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Abstract: The forward looking radar imaging task is a practical and challenging problem
for adverse weather aircraft landing industry. Deconvolution method can realize the forward
looking imaging but it often leads to the noise amplification in the radar image. In this paper,
a forward looking radar imaging based on deconvolution method is presented for adverse
weather aircraft landing. We first present the theoretical background of forward looking
radar imaging task and its application for aircraft landing. Then, we convert the forward
looking radar imaging task into a corresponding deconvolution problem, which is solved in
the framework of algebraic theory using truncated singular decomposition method. The key
issue regarding the selecting of the truncated parameter is addressed using generalized cross
validation approach. Simulation and experimental results demonstrate that the proposed
method is effective in achieving angular resolution enhancement with suppressing the noise
amplification in forward looking radar imaging.
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1. Introduction

The demand of civil aviation transportation in the all-time and all-weather has increased significantly
since there is often the case that aircraft departure from one hub are delayed due to adverse weather,
which results in many possible direct and indirect cost impacts. If there is known to be poor visibility
at the destination region, the aircraft take off may be cancelled or delayed, disrupting the original flight
schedule as well as impacting the scheduling of other planned flights [1]. Poor visibility is generally
the result of fog, but other inclement weather conditions, such as rain, snow, sleet, dust storms or
smoke, can also restrict visibility in the surrounding environment [2]. Several systems are designed
to enhance situational awareness by providing supplemental visual data to the pilot, which includes
runways, landing approach markers, other aircrafts and other terrain. These features could not be seen
during night and low visibility conditions. There is a clear incentive consideration in providing sufficient
visibility range or in generating a normal looking image in adverse weather using optical or radar sensor
systems. Many of the achievements of aircraft landing problem have been accomplished to aid aircraft’s
takeoff and landing in adverse weather. A synthetic vision method for enhancing poor visibility flight
operations can be found in [3], but the optical sensor generated imagery can not provide the sufficient
visibility range in adverse weather. In [4], the authors developed a procedure for topographic terrain
mapping, which is used for aircraft landing. Despite the progress in radar imaging methods, this method
do not sufficiently detect slight angular changes of the targets in the image scene.

One of the most promising solutions to the problem is to use a forward looking scanning radar system
that provides supplemental visual data to allow pilots to see through fog and other adverse weather,
which has been widely used in many military and civilian fields, including remote sensing [5], flight
navigation [6] and cargo airdropping [7], efc. The rationale behind the forward looking radar imaging is
that utilizes the return power seen by the antenna beam to make image of the ground as the antenna beam
scans the areas. To realize these applications, high resolution of the two dimensions for forward looking
radar imagery is essential. The high range resolution can be achievable by transmitting the wideband
signal and using the pulse compression technique. However, the angular resolution of forward looking
scanning radar image is relatively poor when compared with the achievable range resolution. For forward
looking scanning radar system, the angular resolution enhancement capabilities are physically limited by
the effective wavelength and the physic size of antenna aperture. Therefore, the improvement in angular
resolution of scanning radar image can be accomplished by either increasing the physical size of radar
antenna, or by increasing the frequency of the transmitted signal. However, neither of these solutions
were attractive. This demands use of signal processing techniques to process the acquired echo data and
obtain improved angular resolution in scanning radar image. This kinds of techniques are called angular
super-resolution algorithms in this paper. The main motivation behind the angular super-resolution lies
in using mathematical processing methods to increase the angular resolution beyond the limitation of
radar system parameters.

According to [8], the received signal g can be modeled by ¢ = H * f 4+ n, and our objective
is to recover [ from g, where * stands for the convolution operator, f is reflectivity of the scatter,
n denotes noise, and H represents a convolution matrix acting on the f. Therefore, deconvolution

method can enhance the angular resolution of a forward looking scanning radar imagery in theory [9,10].
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Deconvolutiuon problem is physically considered as the analog of a linear inversion task, which is
formulated and solved in [11]. Recently, applications of denconvolution can be found in [12-14]
for imaging processing, [15-17] for microwave imaging, [18,19] for MRI and CT. Deconvolution
method also has applications in radar imaging; see [20,21]. These deconvolution methods can be
divided into two categories: classic and Bayesian approaches. Both classic (see [22-26]) and Bayesian
(see [27-29]) approaches for solving the problem are posed as a minimization of a cost function having
the general form

arg]{rliﬂ {@rit (9, f) + APy (f)} (1

where @y, (g, f) is minimized over a selected norm and a penalization term @,., (f) is added in
an amount controlled by a tuning parameter A to encourage or discourage certain solution based
on a prior assumptions about the desirable solution characteristics. The ®y; (g, f) stands for the
phenomenological cost, while the ®,., (f) denotes the presumptive cost [30]. There are two challenges
in these deconvolution methods. One is how to choose the prior information of the object being
imaged. Another challenge is that the precision of the result of the deconvolution problem depends
on regularization parameter, which controls the performance of angular super-resolution versus the
noise amplification.

To address these challenges, the singular value decomposition (SVD) method is introduced. The
conceptual intuition of the SVD facilities its increasing use in the theoretical analysis of deconvolution
problem. For microwave imaging reconstruction, the SVD method is extensive used [31-34]. Truncated
singular value decomposition (TSVD) is a popular method for solving the deconvolution problem.
Recently applications of TSVD method can be found in [35] for inverse scattering problem, [11] for
improving the spatial resolution of radiometer data, and [36] for image restoration. But little work
on TSVD method for improving the angular resolution in forward looking radar imaging has been
reported. This paper presents an angular superresolution algorithm that uses truncated singular value
decomposition to solve the deconvolution problem corresponding to the scanning radar imaging task.

In this paper, we present an angular super-resolution method for adverse weather aircraft landing
using the truncated singular value decomposition method, which is originally developed for solving
the deconvolution problem with suppressing the noise amplification in the solution [37]. To this end,
we first convert the angular super-resolution problem in forward looking radar imaging task into the
corresponding deconvolution problem. It is well known that the deconvolution problem is ill-posed,
which means the solution to the deconvolution problem is unstable and sensitive to the noise. To address
this challenge, the truncated singular value decomposition method is used to solve the deconvolution
problem, which is able to realize the angular super-resolution imaging in forward looking imaging for
adverse weather aircraft landing. The rational behind the noise amplification is that the large errors in
the solution come from the noise singular value decomposition components associated with the small
singular of the convolution matrix. This leads to a compromise between these two factors must be
considered. Fortunately, the TSVD method is able to chop off those SVD components that are dominated
by noise. A key issue of TSVD method is the choice of the truncation parameter. This issue is beyond
the scope of this paper and the method of selecting this parameter is provided by the generalized

cross-validation criterion [37,38]. Simulations and experimental results are given to demonstrate the
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validity of the presented method for angular super-resolution imaging in forward looking scanning
imaging, which can be used for adverse weather aircraft landing.

The remainder of this paper is organized as follows: In Section 2, we provide a theoretical background
of angular super-resolution imaging in forward looking scanning radar imaging for aircraft landing.
In Section 3, the truncated singular value decomposition for angular super-resolution imaging in forward
looking scanning radar and the generalized cross-validation method for choosing truncated parameter are
presented. Section 4 is dedicated to simulation and experimental results. Finally, in Section 5, we draw
our conclusion.

2. Theoretical Background

In this paper, we focus our attention to angular resolution enhancement in forward looking scanning
radar image for adverse weather aircraft landing by solving the corresponding deconvolution problem
using truncated singular value decomposition method. To this end, we first formulate the signal model
of forward looking scanning radar imaging, which is also a foundation of the application of the angular
super-resolution method for adverse weather aircraft landing.

As shown in Figure 1, the forward looking scanning radar system consists of an antenna, radar receiver
and transmitter (R/T) display processor and heads up display. The radar platform is moving along a
runway corresponding to range direction, while the antenna scans along the vertical direction of runway

corresponding to azimuth/angular direction with a constant angular velocity w.

Heads up
display

Antennd

R/T Unit

Figure 1. The diagram of scanning radar for aircraft landing.

The diagram of the signal model of the forward looking scanning radar is illustrated in the upper-right
of Figure 2. This is a top down view of the antenna scan pattern and the targets located at the same range
cell with different azimuth cells. Assuming that the target in the observed scene can be considered as
an ideal point target. The antenna scans the targets with a constant angular velocity w and then receives
the echo data from the observed scene. As the antenna beam scans a point target located at a particular
angular, the received output is the impulse response of the corresponding to antenna pattern. We can
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see from the bottom of Figure 2 that when the target B and C are close enough, the echo of these two
targets are proportional to two replicas of the antenna pattern, overlapped and added to get a composite

response. The resulting low resolution signal is shown in the lower right corner of Figure 2.
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Figure 2. The diagram of signal model of forward looking radar.

According to [8], the limitation of angular resolution is determined by beam width of the antenna
pattern. This phenomenon brings a great difficulty in realizing the angular super-resolution imaging
in forward looking scanning radar. Our primal aim in this work is to process the acquired echo data
and obtain improved angular resolution via signal processing technique that breaks through the physical
limitation of radar system. To reach this goal, we first introduce the signal model of the scanning radar,
which is the foundation of the following discussion.

At first, the conventional range compression and range migration correction are applied to the echo
data with current approaches [20,39]. The echo data after range compression and range cell migration
is denoted by ¢(6, p,r) where r denotes the slant range from the radar to the target and 6 represents
the angle between the direction of the antenna to the target and the flight direction, and ¢ stands for the
incident angle of the antenna beam. On the other hand, it is assumed that the antenna pattern is of relative
isotropy to the imaging scene. Then, the received signal of forward looking radar along the range profile
can be assumed as a convolution kernel comprising the antenna power pattern in the angular coordinates

and the pulse modulation function in the range direction, which could be expressed as

9(r,0,0) = (r.0,)  [a(ip,0)2(20)] @)

C

where * represents the convolution operator, g(r, 0, ) is the received echo data after range compression
and range cell migration, f(r, 8, ) is the effective scattering coefficient, a(i, #) is the antenna pattern,
x(%r) stands for the pulse modulation function and ¢ denotes the speed of light.
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For mathematical simplicity, we only consider the azimuth variation. In addition, the presence of the

noise makes the data g(f) contaminated. According to [40], the echo data g (f) can be modeled as a

convolution of the antenna beam & (#) with the reflectivity of the observed scene f (@) plus the noise

n(0). Then, we can rewrite Equation (2) as
9(0) = f(8) * h(6) + n(0)

where n () represents the noise.
From Equation (3), we have

g=Hf+n
where
g(61) n(0y)
9= : = :
9(6k) n(0r)

F = FO i) FO i) FB0) @), F(60), (Ors),

and

h(6m)

The superscript T in Equation (6) is used for the matrix-vector transposition.

3)

“4)

®)

T

) f(ekferl)a f(eker) (6)

(7)

h(6_,)

h(O-m) |

The sequence

h(0m) -+ - h(Bo) - - - h(0_,,) is a sampling of the antenna pattern, which is shown in Figure 3.
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Figure 3. Antenna pattern.
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The forward looking scanning radar imaging for aircraft landing task is to recover [f(6y), - - -, f(6)]"
,g(0,)]" of finite length. However,
the echo data ¢ is determined not only by [f(6;),--- , f(6%)]", but also by Equation (6) and the system
Equation (4) is underdetermined. To overcome this problem, some prior information about the observed
scene should be incorporated. According to [41], we should make the assumptions on the values of the
[£(61),---, f(6,)]" outside the domain where g is determined. In this paper, we assume that the true

given the convolution matrix H and the echo data g = [g(6,), - - -

scene outside the field of view is a mirror reflection of the scene within the field of observation. This
leads to that the convolution matrix is a Toeplitz-plus-Hankel matrix. More precisely, the convolution
matrix H in Equation (4) can be written as follows:

"o MO 0 ey e ] T ]
H =1 h(0m) h(0—m) | + h(ém) n h(0_)
| 0 h(0m) hoo) | L 1 LMOm) - h(6) |

For an area target scene, the reflectivity coefficients of the scatterers can be denoted as a 2-D matrix

[ F—Q 1 [ f(r—Qa Q—A) f(T—Q7 90) f(T—Qv 014) |
F=| F | =| [f(ro,0-a) f(ro, 00) f(ro,04) )
L FQ i L f(rQ7 Q,A) f(er 60) f(TQu 9A>

4 2Q+1)x(24+1)

where f(rq79(l)<q _Qv 707"' aQ;a = _Av 707'”
reflectivity coefficient at the ¢-th position of the runway and the a-th position along the vertical direction

= , A) represents the discrete equivalent
of the runway, 2() + 1 is the number of points along the runway, and 2A + 1 is the number of points along
the vertical direction of the runway after the discretization of the scene. The results of aforementioned
can be extended to area target angular super-resolution imaging. In this case, the convolution matrix H
corresponding in Equation (4) is a block Toeplitz-plus-Hankel matrix with Toeplitz-plus Hankel blocks,
which can be expressed as

H©O H(Q) 0 T g H@ 0
H=| g H-Q) H@ H(=Q) (10)
0 H@ ) |0 H(Q) HW
with each block HW (i = —Q,--- ,0,--- , Q) being an (24 + 1) x (24 4 1) matrix of the form given in

Equation (8). We note that the f corresponding f in Equation (4) can be expressed as

f:UGC(FT): [FTQ7 7FOT7"' aFg}
7f(T—Q79A)a"' 7f(rQ79—A)a"'

[f(r—q,0-4),--

 f(ro,04)]"

(1)
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Based on Equations (5)—(7), the discrete expression of the echo data of the observed scene F' can be
expressed as follows:

9(r—q,0-a) ] _
, qHO ... gEQ) L 0
9(r—q.,ta)
g = : =Hf +n= H®) H(=Q)
g(?"Q7 Q—A)
: 0 H@ H©)
L g(""Q,Q_A) | ) ]
flr—q,0-4) n(r-q,0-a)
2L N = (%) 0
f(req,0a) n(r_q,0a)
+ | H@ HERQ) : + :
f(rq,0-4) n(rq,0-a)
0 H(EQ) H® : :
L f(rQ7 Q—A) | L n(rQ7 Q—A) |

Hence, the projection to obtain echo data from the observed scene is completed.

The angular super-resolution problem in forward looking radar can be converted that gives H,
recovering f from g by solving the Equation (2). It notes that the angular super-resolution problem in
forward looking radar can be physically considered as the analog of the antenna pattern H deconvolution.
This problem is often called inverse problem, which is characterized by an ill-posed under-determined
convolution matrix H. However, for the purpose of solving the deconvolution problem Equation (2)
and consequently better angular resolution than that of the real antenna, the linear deconvolution can be
stated as the task of finding a linear operator K = H~! such that

A N (w)

F(w) =G (w)K (w) =F (w) + H(w) (12)
where F(w), G(w), H(w), and N(w) are the Fourier transforms of f, g, H, and n in Equation (2),
respectively. However, this method tends to be very noise-sensitive and unstable. The reason is that
convolution in the Fourier domain corresponds to multiplication while deconvolution is Fourier division.
The high-frequency spectral components of the H(w) are lost due to the finite size of the antenna, which
results in that the multipliers are often small for high frequencies, and the inverse filter ﬁ is large
when H(w) is small, leading to the degradation of the angular super-resolution performance for forward

looking radar image.

3. Truncated Singular Value Decomposition for Angular Super-Resolution

In this section, we present the truncated singular value decomposition method to realize the angular

super-resolution in forward looking scanning radar imaging. To this end, we first give the details of the
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singular value decomposition (SVD) as a foundation of the proposed method. Then, a truncated singular
value decomposition method is presented for solving the problem Equation (2) and consequently create
better angular resolution in radar image than that of real beam radar image.

The use of SVD goes back to Varah [42] and the early history of SVD is described in [43].
For mathematical simplicity, considering the matrix /7 in Equation (4), the SVD is given by

Q
H=UxVT = ZuiaiviT
i=1

vut =vvTt =1, (13)
D
Y= 0
0 0
where D = diag(o1,09, -+ ,0N) represents a diagonal matrix with the singular value organized in
decreasing order; U = (uy,ug, -+ ,uy) and V = (v1,v,--- ,vy) are respectively, the left and right

singular vectors and both matrices have orthonormal columns [32].
The solution of Equation (4) can be expressed as follows:

(14)

U4
0

k
fe=VStU g =f+>
=1

where k is the truncation parameter and X" is the pseudoinverse of 3. We can see that if o; is very small,
even a small size of o; can causes large error. It is noted that the smaller o; values are less reliable and
must be discarded [37]. However, the noise or errors in the data g are amplified by the inverse of the
corresponding small singular values and mapped as spurious components of the object estimated [30].
This makes that an optimal truncation parameter can be found by maximizing the fidelity in Equation (1)
over the truncation parameter. The rationale behind the choice of truncation parameter is to compute an
approximate solution by chopping off those SVD components that are dominated by the noise.

In this paper, the generalized cross-validation (GCV) method is adopted. An advantage of GCV is
that does not require prior knowledge of the variance of the noise in the model Equation (4). The GCV is
described in [44,45], which has proved to be an excellent method of choosing a regularization parameter.
The GCV method aims at minimizing the predictive mean-square errors as follows:

| H fx — dll3 (15)

where g is noise-free echo data. In practice, the g is unknown, it can be demonstrated [32,38] that under

the hypothesis of the white noise, the parameter £ can be obtained via minimizing the GCV fuinction:

\H fi — 9ll5

GCV (k) =
(k) trace(I — HH,)

(16)

where H. ,1 satifies H ,i g = fr and trace(-) denotes the sum of the diagonal components inside the brackets.
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4. Simulations and Experimental Results

In this section, we focus on the angular super-resolution performance of the TSVD method.
Our purpose is to demonstrate the accuracy of the TSVD method. The accuracy of TSVD method
is shown mainly by comparison with the angular super-resolution method in [20]. In the following,

we denote the algorithm in [20] as Guan’s method.

4.1. Simulations

In this subsection, we present the simulation results under different noise levels. The simulation scene
is shown in Figure 4. The two targets locate at —6° and —4.2°, with their corresponding amplitude of
the same value as 1. Some simulation parameters are shown in Table 1. Samples in the 3 dB beam width
is about 573.

1.2 T T T T T T T T T

1 - — -
0.8r T
0.6 N

0.4f .
02p : SRR

Normalized amplitude

O L | | L L L L L L
-10 -8 -6 -4 -2 0 2 4 6 8 10
Target disttibution (Degree)

Figure 4. Location of targets in simulated scene.

Table 1. Simulation parameters.

Parameters Value Units
Carrier frequency 10 GHz
Band width 75 MHz
Pulse duration 2 s
Pulse repetition frequency 1000 Hz
Antenna scanning velocity 30 °/s
Antenna scanning area -10 ~+10 °
Main-lobe beam width 3 °

In order to quantify and compare the angular super-resolution performance of the TSVD method on
the simulation data, relative error (ReErr), structure similarity (SSIM) [46] and the peak to valley point
difference in dB are used in this section. They are defined as follows:

_ =1l

2055y 2pg-p
ReErr — (.0 2rg i)
[ f]l2

(2 + i3)(o2 + o)

; SSIM = 17

where u, o, and p are the mean, standard deviation of the vectors, and the correlations correspond to

the vector f, f , f and f represent the obtained angular super-resolution result and the original targets,
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respectively. The SSIM is a quality measurement between the super-resolution result and the original
scene. The value of SSIM is between —1 and 1, and 1 denotes fully identity with the original scene.
The peak to valley point difference in dB is defined in Figure 5 and quantifies the ability of an angular
super-resolution algorithm to separate two closely spaced targets. The difference of peak to valley point
in dB is between 0 and —oo, where 0 means the angular super-resolution algorithm can fully separate
two closely spaced targets.

A Normalized Amplitude

A peak

S =20log,, (4" — 4

valley )

-
Lateral cross section through
the centre of two scatterers.

Figure 5. The definition of peak to valley point difference in dB.

We use the code provided by the authors of [20] to implement the angular super-resolution. The code
for TSVD was coded by us. In Figure 6, we display the restored angular super-resolution radar image
from different methods. The echo data with different noise levels are shown in the top row of Figure 6.
From the top row Figure 6, we can see that the amplitude of the received signal is proportional to the
antenna pattern. The two targets are close enough, the response of the two targets are proportional
to two replicas of the antenna pattern. This phenomenon brings a great difficulty in improving the
angular resolution of scanning radar. The angular super-resolution results of Guan’s method and the
proposed method are shown in middle and bottom row of Figure 6, respectively. The choice of truncation
parameter adaptively is out scope of this paper. For the truncated parameter k£ required in proposed
method, we selected it using GCV method. The improvement of the proposed method compared to
Guan’s method. Figure 7 shows the functional value of function with respect to the truncated parameter
k. Figure 7a corresponds to the GCV function curve under noise level SNR = 10 dB while Figure 7b
shows the GCV curve under noise level SNR = 0 dB where the truncated parameters are also presented,
which is utilized in the simulation. In Figure 6, the proposed method gives the super-resolution results
where the spikes of targets look fairly separated whereas in the angular super-resolution results using the
Guan’s method, the spikes of the targets looks more connected. The values of peak to valley difference in
dB are given in the Figure 6. The difference of peak to valley in dB is between 0 and —oo, where 0 means
the angular super-resolution method can fully separate two closely spaced targets. This indicates that the
larger value of peak to valley in dB, the better performance of the proposed angular super-resolution

method in terms of super-resolution performance.
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result of the proposed method; (d) Echo data with noise level is 0 dB; (e) Angular

super-resolution result of Guan’s method after 35 iterations; (f) Angular super-resolution

results of the proposed method.
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Figure 7. The valuation of generalized cross-validation (GCV) function versus truncation
parameters with different noise levels. (a) SNR = 10 dB; (b) SNR =0 dB.
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In addition, the angular super-resolution results by the proposed method have both lower ReErr and
and higher SSIM than that by the Guan’s method. Figure 8 presents the evolution of the ReErr and the
SSIM with different SNRs. Figure 8a presents the ReErr result, whose ideal value is 0. When the value of
the ReErr gets smaller, the precision of the angular super-resolution method is better. The metric SSIM
is a quality measurement between the angular super-resolution result and the original scene. The larger
value of the SSIM, the better performance of the proposed angular super-resolution method in terms of

quality. It is clear that the proposed method gives better results than Guan’s method.

1 T T T 1
—6— Proposed method
—8&— Guan’s method | 0.9r

0.9

0.8+ 0.8

[¢
0.7r

0.7

0.6 0.6

ReErr
SSIM

—&— Proposed method
—8— Guan’s method

05f o5t

0.4r 0.4r

0.3F s 0.3E, 4

0.2 . ! ! 0.2 i i
0 5 10 15 20 o 5 10 15 20

Noise level(dB) Noise level(dB)
(a) (b)

Figure 8. (a) Evolution of the relative error (ReErr) along the noise SNRs for the
simulations; (b) Evolution of the structure similarity (SSIM) along the noise SNRs for

the simulations.

4.2. Experimental Results

In this subsection, we present the experiment results illustrating the performance of the truncated
singular value method for forward looking radar imaging and its application for adverse weather aircraft
landing. Figure 9a shows the optical image of imaging scene. Figure 9b shows the position of the
five corner reflectors and the distance between the reflectors. The height of the radar platform is about
200 m. The geometric relationship between the reflectors is shown in Figure 9c. Figure 9d shows the
enlargement of trihedral reflector.

The experiment parameters are shown in Table 2. We first acquire the data according to the traditional
sampling. Then, the range compression and range cell migration are applied to the echo data with the
traditional approaches [20,39], and the corresponding result shown in Figure 10a. Figure 10b,c present
the angular super-resolution results using the Guan’s method and the proposed method, respectively.
It can be seen that the proposed method has a better performance in terms of angular resolution. This is
the fact that the TSVD method is able to suppress the noise amplification. We can also see that the
angular super-resolution result obtained using the Guan’s method can not resolve the reflectors, which
locates in the same range cell but different angular cells. Therefore, we believe that the TSVD method

for angular super-resolution in aircraft landing is useful in real applications.
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(b)

(a) (©) (d)

Figure 9. (a) Optical image of imaging scene; (b) Radar platform and five corner reflectors
in the scene; (¢) The schematic plot of the distribution of trihedral reflector; (d) Enlargement

of trihedral reflector.

Table 2. Experimental Parameters.

Parameters Value  Units
Carrier frequency 30.75 GHz
Band width 40 MHz
Pulse duration 2 us
Pulse repetition frequency 4000 Hz
Antenna scanning velocity 60 °fs
Main-lobe beam width 4 °
Radar platform height 200 m

Antenna scanning area -35~+35 °
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Figure 10. Angular super-resolution imaging results. (a) Real beam scanning radar imaging;
(b) Experimental data processed by Guan’s method; (¢) Experimental data processed by the
proposed method.

5. Conclusions

A forward looking scanning radar imaging method using truncated singular value decomposition
and its application for adverse weather aircraft landing are presented in this paper. After presenting
and analyzing the signal model of forward looking scanning radar, we first convert the angular
super-resolution imaging task into an equivalent deconvolution problem. In order to overcome the
ill-posed nature of the deconvolution problem, we chose to compute a corresponding approximate
solution by chopping off those SVD components that are dominated by the noise. The selection of the
truncation parameter is based on GCV method. Compared with the Guan’s method, the presented method
improves the angular super-resolution performance in terms of precision. Simulation results indicate that
the proposed method is effective in improving the angular resolution of scanning radar. The proposed
method can also be applied to other inverse problem that are based on deconvolution. However, there
are still some issues needed to be studied in angular super-resolution based on deconvlution method.
Future work will study how to chose the truncation parameter adaptively and study the robustness of the

deconvolution algorithm for angular super-resolution under low SNR levels.
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