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Abstract: In this article we critically discuss the challenge of integrating contextual 

information, in particular spatiotemporal contextual information, with human and technical 

sensor information, which we approach from a geospatial perspective. We start by 

highlighting the significance of context in general and spatiotemporal context in particular 

and introduce a smart city model of interactions between humans, the environment, and 

technology, with context at the common interface. We then focus on both the intentional and 

the unintentional sensing capabilities of today’s technologies and discuss current 

technological trends that we consider have the ability to enrich human and technical  

geo-sensor information with contextual detail. The different types of sensors used to collect 

contextual information are analyzed and sorted into three groups on the basis of names 

considering frequently used related terms, and characteristic contextual parameters. These 

three groups, namely technical in situ sensors, technical remote sensors, and human sensors 

are analyzed and linked to three dimensions involved in sensing (data generation, geographic 

phenomena, and type of sensing). In contrast to other scientific publications, we found a 

large number of technologies and applications using in situ and mobile technical sensors 
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within the context of smart cities, and surprisingly limited use of remote sensing approaches. 

In this article we further provide a critical discussion of possible impacts and influences of 

both technical and human sensing approaches on society, pointing out that a larger number 

of sensors, increased fusion of information, and the use of standardized data formats and 

interfaces will not necessarily result in any improvement in the quality of life of the citizens 

of a smart city. This article seeks to improve our understanding of technical and human  

geo-sensing capabilities, and to demonstrate that the use of such sensors can facilitate the 

integration of different types of contextual information, thus providing an additional, namely 

the geo-spatial perspective on the future development of smart cities. 

Keywords: sensing; sensors; urban environments; urban dynamics; human-environment 

interaction; quality of life; geographic information science 

 

1. Introduction 

Cities are complex and dynamic systems that comprise a broad range of physical and environmental 

features, as well as social and human-related components. The broad spectrum of technologies available 

today allows such features to be comprehensively quantified in unprecedented detail. These include 

intrinsically geographic features such as current environmental conditions (weather, air quality, etc.), the 

public’s perception of urban spaces, and the public’s individual and collective behavioral responses to a 

range of urban functional settings including traffic infrastructures, open spaces and open places, 

neighborhoods and residential areas. Such settings are of considerable importance to environment-human 

interactions, in particular with respect to quality of life (QoL) [1]. 

Smart cities, which are cities that are able to operate in a sustainable, efficient and intelligent manner [2,3], 

require smart infrastructure with advanced sensing capabilities that extend beyond mere technical 

subtleties [4], thereby possibly benefitting architects and citizens of smart cities. Systems and methods 

for environmental monitoring (see e.g., [5,6]) and social sensing (see e.g., [7]) are well established and 

cover a wide range of applications (see Table 1). However, integrating contextual information, and  

in particular spatiotemporal contextual information, to obtain more holistic urban analysis scenarios that 

take into account the human component in particular, may be able to shed new light on the behavior of 

complex and dynamic urban systems, thereby facilitating the development of smarter cities. 

In Section 1 of this article we address context from a geospatial point of view and introduce a smart 

city model for interactions between humans, the environment, and technology. In Section 2 we provide 

a succinct analysis of the terminology used in this field and identify the main dimensions of urban  

geo-sensing, with a focus on measuring and quantifying different types of context. In the main body of 

this article (Section 3), we focus on the diverse nature of context as a key factor in the development of 

smart cities by proposing the use of technology-enabled contextual sensing. Finally, in Section 4 we 

draw some critical conclusions and address future challenges facing the overall concept of smart cities 

with respect to human-environmental relationships in general, and to quality-of-life aspects in particular. 
  



Sensors 2015, 15 17015 

 

 

1.1. Spatiotemporal Context for Smart Cities 

Context has been described as “any information (either implicit or explicit) that can be used to 

characterize the situation of an entity” [8]. Contexts can be very diverse and are of critical importance 

in a variety of non-technical research areas including the social sciences, for example in psychology, 

linguistics, cognitive science, human behavior, etc. It is, however, beyond the scope of this article to 

consider the entire concept of context; the interested reader is instead referred to publications by, e.g., 

Brézillon [9], and Clitheroe et al. [10]. Instead we address certain technical aspects of context.  

The number of context-aware technical systems has increased significantly over the last decade [11], so 

that context sensing, context management, and context-aware services and applications, are now 

ubiquitous in computing environments [11], taking into account both external and internal contexts. 

External (or physical) contexts are strongly associated with the physical environment and are typically 

measured by physical sensors; they are therefore easy to quantify and integrate into, for example, 

location-based services. Internal (or cognitive) considerations address context at an individual level and 

can enable personalized recommendations or decision support services [12]. Both internal and external 

contextual factors, together with today’s (mobile) sensing technologies (refer to Section 2 for more 

details), support contextual modelling and contextual reasoning [13], which we believe should be 

integral components of smart cities. Due to their high population densities and concentrated but variable 

functional configurations, cities typically consist of highly dynamic urban environments, in which 

citizens interact continuously on both physical and social levels with their surroundings. However, the 

geospatial and temporal contexts (e.g., residential versus business versus industrial areas, business hours 

versus weekends versus holidays) within which such interactions occur are largely neglected. 

Spatiotemporal contexts therefore involve much more than simply the use of locations to approximate 

context [14,15]. Instead they make use of “focal premises” [16] that incorporate focal data from both 

technical sensors and human observers. The influence of spatiotemporal contexts can be illustrated by 

simple examples, such as the effect that changes in traffic flow can have on the air quality [17], or that 

sudden rainfall can have on the normal mobility patterns within a city [18,19]. Information concerning 

mobility patterns needs to be individualized and context-based, as has been concluded by the authors of 

one of the other papers in this special issue of Sensors [20]. The actual (geographic) phenomena of 

interest therefore need to be put into (spatiotemporal) context in order that they can be better understood, 

as well as the possible underlying (geographic) processes [21]. Furthermore, spatiotemporal contexts are 

typically multifaceted in both type and magnitude (e.g., adverse wetter could range from moderate 

rainfall to heavy thunderstorms); spatiotemporal contexts can vary in both spatial and temporal scales 

and hence in spatiotemporal scope and impact (e.g., rainfall could be local or regional, it could be a 

shower or a steady rain, thus leading to different intensities of surface runoff); spatiotemporal contexts 

can sometimes be very obvious or, as is often the case, less obvious and consequently completely ignored 

(e.g., rainfall particulate air pollution); if spatiotemporal contexts are obvious and well-known, they can 

encourage context-awareness, and if they are less obvious or concealed they can still exert considerable 

influence on the actual geographic phenomenon of interest. The implications of spatiotemporal context 

can be highly individual and personal, or can be collective and social. Furthermore, a particular 

geographic phenomenon can at one time be the actual phenomenon of interest, and at another time part 

of the spatiotemporal context. For instance, noise in different parts of a city at different times of the day 
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can be measured in order to generate dynamic noise maps for spatial planning purposes, but it can also 

be considered to be part of the spatiotemporal context in QoL investigations. The same noise levels may 

also have different implications in residential areas from in industrial areas. Contexts in general and 

spatiotemporal contexts in particular can therefore be seen to have an underlying complexity that can be 

viewed from many different perspectives—metaphorically speaking, context can be seen as a chameleon. 

The spatiotemporal context is, however, by no means the only determinant of either collective or individual 

human behavior. We therefore suggest that spatiotemporal contexts should be incorporated as one of the 

determinants in the design of smart city concepts, for the benefit of the affected citizens. 

1.2. Interfaces and Interactions between Humans, the Environment, and Technology 

Figure 1 illustrates a conceptual geospatial perspective of three major smart city domains, namely 

humans, the environment, and technology, and the interactions between these domains. As mentioned 

previously, these domains can include (for example) current environmental conditions such as the 

weather, the public’s perception of urban spaces, and the public’s individual and collective behavioral 

responses to diverse urban settings. 

 

Figure 1. Model of smart city interactions between humans, the environment, and 

technology. The interfaces (in orange) between humans, the environment and technology 

represent the interactions between these domains, which vary across spatial and temporal 

scales (right side of the figure); the context (blue) is a key component at the common 

intersection of these interactions. 

The interaction model in Figure 1 highlights the previously neglected spatiotemporal component of 

context, which is at the heart of human-environment, environment-technology, and human-technology 

interactions. As indicated on the right side of Figure 1, such interactions typically vary across spatial and 

temporal scales, but they also vary in magnitude, scope, and impact. In other words, while the top 

perspective on the right hand side shows a rather generalized, aggregate or collective view of the 

interactions within a city, the bottom perspective shows a detailed and more individual view. The actual 

context within which the interactions take place can also vary within a given scale, thus influencing the 
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vertical shifts in contextual magnitude (top-down versus bottom-up perspective in Figure 1, on the right 

hand side). 

However, as indicated in Figure 1, only the human-technology and environment-technology 

interfaces are supported by sensing technologies, which are discussed in greater detail in Section 3 

below. These sensing interfaces connect the real world with the digital world and allow the quantification 

of environment-related phenomena (labelled “Environment”) or human-related phenomena (labelled 

“Humans”). Direct technological sensing of human-environment interactions is, however, not possible 

(Figure 3), which means that these highly complex and multifaceted interactions are only very poorly 

represented, and only by some sort of proxy data; they are probably not represented at all in objective 

electronic sensor data from calibrated hardware. The capture and integration of contextual information 

from a geospatial point of view by leveraging sensing components, especially those from technical 

sensors and sensor networks, is likely to provide important support for smart city initiatives in the future. 

1.3. Sensing Components at the Environment-Technology and Human-Technology Interfaces 

We suggest that every electronic digital device can be seen as some form of sensor, but the question 

is, what is it sensing? The data that such digital devices and systems generate can be processed, 

interpreted and analyzed in a myriad of different ways. However, not all processing methods will 

automatically generate added-value, at least not for every situation, for every spatial and temporal scale 

applied, or in every instance analyzed, etc. This article therefore seeks to disentangle a misleading nexus 

of data generation and a data usage, in order to improve the QoL for urban citizens. It should be clear to 

any information scientist that a larger quantity of data does not automatically result in better decisions 

being made, or in any improvement in the QoL of citizens. However, in contextual sensing a larger 

quantity of data may allow contexts that have not previously been thought of, or have not previously 

been considered relevant, to be better understood and taken into account. This idea is implicitly based 

on the widely agreed concept that the processing of such data can yield useful information, and that this 

information may have some potential relevance, but the critical question is, to what? Nevertheless, such 

a supposed nexus seems to be widespread in the relatively young field of smart city research. 

The number of sensors and their variety in terms of what they are able to measure within the context 

of smart city research has increased sharply in recent years. Progress in miniaturization and accessibility 

has also been accompanied by reductions in costs. A variety of sensors and sensor networks have been 

specifically designed to measure and quantify environmental conditions such as the weather, air quality, 

aerosol content, soil moisture, vegetation health, etc. Sensors and sensor networks now form the basis of 

most environmental monitoring (for example through remote sensing, in situ sensing, the sensor web, etc.). 

From its original use in environmental applications, sensor technology has now spread to other fields 

such as human health and sporting activities, which can be seen as examples of human-environment 

interaction (see Figure 1). Hundreds of technologies and applications have been documented over recent 

years, particularly in the journal Sensors. We are tempted to refer to these sensors as “classic sensors” 

even though many of them have only been developed very recently. 

Other electronic devices that were not originally designed for sensing purposes can nevertheless be 

leveraged for that function; examples include mobile phones, which serve as highly mobile, wireless,  
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in situ components of a large-scale sensor network (the mobile phone network), which allows the 

whereabouts of millions of people to be monitored, whether they like it or not. 

The wide spectrum of user-generated data and corresponding platforms, including Volunteered 

Geographic Information (VGI), Web 2.0, and social media such as Twitter, Instagram, etc., mean that 

the multiplicity of today’s (mobile) applications used in our daily life are generating enormous amounts 

of data, including geo-data. Examples include recent location-based weather data, metadata, and data 

generated by systems in order to ensure that they are operational (“by-product” data, “overhead” data, 

log data, etc.). Weather data has been collected for longer than many other types of data. More recent 

examples include personal health and activity data from smart bands or other loggers, linked to 

smartphones. One important yet often overlooked aspect of sensing is whether or not data are being 

actively generated (VGI), or being reconstructed. The latter includes involuntary data from some 

technical process that has been triggered by a human for a specific purpose. For instance, making a 

mobile phone call triggers a technical process that generates the data necessary to access the mobile 

network and to make the phone call; such network specific relevant data are an example of involuntary 

data [22]. These involuntary data are typically associated with the concept of “collective sensing” [23] 

(see Table 1). Specifically within the context of contextual sensing for smart cities, which is the subject 

of this paper, it is necessary to consider the advent of this additional aspect of “involuntary sensing”, 

and the general question of whether or not citizens voluntarily contribute, i.e., deliberately share, their 

data for further analysis. 

2. Dimensions of Urban Geo-Sensing 

As a basis for a holistic definition of objectively measurable and subjectively observable contextual 

factors and their inherent contextual information, we first established groups of available geo-sensors 

and frequently used terms relating to urban sensing. We then elaborated on particular characteristics of 

geo-sensor data in terms of the way the data is generated, the type of sensing, and the type of geographic 

phenomenon sensed. 

Table 1 summarizes current concepts and the terminology used in urban geo-sensing under three 

separate headings: in situ technical sensors, remote technical sensors, and human sensors. These three 

categories are not always easily distinguishable from each other and overlap to a certain degree. While 

the distinction between in situ and remote technical sensors is quite clear (measuring in the immediate 

surroundings of the sensor or measuring at a distance), drawing a strict distinction between technical and 

human sensors can be far more challenging. Our rationale follows that of Resch [23], which defines 

human sensor data as human-generated measurements. These include subjective observations on the 

environment, social media posts, mobile phone calls and text messages, and physiological measurements 

by wearable body sensors. This definition implies a clear distinction between humans that generate data 

and humans that carry “ambient sensors” to measure external parameters (e.g., measuring air quality 

with a mobile sensor). Although both of these measurement types are transmitted by a digital device, the 

actual measurements are generated differently, in one case by humans and in the other by the sensors. 

This definition can entail a certain amount of overlap with the broad concept of VGI, for instance when 

environmental sensor readings are input into a system by a human being. In contrast, people leave behind 

digital traces (whether or not this is intentional) when using, e.g., the mobile network, social media 
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platforms, credit card systems, etc. Such data are machine-generated by an involuntary user-induced 

technical process (see the mobile phone call example above) rather than generated voluntarily by a user, 

but nevertheless reflect the user’s whereabouts. 

Table 1. Examples of sensors used for quantifying context to derive contextual information. 

Terms, related terms, characteristic context parameters, and application fields for different 

types of sensor. 

Term Related Terms Characteristic Context Parameters, and Application Fields 

Technical Sensors—in Situ Sensors 

Environmental 

sensors 

Environmental monitoring, urban 

sensing 

Meteorology and weather [24,25] 

Air pollution/quality monitoring [26–31] 

Heat island detection [28,32,33] 

Flood monitoring [34,35] 

Nuclear radiation safety [36–39] 

Mobile sensors 
Wearable ambient sensors, mobile 

sensor web  

Ubiquitous measurements, e.g., through bike-mounted sensors [40–43] 

Disaster management [37,44–47] 

Embedded mobile sensor web, application-independent [48–50] 

Pervasive sensing 
Ubiquitous sensing, socially aware 

computing 

Smart and aware environments and homes and ambient/active assisted 

living [51–58] 

Pervasive healthcare [59–61] 

RFID-based location and tracking [53,62,63] 

Socially aware computing [14,18,64,65] 

Technical Sensors—Remote Sensors 

Remote sensors 

Remote technical sensors and 

remote sensing systems, from 

satellite-based to terrestrial  

“Classic” airborne and spaceborne optical systems [66–70] 

New developments: high resolution, hyperspectral, LiDAR, UAV [67–74] 

Thermal [75–77] 

Atmosphere/Aerosols [78–81] 

Human Sensors 

People as sensors 

Citizens as sensors, citizen sensing, 

human sensing, human sensors, 

humans as sensors, physiological 

sensors, wearable body sensors, 

participatory sensing, Volunteered 

Geographic Information (VGI) 

Flood monitoring [35,82,83] 

Generic participatory sensing and sensing platforms  

(for smart cities) [84–95] 

Physiological parameters such as pulse, oxygen saturation,  

stress levels [96–101] 

Disaster and incident management [23,83,102] 

Noise mapping [103–107] 

VGI in general and in some of the above mentioned examples 

(including postings in social media regarding public health,  

air quality etc.) [108–118] 

Collective sensing 

Mobile phone sensing, crowd 

sensing, social sensing, online 

sensing, social media  

Disaster and incident management [115,119–122] 

Mobility patterns and transportation [22,105,123–130] 

Socio-physical context estimation [97,105,131–133] 

Tourism [124,134,135] 

Epidemiology and disease detection [136–139] 

The above table illustrates that sensor developments have opened up a whole range of new application 

areas—particularly through the recent proliferation of miniaturized sensors and the extensive 



Sensors 2015, 15 17020 

 

 

developments in environmental sensors, coupled with the breakthrough in approaches involving  

human-sensors (e.g., wrist band sensors in combination with smartphones [98]). This has not only been 

facilitated by technological advances, but also (and perhaps to an even greater extent) by the broad 

adoption of sensor use in everyday urban appliances, which have produced vast quantities of sensor data 

that could potentially be available for urban analysis. In fact, such sensor developments, in combination 

with the possibility of their rapid communication, result in more anthropocentric sensing approaches that 

allow the public to actively contribute to the development of a smart city. In other words, current 

technological trends and, in particular, wearable computing [101], foster the development of “smart” 

citizens and their potential to capture contextual information. This means that these “smart” citizens are 

likely to become key contributors to the development of a smarter city than would be possible from 

purely technical and infrastructural contributions. 

Access to these large sources of data allows measurements to be interpreted differently according to 

a range of contextual parameters, particularly with regard to contextual sensing. These parameters 

include not only data from technical sensors (which can provide a reasonably good indication of the 

physical context of a particular measurement), but also increasing contributions from “human sensors” 

(providing an indication of the emotional context of the particular person involved) in the form of 

physiological sensor data, social media posts, or “people as sensors” observations (see Table 1). 

 

Figure 2. Dimensions involved in sensing (data generation, geographic phenomena, type of 

sensing), and some exemplary blocks (a–f) representing the amount of sensor data assigned 

to each dimension [140]. (a) VGI and mobile network traffic: associated with in situ sensing, 

social phenomena, and user-generated data; (b) VGI in the context of environmental status 

updates: associated with in situ sensing, physical phenomena, and user-generated data;  

(c) Satellite imagery: associated with remote sensing, physical phenomena, and  

machine-generated data; (d) Measurements from sensors and sensor networks: associated 

with in situ sensing, physical phenomena, and machine-generated data; (e) Human 

settlements extracted from satellite imagery: associated with remote sensing, social 

phenomena, and machine-generated data; (f) Numerical data at entrances to, and exits from 

shopping malls, public transport, etc.: associated with in situ sensing, social phenomena 

(e.g., mobility), and machine-generated data.  
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In this way urban geo-analysis approaches are able to gain a certain degree of context awareness, but it is 

increasingly important that they also comply with the paradigm of “socially aware computing” [64,65]. 

Based on the above deliberations, sensor data for context-aware analysis can be described in terms of its 

mode of generation, the geographic phenomena that it relates to, and the type of sensing. Figure 2 

illustrates six different types of sensor data represented by six different blocks (labelled from “a” to “f”) 

and places them in a three-dimensional space according to the above-mentioned dimensions. Note that 

the sizes of the blocks shown in Figure 2 represent only a rough estimate of the proportional volume of 

data, for comparison purposes only. 

3. Contextual Information as the Key for Smart Cities: A Geospatial Perspective 

As discussed in Section 2, a broad mix of technologies and methods allows a variety of physical and 

environmental phenomena, as well as social and human-related phenomena, to be sensed and quantified. 

However, as we know from both published scientific literature [141–146] and our own daily experience, 

most such phenomena interact with each other, or at least exert some influence on each other.  

For instance, as described in the introduction sudden rainfall can change typical mobility patterns within 

a city [18,19], and changes in traffic flow can affect the air quality [17]. As discussed in Section 1.1, the 

geographic phenomena of interest need to be put into context in order to better understand: (i) the 

phenomena; and (ii) the possible underlying processes [21]. A key challenge for smart cities is therefore 

to take into account spatiotemporal contexts, particularly with regard to how people interact with a smart 

city, and how people respond to diverse urban situations. 

3.1. Integrating Contextual Information into Geospatial Analysis for Smart Cities 

As discussed in Section 1.2, human-environment interactions cannot be sensed directly using 

technical or human sensors; an interaction with technology is required in order to obtain a digital 

representation of the particular environmental or social phenomena of interest in order to explore these 

human-environmental interactions. Furthermore, as discussed in the Introduction, context is multifaceted and 

varies across both spatial and temporal scales. The overall challenge of integrating contextual information 

into geospatial analysis for smart cities thus involves both technical and methodological components. 

The context-aware analysis approach [18] is an approach used to achieve context-awareness of 

dynamic social and environmental phenomena. In a nutshell, this approach consolidates data from 

various sensors and sensor networks on a common spatiotemporal basis, in order to identify and 

characterize potential associations and relationships between the different variables and phenomena 

sensed. The approach has been validated on the basis of extraordinary changes in human activity (derived 

from mobile network data) in the context of adverse weather conditions (derived from a set of 

meteorological variables). 

The context-aware analysis approach is embedded in the adaptive geo-monitoring framework [21], 

which follows a bottom-up approach that starts from the sensing interface between the real and the digital 

world and then enables successive increases in the holistic understanding of geographic processes. The 

methodological steps involved—sensing, (context-aware) analysis, and adaptive geo-monitoring—aim to 

provide an improved understanding of relationships, patterns, principles, and, ultimately, processes from 

a geospatial perspective. 
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Contextual information relevant to smart cities can be considered on three scales. Contextual 

information on a small scale relates to individuals and their own immediate surroundings, or to very 

local and short-term interactions, while contextual information on an intermediate scale relates to groups 

of people or social communities and their close surroundings, or to interactions at a neighborhood-level 

and over somewhat longer periods of time; on a large scale, contextual information relates to the current 

population as a whole, and city-wide interactions over the long-term. Additional combinations can, 

however, also exist such as large-scale but short-term interactions (e.g. the overall mobility behavior in 

the city during the sudden onset of heavy rain). This latter combination served as an example for a case 

study that was previously used to validate the context-aware analysis approach mentioned above [18]. 

3.2. Towards a Geospatial Context-Awareness in Smart Cities 

In this subsection we first focus on recent technological trends in information fusion and introduce 

an approach to technology-enabled contextual sensing for smart cities. We then focus on geo-sensor 

information fusion, specifically considering multispectral data derived from remote sensors, which can 

provide additional insights for smart cities, including insights into matters of public health. 

3.2.1. Information Fusion: From Location-Only to Human-Centered Approaches 

Recent technological trends, including the increased use of the Internet of Things (IoT) and smart home 

(SH) technology, clearly indicate that the “smartness” of context-aware analyses is moving closer to the 

technical sensing interface between the real world and the digital world [53,94,101,147–149].  

Such trends can lead to a new and—from a human-centered perspective—in situ layer of smart sensing 

capabilities that extend beyond location alone, and to greater context-awareness. In other words, 

analytical “smartness” in solving on site problems is partly “outsourced” or ”decentralized”, while still 

remaining embedded in the big picture of a smart city. 

 

Figure 3. Technology-enabled contextual sensing for smart cities: context-enriched human 

and technical geo-sensor information for smart cities (note: interaction interfaces between 

the environment, humans, and technology match those in Figure 1, with emphasis placed on 

the sensing interface between the real world and the digital world). 
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The sensing interface shown in Figure 3, which is actually a combination of the  

environment-technology interface and the human-technology interface (Figure 1), connects the real 

world with the digital world. On the environmental side (Figure 3, lower left), well-established remote 

and in situ sensing technologies and methods enable real-time monitoring of physical and environment 

phenomena (e.g., the weather, land cover, etc.). On the human side (Figure 3, lower right) a variety of 

human sensors (people as sensors [23], citizens as sensors [108,109]) and a large body of social media 

and VGI data, which together can be seen as social sensors and social sensor networks [124], enable 

real-time “monitoring” of social and human-related phenomena (e.g., mobility, activity, etc.). In addition 

(as already mentioned above and shown in Figure 3), the IoT and the SH technology enrich the sensing 

interface since, as already suggested in the Introduction, “every electronic digital device can be seen as 

a sensor”. This enrichment takes previous sensing approaches and sensor information to the next level: 

integrating the “chameleon” of context by means of diverse contextual information with human and 

technical geo-sensor information through the use of contextual sensing. 

3.3.2. From Geo-Sensor Information Fusion to Smart Cities: Still a Long Way to Go 

Remote sensing appears to be predestined to unravel the complexities of city landscapes However, 

the range of spatial and temporal sizes of urban features and the resulting range of scales and the fact 

that remote sensing basically provides a “bird’s-eye view” make this approach somewhat unfavorable 

in the context of smart cities. The number of published research papers that mention both “remote 

sensing” (RS) and “smart cities” is surprisingly limited, but has been increasing recently. However, the 

number of convincing applications of genuine uses of remote sensing for smart city applications remains 

limited. The authors are of the opinion that, while this may be due to a current bottleneck in smart city 

research, RS could eventually develop a central role in such research, in the same way as it already has 

in atmospheric research. 

A recent example for such a development involves city-wide energy efficiency measures. Such 

measures require not only efficiencies in individual buildings, but also maps and balances of energy 

losses and potential savings [74]. Light emission and thermographic maps may therefore be used in 

future to provide a picture of the specific performance of individual buildings, and may consequently 

contribute to a better understanding of the behavior of urban citizens. A current research focus is on the 

contribution of cities to increased atmospheric concentrations of CO2, which is partly accredited to the 

inefficient use of energy. Another focus is on energy saving and cost reduction measures, to which smart 

city research can contribute by determining which areas are the least energy-efficient [70]. Remote 

sensing is generally limited to a “birds-eye” (nadir) view, with just a few exceptions. Unmanned Aerial 

Vehicles (UAVs) could be used but urban environments in most of the world’s industrialized countries 

impose severe restrictions on their use (for good reasons). In theory, two types of energy loss can be 

identified from space: (1) thermal energy loss due to the heating or cooling of buildings; and  

(2) excessive lighting (night-time lights), with the latter often serving as a proxy for excessive nocturnal 

energy use. Within the European Union, high resolution data sets such as the “Urban atlas” and the “High 

resolution layers”, which are available from the European Environment Agency, can be combined with 

other data to provide an attribution of energy emissions. The aim here is again to provide an overview, 
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expressed for instance through heat maps and hotspot maps, that will contribute to an improved 

understanding of the emissions from specific areas within a city. 

Another area addressed herein very briefly is public health. City authorities and urban planners need 

cause-effect relationship assessments between territory and health outcomes in order to create 

sustainable healthy urban environments, as required by ISO/DIS 37120 (see Section 4 below).  

For example, the number of days in which the maximum recommended concentrations of ozone, carbon 

monoxide, and particulate matter (PM) with a particle diameter less than 10 microns (PM10), are 

exceeded for more than 8 h, the number of hours exceeding maximum atmospheric concentrations of 

NO2/SO2, or annual concentrations of NO2 and PM10. Such data sets ultimately allow the influence of 

alternative city developments to be modeled in the context of different climate and air quality scenarios. 

4. Conclusions and Outlook 

In this paper we have attempted to integrate spatiotemporal contextual information with human and 

technical geo-sensor information for smart cities. We first highlighted the significance of context and 

introduced a model of interactions between humans, the environment, and technology within a smart 

city. We then elaborated on the dimensions of urban sensing and critically discussed several examples 

of different types of sensor used for quantifying context. A novel, human-centric contextual sensing 

approach for smart cities was proposed to integrate spatiotemporal contextual information at the  

humans-technology and environment-technology interfaces into more holistic urban analysis scenarios. 

We have critically examined this approach and elaborated on the benefits to citizens in terms of quality 

of life. The authors believe that this article will help to answer three questions on smart cities and 

contextual sensing. 

4.1. Is Technology the Driving Force behind the Development of Smart Cities? 

An analysis of the relevant published literature has indicated rapid increases in sensor availability, as 

well as improvements in sensor technology and hence sensing capabilities, particularly with respect to 

miniaturization and cost reduction. Smart city applications often relate to questions associated with 

energy consumption and mobility, and sometimes also to public health issues (mainly to do with air and 

water quality). The question remains as to whether or not these technologies improve the QoL for urban 

societies. In most of the relevant published literature (with exceptions in the fields of architecture and 

planning), sensor developments driven by technical requirements exceed those driven by factors relating 

to the QoL in general and the QoL in smart cities in particular. This may not be a favorable trend since 

there is at present no certainty that citizens will reap any direct benefits from the technical developments. 

Additionally, as discussed in Sections 2 and 3, smart citizens could become key contributors to the 

development of smart cities, thereby stimulating a positive feedback loop between contributors and 

beneficiaries within a smart city environment. 

The authors suggest that smart city developments should be guided by clearly expressed demands 

from the city’s inhabitants. Improving the QoL of citizens should be the overarching objective but it 

seems doubtful that any improvement in QoL can be demonstrated to have resulted to date from most of 

the developments related to the establishment of smart cities. Contextual sensing may therefore be seen 

as a first link in a value creation chain towards a more holistic process understanding, specifically for 
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smart city developments. As outlined above, additional links are context-aware analysis and adaptive 

geo-monitoring, and also possibly geo-process mining, which can be seen as counterpart of business 

process mining but in the geospatial domain. We suggest that only by joining all these links together 

may lead to potential measures to improve urban QoL. An interesting attempt to define methodologies 

that can be used to steer the development of city services and produce improvements in the QoL of 

citizens, together with a set of indicators that can be used to measure the results, is the ISO/DIS 37120 

standard (Sustainable development and resilience of communities—Indicators for city services and 

quality of life). This standard is organized into 17 “themes” but places particular emphasis on geospatial 

technologies including geo-sensors. Geospatial information is the key to indicator-based performance 

analysis in urban environments. 

4.2. How Can Smart Cities be Identified? 

The results of the literature analysis carried out for this article complement the views and viewpoints, 

especially the remote sensing viewpoint, expressed by Blaschke et al. [72]. Airborne and spaceborne 

remote sensing provide limited “snap-shots” of urban environments but are unable to fully capture urban 

dynamics. UAVs can provide supplementary information but their use is highly restricted in many 

countries, particularly in the more industrialized countries. 

Urban areas are structurally complex 3D environments that evolve continuously with time. The 

problem faced is therefore how to use remote sensing technologies, in addition to vast numbers of in situ 

observations, to provide a big picture of a city. Only when this can be achieved, then the general 

appearance of a city, or parts of a city, can be integrated with these individual measurements into  

a smart city. 

Furthermore, the numerous human activities that take place within urban environments are more 

dynamic than developments in their physical structure or changes in their functional configuration. In 

an attempt to achieve a better understanding of urban environments and the their inherent dynamics we 

have provided insights into the two currently discrete technologies of (i) remote sensing; and (ii) in situ 

sensing, and we argue that the sensor web and standardized interfaces for data and information exchange 

provide the opportunity to combine the strengths of both sensors and standardization, with the potential 

to produce new, meaningful, and useful “urban intelligence”. 

4.3. Can Contextual Sensing Lead to a Better Quality of Life? 

This answer to this question may appear obvious, but having revisited hundreds of scientific articles 

relevant to smart cities during the course of preparing this article, we have been surprised how  

techno-positivistic many of the approaches are. We conclude that it is far from clear that a larger number 

of sensors, more sensor applications, more complex data fusion methods, and even—as proclaimed in 

this article—the inclusion of context-aware approaches, will lead to any improvement in the QoL of 

citizens. The history of links between sensing technologies and socio-spatial applications in an urban 

environment is brief, and the vast majority of scientific publications relating to the development of smart 

cities paint a bright future. This article reveals that, despite the absence of clearly defined and widely 

agreed terminologies, the number of sensing technologies and sensing applications is increasing rapidly, 

although the distribution between sensors and applications is not even. The capabilities of in situ and 
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mobile sensors are driving these developments, while the use of remote sensing technologies in smart 

city applications remains limited. Nevertheless, we expect the social sciences—and also the public 

administration and private business involved in smart city development—to require expanded urban 

remote sensing applications in the future. A full integration of the various sensor technologies analyzed 

and grouped in this article, together with strategies to capture contextual information, will help society 

to unravel the many critical relationships that exist between humans and their urban environments. 
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