The analysis results show 

that the proposed gyroscopic mounting method gives good performance for host vehicle 

attitude changes. A phase noise improvement of 27 dB maximum and 5.7 dB on average can 

be achieved in the case of steady state loads, while under sinusoidal vibration conditions, the 

maximum and average phase noise improvement are as high as 24 dB and 7.5 dB 

respectively. With this gyroscopic mounting method, random vibration-induced phase noise 

instability is reduced 30 dB maximum and 8.7 dB on average. Good effects are apparent for 

crystal g-sensitivity vectors with low elevation angle φ and azimuthal angle β. under highly 

dynamic conditions, indicating the probability that crystal oscillator instability will be 

significantly reduced by using the proposed mounting approach. 

Keywords: gyroscopic mounting; crystal oscillator; g-sensitivity; stability; high dynamic; 

random vibration; sinusoidal vibrations 
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1. Introduction 

Nowadays oscillators are widely used in huge number of electronic communication, measurement 

and testing devices. In particular, crystal oscillators with high-Q factors are intended for use as frequency 

and low-phase noise standards [1]. On the other hand, crystal oscillator output stability is influenced by 

environmental conditions such as cleanliness and contamination, and the electromagnetic, thermal and 

mechanical environments [1–9]. Under highly dynamic conditions, crystal oscillators are exposed  

to a variety of dynamic loads, thus their short and medium-term stability is degraded during  

missions [4,5,10]. Under these conditions, the performance of the total system will be deteriorated when 

the short-term instability of the oscillator exceeds a specified boundary [11] determined by the host 

vehicle and frequency application [12]. 

Dynamic load-induced oscillator instability can be regarded as clock bias and drift [13]. These deviations 

are influenced by the magnitude and angular orientation of an inherent characteristic, i.e., a g-sensitivity 

vector. Even among a series of carefully designed crystals with the same cut, same vibration mode and 

same overtone resonant frequency each crystal will have its own g-sensitivity vector. In addition, for a 

specified crystal, different measurement methods give different results for the magnitude and especially 

for the angular orientation of this vector [14]. Thus, reduction of oscillator instability is a function of an 

unknown parameter, which is the direction of its g-sensitivity vector. In general, two approaches are 

adopted to reduce the effect of dynamic loads on crystal oscillator stability [15,16]: 

1-Passive control approach: 

• Use of mechanical vibration isolation [17]. 

• Use of multiple, unmatched oppositely-oriented resonators [18,19]. 

• Reduction of resonator vibration sensitivity via resonator design [20–25]. 

2-Active control approach: 

• Cancellation via feedback of accelerometer-sensed signals to the oscillator frequency tuning 

circuitry [16,26–28]. 

In this paper, a novel mounting method, named gyroscopic mounting, is introduced for crystal 

oscillators. This mounting is a self-aligned passive component, thus it does not need sensor 

measurement, special installation, periodical inspection, maintenance or tune ups. The most important 

feature is that it does not need a power supply. It senses and responds to the load and remains 

perpendicular to the applied load at any given moment. Furthermore, the analysis and simulations show 

that the proposed mounting can provide up to 30 dB improvement in phase noise that is equal to the best 

reduction possible with the costly and complicated accelerometer feedback method [28]. In addition, this 

mounting is able to suppress the attitude change of host vehicle-induced instability. In order to reduce or 

ideally suppress the drawbacks of the gyroscopic mounting method which could occur in the case of any 

dynamic load, it is proposed to use a combined method of employing the aforementioned mounting with 

an active vibration noise control approach using accelerometer feedback [16,26–28]. 

In this paper, all possible dynamic loads which affect the short and medium term stability of crystal 

oscillators under highly dynamic conditions will be introduced in Section 2. The main concept of using 

the gyroscopic mounting will be described in Section 3. A statistical study on the g-sensitivity vector of 
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SC-cut crystals, which are commonly used in highly dynamic conditions, will be introduced in  

Section 4. In Section 5, all dynamic loads-induced instabilities and the gyroscopic mounting efficiency 

will be analyzed. In Section 6, the conclusions of the paper will be provided. 

2. Dynamic Loads and Its Affection to Instability of Crystal Oscillator Output 

Let us assume a highly dynamic host vehicle with an installed crystal oscillator (Figure 1). Dynamic 

loads applied by the highly dynamic host vehicle on the crystal oscillator are divided into [7,20–35]: 

 

Figure 1. Highly dynamic host vehicle with installed crystal oscillator. 

1. Short-term instability sources (τ = 1 s): 

• Steady State Acceleration: Time variant thrust of the host vehicle in both the longitudinal and 

lateral directions. 

• Sinusoidal Vibrations: A series of low frequency sinusoidal vibrations. 

• Random Vibration: A combination of band-limited sinusoidal vibrations with random amplitude, 

frequency and phase. 

2. Medium-term instability sources (τ < 1 day):  

 Attitude and altitude changes of the host vehicle during the mission. 

Short-term instability (Clock bias) 

0 0(τ 1 ) . cosαcosβf s f A f A       (1) 

0φ ( 1 ) 2π 2πnB Hz fdt f Adt        (2) 

φ
£( ) 20log

2
f


  (3) 

Medium-term instability (Clock drift/T) 

0

cosαcosβ
f

A
f


   (4) 



Sensors 2015, 15 14264 

 

 

where Δƒ is frequency disturbance; Δφ is phase disturbance; £(ƒ) is phase noise;   is g-sensitivity 

vector of crystal blank (1/g) and Γ is its magnitude; φ is elevation angle of  ; θ is azimuthal angle of 

 ; A  is the applied dynamic load (g) and A is its magnitude; α is the angle between   and A ; β is the 

angle between pages passing through   and A ; ƒ0 is oscillator frequency in Hz, T is the host vehicle 

mission duration. According to Equations (1)–(4) and Figure 2, frequency and phase disturbances are 

functions of α and β cosine. Therefore, when A  moves away from  , the oscillator output will be improved. 

   
(a) (b) (c) 

Figure 2. Angular orientation of load A  and g-sensitivity vector   of crystal blank.  

(a) Typical state; (b) Critical state (β = 0); (c) Neutral acceleration.  

Ideally, we tend to fix the applied dynamic load perpendicular to  . However, this method is not 

feasible in practice because each crystal blank has its own  , even among crystals with the same cut, 

same vibration mode and same overtone resonant frequency. On the other hand, for a specified crystal, 

different measurement methods give different results for the magnitude and especially for the angular 

orientation of this vector. Also in the case of random vibration, the angular orientation of dynamic load 

A  can be in any direction. 

In this paper, the main idea to reduce these disturbances is to hold the applied dynamic load 

perpendicular to crystal surface in any given time instant. For a specified range of angle β shown in 

Figure 2 (where │β│ < cos‒1(sinφ/cosα)), when α is increased, the dynamic load-induced disturbances 

can be reduced and consequently oscillator output stability can be improved. 

3. Gyroscopic Mounting 

In order to implement the aforementioned idea, a gyroscopic mounting method is proposed in the 

installation of crystal oscillator on electronic board, which gives it the freedom to rotate freely around 

roll, pitch and yaw. By this way, the resultant applied load will be perpendicular to oscillator surface in 

each time instant. Modeling and prototype of this instrument are shown in Figures 3 and 4. 

This mounting is a simple and cheap passive component and does not need to any power supply.  

It must be as quick as possible to respond to dynamic loads. We manufactured it from low-density 

materials and the softness of surfaces should be high as well. 
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(a) (b) (c) 

Figure 3. Modeling of gyroscopic mounting instrument. (a) Gyroscopic-mounting; (b) 

Dynamic load applied; (c) Mounting on PCB. 

  

Figure 4. Prototype of gyroscopic mounting instrument. 

After installation of the crystal oscillator on it, dynamic load-induced disturbances can be expressed as: 

0(τ 1 ) sin φgyrof s f A     (5) 

( 1 ) 2πgyro n gyroB Hz f dt     (6) 

φ
£( ) 20log

2

gyro

gyrof


  (7) 

where Δƒgyro: frequency disturbance; Δφgyro: phase disturbance; £gyro (ƒ): phase noise. The maximum 

effect of gyroscopic mounting appears in the critical state shown in Figure 2b. In this case, gyroscopic 

mounting protects the system from the maximum probable instabilities. 

4. G-Sensitivity Vector 

Each crystal blank has its own g-sensitivity vector. Apart from its magnitude Γ, its angular orientation, 

especially the elevation angle φ, plays an important role on the instability induced in the oscillator output. 

Commonly SC-cut crystal oscillators are used under highly dynamic conditions [36]. Therefore, 

statistical studies have been done on the elevation angle of SC-cut crystals [25,37–39]. According to 

these studies, the angle φ follows the distribution with 1σ = 19° (42%), 2σ = 38° (84%) and  

3σ = 57° (98%), φmin = 2.6° and φmax = 62° as shown in Figure 5. 

  



Sensors 2015, 15 14266 

 

 

 

Figure 5. Distribution of angle |φ| for different SC-cut crystals. 

5. Impacts of Dynamic Loads on Stability of Crystal Oscillator and Proof of Gyro Efficiency 

Commonly GPS disciplined crystal oscillators are used as primary frequency standards for calibration 

and metrology in laboratories [40]. Therefore, in this paper this kind of oscillator is used to do the 

numerical analysis. To simulate highly dynamic conditions, the Ariane launch vehicle has been assigned 

as host vehicle. The parameters of this oscillator can be found in Table 1. The parameters of the Ariane 

launch vehicle will be mentioned in Sections 5.2–5.4. 

Table 1. Characteristics of the GPS disciplined crystal oscillator. 

Type Resonant Frequency ƒ0 

OCXO (Oven Control Crystal Oscillator) 3rd overtone 10.23 (MHz) 

Vibration Mode Crystal Cut σ y  (Allan Deviation) Γ 

Thickness shear SC-cut 10−11 10−9/g 

5.1. Attitude and Altitude Changes of Host Vehicle 

As shown in Figure 6, the attitude of the host vehicle changes nπ (i.e., 0 < δ + φ < nπ) during  

the mission.  

 

(a)     (b)    (c) 

Figure 6. Crystal oscillator subjected to attitude and altitude changes of host vehicle.  

(a) Host vehicle trajectory ground track; (b) Attitude and altitude of host vehicle; Adapted 

from [7]. (c) Orientation of g, Γ and time variant angle δ on crystal. 
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On the other hand, as altitude of host vehicle increases, magnitude of gravity acceleration g decreases 

(gh < g). Thus the angle between   and g , and the magnitude of g are time variant parameters. 

Therefore in either case, the gravity acceleration g plays the role of dynamic load and causes disturbances 

in oscillator output in the form of clock bias or drift. 

Clock drift 

0

cos(φ δ) cosβavg

f
g

f


    (8) 

2 1
( ) ,h

avg h

g r
g g dh

g r h h
 

   
(9) 

Note: the altitude gravity gradient is not significant, as shown in Figure 7, therefore in calculations it 

has been substituted by gavr on the trajectory: 

Clock bias 

0(τ 1 ) cos(φ δ)cosβgyro hf s f g      (10) 

where: 0 < δ + φ < nπ, r = the Earth’s radius, h = altitude above the Earth’s surface, gh = acceleration 

gravity at altitude h. 

Gyro Effect 

Due to the use of the gyroscopic mounting, the angle between   and g , shown in Figure 6c remains 

constant during the mission. Therefore attitude change-induced disturbances are completely suppressed. 

  

Figure 7. Attitude and altitude changes of host vehicle-induced clock bias. 

5.2. Steady State Acceleration (g) 

For the Ariane 5 launch vehicle, the longitudinal steady state acceleration Along changes between  

0 and 4.2 g on its trajectory, as shown in Figure 8, and the lateral acceleration Alat changes between  

0 and 0.2 g. The impact of this load on the stability of crystal oscillator output directly depends on how 
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it is installed on the host vehicle as shown in Figure 9. To calculate the maximum gyro efficiency, 

analyses have been performed by assuming vertical installation. 

  

Figure 8. Longitudinal steady state acceleration for the Ariane 5 launch vehicle. Adapted from [7]. 

 
 

(a) (b) 

Figure 9. Steady state load applied on the crystal installed on the host vehicle. (a) Horizontally; 

(b) Vertically. 

5.2.1. Impact on Crystal Oscillator Short-Term Stability 

This load appears as frequency deviation and phase noise in the oscillator output and degrades its  

short-term stability (τ = 1s). These disturbances are calculated as: 

Frequency deviation, Phase Deviation and Phase Noise 

0(τ 1 ) cosαcosβfixed xof s f A      

φ ( 1 ) 2π 2π fixed xo n fixed xo fixed xoB Hz f dt f          

φ
£( ) 20log

2

fixed xo

fixed xof





  

(11) 

0(τ 1 ) sin φgyrof s f A    ; φ ( 1 ) 2πgyro n gyroB Hz f dt    ;
φ

£( ) 20log
2

gyro

gyrof


  
(12) 
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Gyro Effect on frequency and phase noise: 

0 (cosφcosβ sin φ)f A  ; 
tan φ

20log
cosβ

 (13) 

0σAllan yf f  ; φ ( 1 ) 2π Allan n AllanB Hz f    ;
φ

£( ) 20log
2

Allan
Allanf


  (14) 

where: 0 < |β| < π, 0 < |α| < π; A defined in Figure 8. Critical state: β = 0. 

5.2.2. Results and Analysis 

Statistically the elevation angle φ of SC-cut crystals follows the distribution of Figure 5. According to 

Figure 10, gyroscopic mounting shows its positive effects for the most probable crystals i.e., |φ| < 38° 

(84%) and its drawbacks for low probability ones. 

  
(a) (b) 

  
(c) (d) 

Figure 10. Short-term instability caused by steady state load in critical state β = 0.  

(a) Frequency deviation of fixed oscillator; (b) Frequency deviation of using gyroscopic 

mounting; (c) Phase noise of fixed oscillator; (d) Phase noise of gyroscopic mounting. 
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The average steady state load-induced frequency deviation and phase noise are shown in Figure 11 

and summarized in Table 2. 

  
(a) (b) 

Figure 11. Average instability caused by steady state load. (a) Frequency deviation; (b) Phase noise. 

Table 2. Average efficiency of gyroscopic mounting for steady state load. 

β = 0 

2° < |φ| < 62° 
Fixed Oscillator Using Gyro Gyro Effect 

ΔƒMax 3.59 × 10−2 (Hz) 1.57 × 10−2 (Hz) −2.02 × 10−2 (Hz) (56.27%) 

ΔƒMin 1.70 × 10−3 (Hz) 7.48 × 10−4 (Hz) −9.61 × 10−4 (Hz) (56.53%) 

£(ƒ)Max −17.42 (dBc/Hz) −23.11 (dBc/Hz) −5.69 (dB) 

£(ƒ)Min −43.86 (dBc/Hz) −49.56 (dBc/Hz) −5.69 (dB) 

Where: Δƒ = Frequency deviation; £(ƒ) = Phase noise. 

Gyroscopic mounting efficiency is as shown in Figures 12 and 13 and summarized in Tables 3 and 4 

for the most probable crystals. 

  
(a) (b) 

Figure 12. Comparison between steady state load-induced frequency deviation and Allan 

safety margin. (a) Fixed oscillator; (b) Gyroscopic mounting. 
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(a) (b) 

Figure 13. Comparison between steady state load-induced phase noise and Allan safety 

margin. (a) Fixed oscillator; (b) Gyroscopic mounting. 

Table 3. Analysis of gyroscopic mounting efficiency for crystal with |φ| = 2.6°. 

0° < β < 90° Fixed Oscillator Using Gyro GYRO EFFECT 

ΔƒMax 4.29 × 10−2 (Hz) 1.90 × 10−3 (Hz) −4.10 × 10−2 (Hz) (95.57%) 

ΔƒMin 3.57 × 10−5 (Hz) 9.28 × 10−5 (Hz) +5.7 × 10−5 

£(ƒ)Max −17.40 (dBc/Hz) −44.26 (dBc/Hz) −26.86 (dB) 

£(ƒ)Min −79.01 (dBc/Hz) −70.70 (dBc/Hz) +8.31 (dB) 

Where: Δƒ = Frequency deviation; £(ƒ) = Phase noise. 

Table 4. Analysis of gyroscopic mounting efficiency for crystal with |φ| = 38°. 

0° < β < 90° Fixed Oscillator Using Gyro Gyro Effect 

ΔƒMax 3.39 × 10−2 (Hz) 2.65 × 10−2 (Hz) −7.40 × 10−3 (Hz) (21.83%) 

ΔƒMin 2.81 × 10−5 (Hz) 1.30 × 10−3 (Hz) 1.27 × 10−3 (Hz) 

£(ƒ)Max −19.46 (dBc/Hz) −21.61 (dBc/Hz) −2.15 (dB) 

£(ƒ)Min −81.07 (dBc/Hz) −48.05 (dBc/Hz) 33.02 (dB) 

Where: Δƒ = Frequency deviation; £(ƒ) = Phase noise. 

According to Figures 12 and 13 and Table 3, for a statistically minimum φ value i.e., φ = 2.6°, 

gyroscopic mounting has a great effect on frequency deviation which is reduced near the Allan deviation 

safety margin (10−4 Hz). Only when the β angle is very close to 90°, this mounting causes negligible 

drawbacks in oscillator output, such that frequency deviation is still less than the Allan deviation  

(10−4 Hz). Gyroscopic mounting shows its great effects on phase noise for β < 70°. Its drawbacks appear 

only for β values too close to 90°. However, this drawback is negligible because phase noise is still less 

than the Allan deviation (−70.05 dBc/Hz). 

Based on Figures 12 and 13 and Table 4, for a low elevation angle φ, gyroscopic mounting shows its 

positive effect on frequency deviation; however, it is still more than the Allan deviation (10−4 Hz). Its 

drawback on frequency deviation appears only for β angles too close to 90°. The best effects on phase 

noise appear for β < 45°. Drawbacks with small values start from β = 60°. Big drawbacks only occur for 

β close to 90°. 
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5.3. Sinusoidal Vibrations (fv,si = 2–100 Hz) 

Sinusoidal vibrations applied on the payload installed inside the fairing of Ariane 5 are as shown in 

Figure 14. The magnitude and angular orientation of these vibrations are illustrated in Figure 15 by 

dividing the frequency into three bands. That is why, in this section, two jumps are seen in the analyses 

figures corresponding to sinusoidal vibration-induced disturbances. The conic area in Figure 15 points 

out that this load can be applied on the crystal surface with any angle 0° < β < 360°, and it directly 

depends on the installation of the oscillator on the host vehicle. 

 

Figure 14. Sinusoidal vibrations of the Ariane 5 launch vehicle. Adapted from [7]. 

   

(a) (b) (c) 

Figure 15. Magnitude and angular orientation of sinusoidal vibrations. (a) α = 38.7°;  

(b) α = 31°; (c) α = 36.87°. 

5.3.1. Impact on Crystal Oscillator Short-Term Stability 

Sinusoidal vibrations appear as frequency jitter and phase noise in oscillator output and degrade its 

short- term stability. These disturbances are calculated as: 

Frequency Jitter, Phase jitter and Phase Noise 

, 0 , 0(τ 1/ ) sin(2π )sin(α φ)cosβ sin(α φ)cosβfixed xo v si ztp v si ztpf f f A f t f A        ; 

0

0

,

,

,

,

φ ( ) 2π sin(α φ)cosβ sin

£

(2π )

φ
A sin(α+φ) cosβcos(2π ) ; ( ) 20log

2

fixed xo

fixed xo

v si

ztp v si

ztp v si fixed xo

v si

B f f A f dtn v

f f
f t f

f f







     


  

 
(15) 
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0( 1/ ) sin φgyro v ztpf f f A    ; ,

,

φ ( )
gyro

gyro n v si

v si

f
B f

f


   ;

φ
£( ) 20log

2

gyro

gyrof


  (16) 

Gyro Effect on frequency and phase noise: 

0 (sin(α φ)cosβ s in φ);ztpf A  
sin(α φ)cosβ

20log
sin φ


 

(17) 

0σAllan yf f  ;
,

φ ( 1 ) Allan
Allan n

v si

f
B Hz

f


   ;

φ
£( ) 20log

2

Allan
Allanf


  (18) 

where: 0 < |β| < π; 2 <ƒv,si < 100; angle α and Aztp as indicated in Figure 15. Critical state and maximum 

effect of gyroscopic mounting appears when β = 0.  

5.3.2. Results and Analysis  

In Figure 16 the gyroscopic mounting effect on frequency jitter and phase noise is illustrated. 

According to this figure and Figure 5, this mounting shows its greatest advantages especially for the 

most probable crystals i.e., |φ| < 38° (84%). 

  
(a) (b) 

  
(c) (d) 

Figure 16. Sinusoidal vibrations-induced short term instability for critical state β = 0.  

(a) Frequency jitter of fixed oscillator; (b) Frequency jitter of gyroscopic mounting;  

(c) Phase noise of fixed oscillator; (d) Phase noise of gyroscopic mounting. 
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The average frequency jitter and phase noise are shown in Figure 17 and summarized in Table 5, with 

respect to the distribution specified in Figure 5 for angle φ. 

  
(a) (b) 

Figure 17. Average instability caused by sinusoidal vibration. (a) Frequency jitter; (b) Phase noise. 

Table 5. Average efficiency of gyroscopic mounting for sinusoidal vibration. 

β = 0, 2° < |φ| < 62° Fixed Oscillator Using Gyro Gyro Effect 

ΔƒMax 1.06 × 10−2 (Hz) 4.80 × 10−3 (Hz) −5.80 × 10−3 (Hz) (54.72%) 

ΔƒMin 8.10 × 10−3 (Hz) 3.70 × 10−3 (Hz) −4.40 × 10−3 (Hz) (54.32%) 

£(ƒ)Max −41.93 (dBc/Hz) −49.45 (dBc/Hz) −7.38 (dB) 

£(ƒ)Min −81.28 (dBc/Hz) −88.66 (dBc/Hz) −7.52 (dB) 

Where: Δƒ = Frequency jitter; £(ƒ) = Phase noise. 

According to Figure 5, the gyro efficiency is shown in Figures 18 and 19 and summarized in Tables 6 and 

7 for elevation angle |φ| < 2σ (84%). 

  
(a) (b) 

Figure 18. Comparison between sinusoidal vibrations-induced frequency jitter and Allan 

deviation safety margin. (a) Fixed oscillator; (b) Gyroscopic mounting. 
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(a) (b) 

Figure 19. Comparison between sinusoidal vibrations-induced phase noise and Allan 

deviation safety margin. (a) Fixed oscillator; (b) Gyroscopic mounting. 

Table 6. Analysis of gyroscopic mounting efficiency for crystal with |φ| = 2.6°. 

0° < β <90° Fixed Oscillator Using Gyro Allan Deviation Gyro Effect 

Δƒmax 8.60 × 10−3 (Hz) 5.94 × 10−4 (Hz) 1 × 10−4 (Hz) −8.00 × 10−3 (Hz) 

Δƒmin 1.14 × 10−4 (Hz) 4.64 × 10−4 (Hz) 1 × 10−4 (Hz) 3.5 × 10−4 (Hz) 

£(ƒ)min −53.31 (dBc/Hz) −76.56 (dBc/Hz) −92.04 (dBc/Hz) −23.25 (dB) 

£(ƒ)min −124.92 (dBc/Hz) −112.70 (dBc/Hz) −126.02 (dBc/Hz) 12.22 (dB) 

Where: Δƒ = Frequency jitter; £(ƒ) = Phase noise. 

Table 7. Analysis of gyroscopic mounting efficiency for crystal with |φ| = 38°. 

0° < β < 90° Fixed Oscillator Using Gyro Allan Deviation Gyro Effect 

Δƒmax 1.27 × 10−2 (Hz) 8.10 × 10−3 (Hz) 1 × 10−4 (Hz) −0.0047 (Hz) 

Δƒmin 1.72 × 10−4 (Hz) 6.30 × 10−3 (Hz) 1 × 10−4 (Hz) 0.0061 (Hz) 

£(ƒ)min −49.94 (dBc/Hz) −53.91 (dBc/Hz) −92.04 (dBc/Hz) −3.98 (dB) 

£(ƒ)max −121.29 (dBc/Hz) −90.04 (dBc/Hz) −126.02 (dBc/Hz) 31.26 (dB) 

Where: Δƒ = Frequency jitter; £(ƒ) = Phase noise. 

According to Figures 18 and 19 and Table 6, for a statistically minimum φ value i.e., φ = 2.6°, 

gyroscopic mounting has great effect and reduces frequency jitter close to the safety margin of the Allan 

deviation (10−4 Hz). For 2 < ƒv,si < 100, this mounting reduces phase noise −23.25 dBc at most.  

Its drawbacks appear only when the β value is too close to 90°. 

According to Figure 18 and 19 and Table 7, for 2 < ƒv,si < 100, gyroscopic mounting reduces the phase 

noise −3.97 dBc at most. The best effects on phase noise appear for β < 45°. Small drawbacks start from 

β = 60° and big ones only occur for β values close to 90°. 
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5.4. Random Vibration (20 < ƒRV < 2000 Hz) 

Random vibration is a band-limited noise with Gaussian distribution and could be created by different 

sources and applied in any direction i.e., 0 < |ξ| < π and 0 < |β| < π as shown in Figure 20a. 

  
(a) (b) 

Figure 20. Random vibration applied on crystal oscillator 0 < |ξ| < π, 0 < |β| < π. (a) Fixed 

oscillator; (b) Oscillator on gyroscopic mounting. 

Mechanical random vibration of the Ariane 4 launch vehicle is shown in Figure 20a [32]. Generally, 

this load is defined by Acceleration Spectral Density (ASD) in (g2/Hz). Since random vibration is a 

combination of all the frequencies at the same time, it is necessary to configure this load in the time 

domain. According to the Parseval’s law, grms is equal to 1σ of random vibration. Thus the random 

vibration in time domain can be shown according to Figure 21b by calculation of grms from ASD. 

On the other hand, there could be an infinite number of input ASD curves which have the same area, 

and therefore the same grms. Therefore, beside analysis in time domain, it is necessary to analyze the 

random vibration in the frequency domain. 

   
(a) (b) 

Figure 21. Mechanical random vibration for the Ariane 4 launch vehicle. (a) ASD (g2/Hz); 

Adapted from [32]. (b) Time domain representation. 
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5.4.1. Random Vibration in Time Domain 

(a) Calculation of grms 

rmsg ASD f   (19) 

6 220 150, 1.777    : 8 10 .fFrom point A Ao SDt B f   
 

(20) 

15  0 700, 0. . : 0 4Fr f ASom po t B t C Din o   
 (21) 

28
700   2000: , . From point f Ato D SD

f
C   

 (22) 

(1σ) 7.3rmsg g
 (23) 

(b) Impact on crystal oscillator short-term stability 

Random vibration causes short-term instability as frequency jitter and phase noise in oscillator output. 

Frequency jitter, Phase jitter and Phase Noise 

0

1
(τ ) cos(ξ φ)cosβfixed xo

RV

f f A
f

     ;

0φ ( ) 2π cos(ξ φ)cosβ sin(2π )fixed xo n v vi

RV

f
B f f A f t dt

f



      ;

φ
£( ) 20log

2

fixed xo

fixed xof





  

(24) 

0

1
(τ ) sin φgyro

RV

f f A
f

    ; φ ( )
gyro

gyro n RV

RV

f
B f

f


   ; 

φ
£( ) 20log

2

gyro

gyrof


  (25) 

Gyro Effect on frequency and phase 

0 (cos(ξ φ) cosβ sin φ)f A   ; 
cos(ξ φ)cosβ

20log( )
sin φ


 

(26) 

0σAllan yf f  ; φ ( 1 ) Allan
Allan n

RV

f
B Hz

f


   ;

φ
£( ) 20log

2

Allan
Allanf


  (27) 

where: Critical state is β = 0 and ξ = φ. Maximum gyro effect appears when β = kπ and ξ − φ = kπ  

(k = 0, 1 …). 

(c) Results and Analysis 

To analyze the effects of gyroscopic mounting on random vibration, it is necessary to determine three 

unknown parameters; angles ξ, β and φ, as shown in Figure 20.  
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If ξ = φ and β = 0, thus   and A  coincide each other, therefore this mounting shows the best positive 

effects for low elevation angle φ. If ξ – φ = π/2 or β = π/2, then   and A  are perpendicular to each other, in 

this case gyroscopic mounting shows the worst performance. These results are shown in Figures 22 and 23. 

  
(a) (b) 

  
(c) (d) 

Figure 22. Maximum instability (ξ = φ) caused by random vibration for ƒRV = 2000 (Hz). 

(a) Frequency jitter of fixed oscillator; (b) Frequency jitter of gyroscopic mounting;  

(c) Phase noise of fixed oscillator; (d) Phase noise of gyroscopic mounting. 

  

(a) (b) 

Figure 23. Comparison between system instability in different states. (a) Maximum state  

ξ = φ, β = 0; (b) Minimum state, ξ − φ = 90°or β = 90°. 
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According to Figure 22 and 23 and Table 8, the maximum effects of gyroscopic mounting on 

frequency jitter can be obtained when β = 0 and φ = 2.6°. In this case, gyroscopic mounting reduces the 

frequency jitter to near the safety margin of the Allan deviation. Maximum effect on phase noise appears 

for β = 0 and φ = 2° and this positive effect continues up to β = 60°. Drawbacks start from β > 60° and 

its maximum value occurs for β = 90° and φ = 38°. With regard to the distribution shown in Figure 5 for 

elevation angle φ, the average frequency jitter and phase noise are as shown in Figure 24 and summarized 

in Table 9. 

Table 8. Maximum effects and drawbacks of gyroscopic mounting on random vibration. 

Random Vibration Induced Instability 

2.6° < φ < 38°,  

RV = 3σ, ξ = φ, β = 0 
Fixed Oscillator Using Gyro Allan Gyro Effect 

Max gyro effect on Δƒ 2.24 × 10−1 (Hz) 7.80 × 10−3 (Hz) 1 × 10−4 (Hz) −2.16 × 10−1 (Hz) (96.42%) 

Max gyro drawback on Δƒ 3.90 × 10−3 (Hz) 1.14 × 10−1 (Hz) 1 × 10−4 (Hz) +1.10 × 10−1 (Hz) 

Max gyro effect on £(ƒ)  −85.03 (dBc/Hz) −114.17 (dBc/Hz) −152.04(dBc/Hz) −29.14 (dB) 

Max gyro drawback on £(ƒ) −120.19 (dBc/Hz) −91.31 (dBc/Hz) −152.04(dBc/Hz) +28.88 (dB) 

Where: Δƒ = Frequency jitter; £(ƒ) = Phase noise. 

  
(a) (b) 

Figure 24. Average instability caused by random vibration. (a) Frequency jitter; (b) Phase noise. 

Table 9. Average efficiency of gyroscopic mounting for random vibration. 

β = 0, 2° < |φ| < 62° Fixed Oscillator Using Gyro Gyro Effect 

Δƒ 

1σ (68.3%) 0.0697 (Hz) 0.0273 (Hz) 0.0424 (Hz) 

2σ (95.6%) 0.1394 (Hz) 0.0546 (Hz) 0.0847 (Hz) 

3σ (99.7%) 0.2091 (Hz) 0.0819 (Hz) 0.1271 (Hz) 

£(ƒ) 

1σ (68.3%) −88.16 (dBc/Hz) −96.89 (dBc/Hz) −8.73 (dB) 

2σ (95.6%) −82.55 (dBc/Hz) −91.28 (dBc/Hz) −8.73 (dB) 

3σ (99.7%) −79.27 (dBc/Hz) −87.99 (dBc/Hz) −8.73 (dB) 
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5.4.2. Random Vibration in Frequency Domain 

(a) Calculations 

max 2 2rmsRV g ASD f    (28) 

1.5
    : 20 150; 0.0019 ( ).From point A to B f RV f g   

 (29) 

0.5
    :150 700; 0.2828 ( ).From point B to C f RV f g   

 
(30) 

700   2000; 7.4833( ) : .From point C to f RVD g  
 (31) 

(b) Impact on crystal oscillator short-term stability  

Frequency jitter, Phase Jitter and Phase Noise 
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Gyro Effect on frequency and phase 

0
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£( ) 20log

2
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  (35) 

where: 20 < ƒv < 2000 (Hz), RV: according to Equations (28)–(31), 0 < |β| < π, 0 < |ξ| < π, 0 < |φ| < π/2, 

Critical state or maximum gyroscopic mounting effect appears when: β = kπ & ξ − φ = kπ (k = 0, 1). 

(c) Results and Analysis 

According to Figure 20, when random vibration is applied in the same direction as the g-sensitivity 

vector, i.e.,   and A  coincide each other and therefore ξ = φ and β = 0, the maximum instability induces 

to oscillator output which is shown in Figure 25a,c. In this case, the gyroscopic mounting presents its 

maximum effect as shown in Figure 25b,d. This positive effect is in the maximum state for low elevation 

angle φ. 
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(a) (b) 

  
(c) (d) 

Figure 25. Analysis of random vibration in frequency domain for ξ = φ, β = 0. (a) Frequency 

jitter of fixed oscillator; (b) Frequency jitter of gyroscopic mounting; (c) Phase noise of fixed 

oscillator; (d) Phase noise of gyroscopic mounting. 

According to Figure 20, in practice random vibration could be applied in any direction i.e.,  

0° < |ξ| < 180°. In this case, the dynamic load induces instability in the oscillator output, which is shown 

in Figure 26a,c and the gyroscopic mounting presents its maximum effect, which is shown in  

Figure 26b,d. In this case, when ξ − φ = 90° or β = 90°, gyroscopic mounting induces its maximum 

drawback which is limited to the angles close to the specified margin of ξ − φ = 90°. As shown in Figure 

26d, better effects appear for low elevation angle φ. 
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(a) (b) 

  
(c) (d) 

Figure 26. Analysis of random vibration in frequency domain for 0° < |ξ | < 180°, β = 0,  

φ = 2σ = 38°.(a) Frequency jitter of fixed oscillator; (b) Frequency jitter of gyroscopic 

mounting; (c) Phase noise of fixed oscillator; (d) Phase noise of gyroscopic mounting. 

6. Conclusions 

According to the analysis results, gyroscopic mounting protects systems from instabilities caused by 

dynamic loads. It shows benefits on reduction of clock drift caused by the attitude change of the host 

vehicle. The mounting can also reduce the disturbances induced by steady state acceleration. The results 

of 27 dB maximum and 5.7 dB on average in phase noise improvement have been validated in our 

analyses. When considering sinusoidal vibrations, gyroscopic mounting reduces disturbances close to 

the safety margin of the Allan deviation. The phase noise improvement is 24 dB maximum and 7.5 dB 

on average. The random vibration-induced instability can be reduced 30 dB maximum and 8.7 dB on 

average in phase noise. The gyroscopic mounting for crystal oscillators has been proven to be able to 

improve the frequency deviation and phase noise caused by dynamic loads. It is promising for use in 

low cost frequency standard improvement for civil aviation and military purposes. 
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