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Abstract: This work presents a procedure for refining depth maps acquired using  

RGB-D (depth) cameras. With numerous new structured-light RGB-D cameras, acquiring 

high-resolution depth maps has become easy. However, there are problems such as 

undesired occlusion, inaccurate depth values, and temporal variation of pixel values  

when using these cameras. In this paper, a proposed method based on an exemplar-based 

inpainting method is proposed to remove artefacts in depth maps obtained using RGB-D 

cameras. Exemplar-based inpainting has been used to repair an object-removed image.  

The concept underlying this inpainting method is similar to that underlying the procedure 

for padding the occlusions in the depth data obtained using RGB-D cameras. Therefore, 

our proposed method enhances and modifies the inpainting method for application in and 

the refinement of RGB-D depth data image quality. For evaluating the experimental results 

of the proposed method, our proposed method was tested on the Tsukuba Stereo Dataset, 

which contains a 3D video with the ground truths of depth maps, occlusion maps, RGB 

images, the peak signal-to-noise ratio, and the computational time as the evaluation 

metrics. Moreover, a set of self-recorded RGB-D depth maps and their refined versions are 

presented to show the effectiveness of the proposed method. 
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1. Introduction 

The availability of low-cost RGB-D (depth) sensors has helped expand numerous research fields 

such as image processing [1], 3D printing [2], surveillance [3], object tracking [4], and the computer 

vision of robotics [5]. Previously, many other types of cameras were used to generate depth maps, 

namely time of flight (TOF), light detection and ranging (LIDAR), and stereo cameras [6], and each 

had a different principle of operation. However, they were substantially more expensive and occupied 

a large volume. By contrast, low-cost RGB-D sensors are handheld devices that are easy to set up and 

affordable. Examples of these low-cost depth sensors are Microsoft’s Kinect and Asus’s Xtion PRO 

LIVE. These sensors have been widely used in the aforementioned applications because of their high 

performance [6]. 

However, the problems associated with these sensors are the presence of noise or outliers and the 

instability of depth maps in the spatial domain, which reduce the performance of the depth camera in 

applications. Annoying outliers appearing in depth images contaminate the depth information, and the 

depth pixel value obtained in the spatial domain is inaccurate. 

Solving the noise problem is crucial because noise affects applications such as 3D reconstruction 

and depth data compression by using an RGB-D camera [7]. Although there have been many studies 

on the applications of these depth sensors, few have focused on the problems inherent to these  

sensors [8]. 

RGB-D sensors such as Microsoft Kinect and Asus Xtion PRO LIVE have many problems with 

regard to the generated depth images: noise, inaccurate depth pixel values, and temporal vibrations. 

Errors in the sensors are usually caused by the inadequate calibration of sensors and the inaccurate 

measurement of disparities [1] between sensors. They are also related to the measurement setup,  

such as light conditions and image geometry (distance between the objects and the sensors, and the 

orientation of the objects). In a very bright environment, depth images recorded using RGB-D sensors 

cannot form the speckle pattern of the projected object because of the low contrast between the 

infrared (IR) pattern and bright light [9]. In addition to the sensors and environment, the properties of 

the objects also affect the depth images. A shiny or reflective surface of an object appears overexposed 

in an infrared image and leads to error disparities. 

Many studies have been conducted on the errors appearing in RGB-D depth images. Some studies 

have used traditional approaches involving denoising algorithms, for example, the bilateral filtering 

algorithm [10]. A modification of bilateral filtering was proposed in [7], which also proposed divisive 

normalized bilateral filtering (DNBL) for achieving temporal and spatial filtering. Some studies were 

conducted to improve the quality of depth images; a stereo matching method that prevents holes was 

proposed in [11,12]. Studies on temporal filtering were presented in [8,13]. The two approaches 

presented in [8,13] involve temporal filters with adaptive thresholds that filter out unreasonable depth 

values and smooth the temporal vibration. In [14], a fusion-based inpainting method was proposed to 

improve the quality of the depth map. However, these approaches ignore spatial filtering, which leads 
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to undesirable values in depth images. A few approaches combining temporal and spatial filtering have 

been proposed. In [7], Fu et al. proposed a method to fill the holes in depth images in the spatial 

domain, and applied a modified bilateral filter to reduce vibrations in the temporal domain. However, 

the prehole filling of the authors’ assumption and blurry image leads to inaccuracy of depth pixel 

values. Furthermore, the performance has not been proven because of the lack of quantitative data.  

In [15], the authors proposed a temporal and spatial denoising filter algorithm to enhance the quality of 

depth images by using RGB images. The algorithm first determines the median of the pixel values in 

the temporal domain. It then fills the holes in the depth image by using a median filter and several 

thresholds. However, this method relies on many thresholds and therefore is not adaptive. Moreover, 

the use of RGB images for denoising has a drawback; an example is a scene with different depth 

measurements but with objects of the same color or objects in a dark environment. The method does 

not provide quantitative information about the depth accuracy of pixel values. It is difficult to 

distinguish the quality of depth images solely from visual information. In [16], a depth color fusion 

method was proposed. The method could efficiently reduce distance-dependent depth maps, spatial 

noise, and temporal random fluctuations. However, the method requires processing both depth and 

color images, including foreground and background segmentation; thus, it may cost more hardware 

requests such as parallel implementation with a graphics processing unit architecture or cloud computing. 

To remove the depth image noise, obtain accurate depth values, and eliminate depth instability in 

the temporal domain, a method based on the modification of exemplar-based inpainting, which was 

originally proposed in [17], is introduced in this paper. In [17], Criminisi et al. proposed a method to 

fill holes that were removed previously. The method first assigns priorities to pixel locations ready to 

be filled. Second, according to the priority, the pixel or area is filled by referring to neighboring pixels 

or a macroblock. The method is used to inpaint the region or object removed an RGB image. In [18], 

another method based on the modification of exemplar-based inpainting was proposed. However,  

this method does not provide the optimal combination of parameters and an evaluation of performance, 

and ignores spatial filtering. 

Our study, based on the method in [17], is similar to the concept of filling holes or outliers in depth 

images. Thus, the proposed method can be used to fill holes, increase the accuracy of depth values, and 

smooth temporal vibrations for enhancing the quality of depth images generated using RGB-D sensors. 

2. Methodology 

As mentioned in the previous section, depth maps generated using depth sensors show noise  

or outliers, inaccurately measured depth distances, and unstable depth values in the temporal domain. 

To overcome these problems, a method based on exemplar-based inpainting, which was presented  

in [17], is proposed. The proposed method includes a modified exemplar-based inpainting method and 

a temporal filter to pad outliers, correct inaccurate pixels, and stabilize the temporal variation in the 

pixel values in depth maps. 

The system architecture is shown in Figure 1. There are five steps in the processing of a  

noise-containing depth sequence: (1) edge marking; (2) assigning edge priorities; (3) hole padding;  

(4) updating priority values; and (5) temporal filtering. Steps 1 to 4 are based on a modified version of 
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the exemplar-based inpainting method, with the modification being performed for application to depth 

map filtering. 

 

Figure 1. System architecture of the proposed method. 

2.1. System Architecture 

In Figure 1, an RGB-D sensor generates depth sequences and color sequences, but only the depth 

sequences are input. In the edge marking step, the system marks the edges around the holes or outliers, 

and these marked edges are the target pixels chosen to be padded first, as shown in Figure 2a. In Figure 2a, 

ε denotes the marked edge (red line), ι denotes the target region (hole region), and γ denotes the source 

region (holeless regions). 

 
(a) (b) (c) 

Figure 2. (a) Edge marking; (b) search range in the hole-padding process; (c) patch pasting 

in the hole-padding process. 

   



Sensors 2015, 15 18510 

 

 

In the edge priority step, the pixels of the depth map, which are the edges marked in the edge 

marking step, are assigned priorities according to a certain rule introduced in Section 2.2. As shown in 

Figure 2a, the priorities are assigned to pixels on the marked edge ε. 

In the hole-padding step, holes are padded on the basis of the priorities assigned to the pixels.  

The padding method involves a comparison of the target patch with a neighboring patch within the 

search range. The comparison begins with the highest priority pixel located at the center and the search 

range within [−n, +n] increased in the x and y directions. The similarity between the target patch and 

the reference patch is then evaluated and the target areas are replaced with the most similar reference 

patch, as shown in Figure 2b. 

In Figure 2b, the red box denotes the target patch, p denotes the center of the patch, and k denotes 

the search range. Figure 2c shows the white and blue areas in the red macroblock of Figure 2b padded 

with a reference patch from the blue areas. 

After the target areas are replaced with the reference patch, new edges and holes emerge. As shown 

in Figure 2c, the green edges are the newly created edges that have no priorities. Therefore, in the 

updating priority values step, the green edges are assigned priorities, and the hole-padding step is then 

executed repeatedly until all the hole areas (target regions) are padded with valid values. In the last 

temporal filtering step, pixels are filtered to eliminate temporal variation in the pixel base. Details of 

each step are provided in the following sections. 

2.2. Edge Priorities 

The edge marking process is the same as that in [17]. After edge marking, the edge priorities 

process assigns priorities to all the edges marked in the edge marking process. The priority assignment 

was modified on the basis of exemplar-based inpainting by using an additional weighting scheme to 

improve the depth image quality. The priority is computed and assigned for every patch on the 

boundary, and the priority function is shown in Equation (1). 

Given a point p that is the center of patch Γp for some p∈ε (Figure 2b), the priority P(p) is defined 

as the product of three terms: 

P(p) = C(p)D(p)R(p) (1)

where C(p) denotes the confidence term, D(p) represents the data term, and R(p) denotes the  

right-first term. C(p) and D(p) are the same as those in [17]. R(p) is the weighting term, and it is based 

on the depth image IR shadow phenomenon. In this study, the setting of R(p) in Equation (2) is based 

on experiments. Noise typically appears in two parts in a scene: (1) in the body of the object and  

(2) around the right part of the object’s silhouette. One of these parts should be removed first. In R(p), 

(2) is processed first. The following functions describe how R(p) works:  
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Equations (2)–(5) are explained from the last to the first as follows: ݔ)ܫ,  is the intensity of (ݕ

position (ݔ, ,ݔ) and in Equation (5), I(x,y) = 0 denotes that position ,(ݕ  is a hole. In Equations (3) (ݕ
and (4), ݊ is half of the length or width of patch  (usually the length is equal to the width);  ݔ)ܨ,  (ݕ
indicates whether position (ݔ,  is a hole (0 pixel intensity denotes holes). LH(p) refers to the number (ݕ

of holes on the left side. 

Assigning higher weights to the area around the right part of the object’s silhouette influences the 

padding direction in R(p). In this process, in addition to the previous two weighting terms, C(p) and 

D(p), R(p) should control the padding flow to pad the area around the object’s silhouette. Because the 

noise around the object’s silhouette is usually considered as background noise, the background area 

should be padded instead of the objects. When the noise around the right part of the object’s silhouette 

is padded, for eliminating the noise in the body of the object, the background area is not considered as 

the reference; instead, the body area pixels are used as the reference. 

2.3. Hole Padding 

In this step, the holes on the depth map are filled patch by patch. In the edge priorities step, the edge 

pixels were assigned priorities. On the basis of these priorities, the edge pixel with a higher priority is 

chosen to start the hole-padding process. To start the process, pixel p is set to be the center of patch Γp 

and a search is made for the most similar areas in the source region γ, as shown in Figure 2b. 

To search for the most similar areas for padding, the patch computes the sum of squared differences 

with its neighboring patches. This direct sampling source region approach avoids blurry fill-in, which 

causes blurring in depth maps [15]. The search process is valid in the source region, and it would not 

be valid in any similar patch that includes hole pixels. The comparing function is defined as: 

),(minarg qpg
q

ΓΓ=Γ
γ∈Γ

d  (6)

where Γq denotes the patch centered at q. The function compares the target patch Γp with its neighbor Γq, and, depending on the comparison result, either chooses Γp as the candidate patch or discards it. 

The comparison process starts with a certain range within the search range. The search range begins 

from the center p and extends to a distance of k/2 pixel toward the top, left, right, and bottom of p. 

Different search methods provide different advantages in terms of speed or other evaluation metrics. 

The proposed method adopts a modified three-step search (TSS). 
  

pΓ
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The TSS consists of three steps: 

Step 1 An initial step size is chosen. Eight patches at a distance of the step size from the center are 

chosen for comparisons. 

Step 2 The step size is half of the search range in Step 1. The center is moved to the point with the 

minimum distortion. 

Step 3 Steps 1 and 2 are repeated until the step size is smaller than 1. 

The process of the modified TSS is similar to that of the TSS, but it exhibits enhanced performance.  

A larger beginning search range for the modified TSS generates more comparisons. In Figure 3, all the 

blue points indicate the search points, and the search process starts from these points. The eight blue 

points around the center are extra search points, and such addition does not occur in the traditional 

TSS. A larger search range is associated with a larger number of search points. For example, in Figure 3, 

given a 32 × 32 search range, the beginning search range in the TSS is 16 × 16. The beginning search 

range in the modified TSS is the same as that in the TSS, and the first step of the modified TSS 

performs 8 × (k/16) + 1 comparisons. For a search range of 32 × 32, the modified TSS performs  

8 × (32/16) + 1 = 17 comparisons, as shown in Figure 3. Steps 2 and 3 of the modified TSS are exactly 

the same as those of the TSS, with the beginning search range being half and a quarter of those of the 

TSS for Steps 2 and 3, respectively. 

 

Figure 3. Modified three-step search. 

The modified TSS was devised by adapting the TSS to our method; for example, in the modified 

method, when comparing patches with the target patch, any patch containing holes is ignored. If all the 

patches contain holes, then in Step 1, none of them can be a candidate for comparison with the target 

patch. Instead, the search range would be increased as the patch comparison restarts. If all the patches 

are ignored in Step 2, the new target point would be the same as that chosen in Step 1, and the patches 

would be compared in Step 3. 

For updating the priority value, the priority computation is similar to that in [17]. R(p) is not 

recomputed to ensure the padding flows toward the padded areas but not around the background.  

The updating process proceeds until all the edges are considered and holes padded. 
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2.4. Temporal Filtering 

The temporal filtering process is performed to prevent the temporal vibration of depth values. In a 

video sequence, as shown in Figure 1, the pixel values vary with the passage of time. In this step, by 

applying a temporal filter, the variation of pixel values at a given position is smoothed. The proposed 

temporal filter in design is also considered the spatial components so that the filter can reduce spatial 

noise again. The following functions provide details of the temporal filter: 

,ݔ)௧ܫ (ݕ = ൞෍ܵܩ௧(ݔ, (ݕ ∙ ݐ)ܩ + ݆) ∙ ,ݔ)௧ି௝ܫ ௠߱(ݕ
௝ୀ଴ , ݂݅ ,ݔ)௧ܫ) (ݕ − ,ݔ)௧ିଵܫ ((ݕ ≤ ܶℎ∆ܫ௧(ݔ, ,(ݕ ݁ݏ݅ݓݎℎ݁ݐ݋  (7)

,ݔ)௧ܵܩ (ݕ = ݁ି௫మା௬మଶఙೞమ  (8)

(ݐ)ܩ = 1ඥ2ߪߨ௧ଶ ݁ି൬ ௧మଶఙ೟మ൰ (9)

߱ =෍ݐ)ܩ + ݆)௠
௝ୀ଴  (10)

where (ݐ)ܩ  denotes a one-dimensional Gaussian filter, and ܵܩ௧(ݔ, (ݕ  denotes a two-dimensional 

Gaussian filter; in Equation (7), t denotes the current frame index, ܫ௧(ݔ,  denotes the current frame (ݕ

pixel intensity, 	ܶℎ∆ denotes the threshold for the intensity difference between a current frame and a 

previous frame, and ω denotes the sum of the Gaussian functions; in Equations (8) and (9), σ௧ and σ௦ 
are both the standard deviations. 

The function Equation (7) calculates the difference between the current frame and previous frames. 

To observe whether a pixel value varies in the temporal domain, the threshold is set to a certain value 

to determine whether the pixel state is moving or static. If the pixel state is moving, the pixel value 

varies in a large range. Thus, if the range is larger than the threshold, the pixel value would not be 

replaced by a new value. However, if the pixel between frames is within a small range, it would be 

interpreted as being in a static state, and the value would be replaced with a value similar to the values 

of the previous frames. Thus, a new pixel value would be calculated on the basis of Equation (7). 

3. Experimental Results 

Our proposed method was tested on the following two sets of databases: (1) Tsukuba Stereo  

Dataset [19] and (2) depth maps of real-world scenes generated using Asus Xtion PRO LIVE, and 

Milani’s Kinect dataset [20]. Because the first dataset provides the ground truth for evaluating the 

padding results, its peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and computational 

time can be calculated for comparison with those of the original unpadded depth maps with occlusion. 

For the second and third dataset, because the ground truth cannot be acquired for comparison with the 

original depth maps, only the computational time and padded depth maps can be shown for evaluating 

the performance of the proposed method. The third dataset is from Milani’s Kinect dataset [20]. Milani 

used two Kinects to perform the environment, the first Kinect generated the cross-talk noise to the 
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second Kinect, and the second Kinect acquired the noisy depth maps. These noisy depth maps were 

obtained in different included angles (90°, 54°, 36°, 18°, 0°) of two Kinects in order to vary the level 

of cross-talk noise. The experimental results were compared with those of [7,21] to demonstrate the 

superiority of the proposed method. 

All the experiments were conducted on an Intel(R) Core(TM) i7-3370 3.4 GHz CPU with 16.0 GB 

of DDR3 DRAM. The programs were implemented in C++ language. The search range and patch were 

set to different sizes for performance evaluation. 

3.1. Experiments on the Tsukuba Stereo Dataset 

The experiments on the Tsukuba Stereo Dataset were divided into two parts. First, ten different 

images (Figure 4) were chosen from 1800 images, and performance evaluation was performed for 

different patch sizes and search ranges. Second, comparisons of the experimental results obtained for 

the ten images were performed for different patch sizes and search ranges in the first step, and the patch 

size and search range corresponding to the most favorable performance were applied to all 1800 frames.  

The image indices were 1, 509, 481, 214, 291, 347, 459, 525, 715 and 991. These ten images were 

reconstructed for greater similarity with the ground truth, except for the large hole areas to the right of 

the scene. All the images were computed in a patch size of 3 × 3, and the search range was 104 × 104. 

All the PSNR improvements are shown in Figure 4. 

RGB Images Depth Maps Spatial-Temporal DNBL [7] Temporal Filter [21] Proposed Method 

   

PSNR (dB) 27.659 32.194 20.436 32.036 

Time Consumption (s) None 281.671 97.798 13.125 

   

PSNR (dB) 27.038 30.900 20.3262 30.120 

Time Consumption (s) None 1255.42 68.318 18.415 

   

PSNR (dB) 29.272 35.117 25.5006 37.488 

Time Consumption (s) None 854.455 61.848 14.389 

   

PSNR (dB) 22.824 26.272 25.7746 28.141 

Time Consumption (s) None 1060.41 68.425 14.833 

Figure 4. Cont. 
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PSNR (dB) 26.972 30.560 26.1113 37.665 

Time Consumption (s) None 1316.29 86.421 17.013 

   

PSNR (dB) 26.549 32.307 18.973 32.343 

Time Consumption (s) None 1234.68 87.294 13.666 

   

PSNR (dB) 31.92 35.92 27.0932 38.48 

Time Consumption (s) None 740.455 76.788 8.858 

   

PSNR (dB) 20.0059 21.3026 18.7309 24.0438 

Time Consumption (s) None 1398.61 96.434 12.27 

   

PSNR (dB) 29.665 35.517 28.9299 43.772 

Time Consumption (s) None 405.888 89.239 7.555 

   

PSNR (dB) 32.7814 36.9473 26.525 38.3118 

Time Consumption (s) None 567.964 104.831 5.309 

Figure 4. Ten different images from the Tsukuba Stereo Dataset. 

Table 1 shows the results obtained for the ten images for different patch sizes. The leftmost column 

shows different frame indices. The next four columns show the performance improvements in the 

PSNR for images with different patch sizes, and each value is the mean of PSNR improvements 

obtained with different search ranges (from 8 × 8 to 112 × 112). For each frame, the rightmost column 

shows the patch size corresponding to the most favorable result. Table 2 that has same experimental 

conditions as Table 1 shows the mean SSIM values after denosing versus patch size. And further,  

the most right columns of Tables 1 and 2 can be respectively illustrated as Figures 5 and 6. Figure 5 

shows the curve of average of mean PSNR Improvements versus patch size. Figure 6 shows the curve 

of average of mean SSIMs after denoising versus patch size. 
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Table 1. Mean PSNR improvement vs. patch size. 

Index 

Patch 

Size 
1 509 481 214 291 347 459 525 715 991 Average 

3 × 3 4.006 2.474 7.266 5.252 9.305 2.688 6.252 3.739 13.807 5.652 6.044 

5 × 5 4.372 1.332 7.273 5.118 9.860 2.670 5.479 2.568 15.461 5.787 5.992 

7 × 7 2.890 1.595 7.673 5.344 8.871 3.209 4.058 3.516 16.059 5.275 5.849 

9 × 9 2.884 1.468 7.302 5.185 9.607 5.380 4.590 3.423 16.136 5.705 6.168 

11 × 11 2.869 0.925 7.394 5.024 10.058 5.262 5.010 3.161 13.807 7.601 6.111 

13 × 13 2.508 0.994 7.520 5.002 10.843 5.573 5.161 3.231 14.517 7.774 6.312 

15 × 15 2.822 1.103 7.722 5.084 10.777 4.461 4.787 3.473 13.825 9.812 6.387 

17 × 17 2.499 0.228 7.846 5.262 10.501 5.559 4.249 3.590 18.118 10.543 6.840 

19 × 19 2.611 0.461 7.669 5.204 11.464 5.224 4.797 3.623 16.403 10.100 6.756 

21 × 21 2.780 0.941 8.301 5.213 9.926 5.987 4.885 3.210 18.397 10.295 6.994 

23 × 23 3.033 0.984 7.701 4.972 10.818 5.277 4.250 3.133 16.272 11.121 6.756 

25 × 25 2.924 0.270 8.525 5.080 10.442 5.417 5.880 3.900 16.707 11.406 7.055 

27 × 27 2.468 0.433 7.180 5.032 10.636 5.037 5.971 3.721 17.395 11.285 6.916 

29 × 29 2.825 −0.485 8.651 5.104 10.105 5.795 4.690 3.414 17.638 10.049 6.779 

31 × 31 3.334 0.536 7.624 5.130 9.864 5.013 5.467 2.996 17.705 10.697 6.837 

The Best 5 × 5 3 × 3 29 × 29 7 × 7 19 × 19 21 × 21 3 × 3 25 × 25 21 × 21 25 × 25 25 × 25 

Table 2. Mean SSIM after denoising vs. patch size. 

Index 

Patch 

Size 
1 509 481 214 291 347 459 525 715 991 Average 

3 × 3 0.950 0.933 0.970 0.969 0.970 0.942 0.977 0.916 0.993 0.981 0.960 

5 × 5 0.948 0.932 0.969 0.968 0.970 0.939 0.975 0.908 0.995 0.980 0.958 

7 × 7 0.948 0.928 0.970 0.968 0.967 0.944 0.971 0.916 0.995 0.982 0.959 

9 × 9 0.944 0.928 0.971 0.968 0.969 0.953 0.972 0.916 0.995 0.984 0.960 

11 × 11 0.944 0.926 0.971 0.965 0.970 0.956 0.972 0.911 0.994 0.987 0.960 

13 × 13 0.942 0.925 0.971 0.965 0.974 0.956 0.972 0.912 0.994 0.989 0.960 

15 × 15 0.944 0.931 0.971 0.964 0.974 0.956 0.972 0.913 0.994 0.992 0.961 

17 × 17 0.940 0.925 0.972 0.965 0.972 0.956 0.969 0.913 0.996 0.992 0.960 

19 × 19 0.938 0.920 0.971 0.963 0.977 0.958 0.970 0.911 0.994 0.991 0.959 

21 × 21 0.941 0.921 0.973 0.963 0.975 0.962 0.971 0.911 0.995 0.992 0.960 

23 × 23 0.942 0.922 0.971 0.962 0.974 0.959 0.968 0.911 0.994 0.993 0.960 

25 × 25 0.942 0.914 0.975 0.965 0.974 0.963 0.973 0.911 0.994 0.993 0.961 

27 × 27 0.936 0.912 0.968 0.962 0.972 0.959 0.972 0.902 0.994 0.993 0.957 

29 × 29 0.941 0.911 0.974 0.964 0.972 0.964 0.971 0.907 0.995 0.991 0.959 

31 × 31 0.942 0.913 0.969 0.964 0.972 0.959 0.972 0.903 0.994 0.992 0.958 

The Best 3 × 3 3 × 3 25 × 25 3 × 3 19 × 19 29 × 29 3 × 3 9 × 9 17 × 17 27 × 27 25 × 25 
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Figure 5. Curve of average of mean PSNR Improvements vs. patch size. 

  

Figure 6. Curve of average of mean SSIMs after denoising vs. patch size. 

In Tables 3 and 4, the mean computational time (in seconds) is listed for different search ranges.  

All the columns are arranged similarly to those of Table 1. Table 5 shows the results of comparisons 

between different search ranges. The leftmost column shows the search range (n × n). The next four 

columns show the mean PSNR improvement of the ten images for different patch sizes. The rightmost 

column shows the rank of the search ranges and the most favorable one is presented in boldface.  
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Table 6 that has same experimental conditions as Table 5 shows the mean SSIM values after denosing 

versus search range. 

Table 3. Mean computational time vs. small patch size. 

Patch Size 

Search Range 3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15 17 × 17 

8 14.894 7.220 5.369 4.461 4.215 4.209 4.233 4.367 
16 15.034 7.305 5.426 4.545 4.274 4.210 4.208 4.292 
24 15.166 7.387 5.522 4.534 4.292 4.256 4.255 4.340 
32 15.303 7.460 5.473 4.561 4.374 4.306 4.301 4.387 
40 15.425 7.537 5.367 4.568 4.397 4.360 4.352 4.438 
48 15.596 7.611 5.417 4.676 4.486 4.418 4.410 4.492 
56 15.767 7.697 5.506 4.690 4.510 4.473 4.471 4.553 
64 15.937 7.751 5.596 4.800 4.569 4.534 4.526 4.610 
72 16.094 7.860 5.590 4.811 4.626 4.592 4.587 4.671 
80 16.268 7.957 5.689 4.917 4.682 4.648 4.651 4.733 
88 16.431 7.902 5.653 4.939 4.744 4.708 4.711 4.791 
96 16.636 7.982 5.797 5.044 4.808 4.770 4.764 4.857 

104 16.812 8.087 5.834 5.061 4.861 4.828 4.827 4.914 
112 16.970 8.039 5.853 5.122 4.922 4.887 4.890 4.978 

Table 4. Mean computational time vs. bigger patch size. 

Patch Size 

Search Range 19 × 19 21 × 21 23 × 23 25 × 25 27 × 27 29 × 29 31 × 31 

8 4.481 4.585 4.735 4.964 5.128 5.352 5.468 
16 4.399 4.512 4.654 4.881 5.044 5.262 5.387 
24 4.407 4.469 4.566 4.704 4.867 5.078 5.209 
32 4.458 4.515 4.609 4.747 4.849 4.978 5.025 
40 4.508 4.566 4.658 4.794 4.896 5.022 5.068 
48 4.566 4.622 4.716 4.854 4.950 5.076 5.120 
56 4.621 4.684 4.774 4.912 5.006 5.133 5.174 
64 4.683 4.740 4.837 4.975 5.068 5.194 5.233 
72 4.743 4.800 4.897 5.040 5.137 5.260 5.300 
80 4.799 4.865 4.959 5.101 5.198 5.325 5.364 
88 4.871 4.923 5.023 5.170 5.269 5.393 5.434 
96 4.931 4.992 5.092 5.233 5.333 5.463 5.503 

104 4.993 5.052 5.156 5.301 5.406 5.529 5.578 
112 5.051 5.114 5.214 5.369 5.471 5.602 5.643 

According to Tables 1–6, the patch size of 25 × 25 and the search range of 96 × 96 exhibited  

the optimal performance. In the experiments, the computational time did not increase with the search 

range because the number of patch comparisons did not change. Therefore, the 25 × 25 patch size  

and 96 × 96 search range were tested on the entire Tsukuba Stereo Dataset. The average PSNR 

improvement for the 1800 frames was 9.764 dB. 
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Table 5. Mean PSNR improvement vs. search ranges. 

Search Range 

Patch Size 8 16 24 32 40 48 56 64 72 80 88 96 104 112 

3 × 3 5.015 5.518 5.726 6.011 6.393 6.010 6.040 6.304 6.391 6.372 6.188 6.321 6.243 6.084 

5 × 5 5.819 5.682 5.896 5.879 6.083 5.972 5.586 5.666 6.323 6.232 6.173 6.204 6.233 6.140 

7 × 7 5.215 5.603 5.611 5.698 5.885 5.852 5.850 5.871 6.151 6.267 6.115 5.993 5.625 6.147 

9 × 9 5.638 5.581 5.643 6.099 6.085 6.240 6.532 5.905 6.260 6.615 6.557 6.535 6.223 6.436 

11 × 11 5.632 6.016 5.947 6.126 5.781 5.741 5.824 5.726 6.123 6.224 6.412 6.684 6.564 6.755 

13 × 13 5.750 5.966 6.060 5.965 6.128 6.428 6.405 6.199 6.175 6.522 6.628 6.528 6.715 6.901 

15 × 15 6.018 6.133 6.136 6.253 6.403 6.362 6.344 6.347 6.281 6.935 6.529 6.592 6.708 6.372 

17 × 17 6.396 6.396 6.691 6.565 6.715 6.765 6.780 6.918 7.002 7.114 7.043 7.142 7.128 7.097 

19 × 19 6.533 6.533 6.504 6.483 6.418 6.688 6.691 6.539 6.910 7.024 6.933 7.067 7.211 7.046 

21 × 21 6.386 6.386 6.499 6.770 6.738 6.656 6.907 6.849 7.145 7.609 7.584 7.502 7.448 7.430 

23 × 23 6.264 6.264 6.222 6.543 6.672 6.721 6.745 6.749 6.835 6.921 6.981 7.127 7.193 7.348 

25 × 25 6.612 6.612 6.612 6.701 6.760 7.150 7.216 7.232 7.135 7.121 7.343 7.385 7.426 7.466 

27 × 27 6.700 6.700 6.700 6.541 6.707 6.696 6.850 6.974 7.175 7.138 7.074 7.150 7.198 7.219 

29 × 29 6.795 6.795 6.795 6.683 6.794 6.569 6.673 6.684 6.715 6.818 6.839 7.020 6.867 6.851 

31 × 31 6.701 6.701 6.701 6.710 6.703 6.623 6.702 6.769 7.005 6.982 7.057 7.016 7.032 7.014 

Mean 6.098 6.192 6.249 6.335 6.418 6.432 6.476 6.449 6.642 6.793 6.764 6.818 6.788 6.820 

Table 6. Mean SSIM after denoising vs. search ranges. 

Search Range 

Patch Size 8 16 24 32 40 48 56 64 72 80 88 96 104 112 

3 × 3 0.957 0.959 0.959 0.960 0.962 0.961 0.960 0.961 0.960 0.962 0.959 0.962 0.960 0.960 

5 × 5 0.958 0.957 0.958 0.958 0.958 0.957 0.958 0.959 0.960 0.959 0.958 0.959 0.959 0.959 

7 × 7 0.957 0.957 0.957 0.958 0.959 0.958 0.959 0.959 0.959 0.961 0.960 0.960 0.960 0.959 

9 × 9 0.956 0.957 0.957 0.960 0.960 0.961 0.961 0.960 0.961 0.962 0.961 0.961 0.960 0.961 

11 × 11 0.955 0.958 0.959 0.960 0.959 0.959 0.959 0.959 0.960 0.961 0.961 0.961 0.961 0.962 

13 × 13 0.957 0.960 0.960 0.959 0.960 0.960 0.960 0.960 0.961 0.961 0.961 0.961 0.961 0.961 

15 × 15 0.957 0.958 0.959 0.961 0.962 0.962 0.961 0.961 0.961 0.963 0.963 0.963 0.963 0.963 

17 × 17 0.957 0.957 0.958 0.959 0.960 0.961 0.961 0.962 0.961 0.962 0.960 0.960 0.962 0.961 

19 × 19 0.956 0.956 0.957 0.958 0.959 0.958 0.959 0.958 0.960 0.962 0.962 0.962 0.963 0.962 

21 × 21 0.956 0.956 0.957 0.959 0.959 0.960 0.961 0.960 0.962 0.963 0.964 0.963 0.963 0.963 

23 × 23 0.956 0.956 0.956 0.958 0.959 0.959 0.959 0.960 0.960 0.962 0.962 0.962 0.962 0.963 

25 × 25 0.956 0.956 0.956 0.958 0.959 0.960 0.961 0.962 0.962 0.964 0.963 0.963 0.963 0.964 

27 × 27 0.955 0.955 0.955 0.956 0.956 0.956 0.958 0.958 0.959 0.959 0.959 0.959 0.959 0.959 

29 × 29 0.957 0.957 0.957 0.957 0.958 0.959 0.959 0.959 0.959 0.960 0.961 0.961 0.961 0.961 

31 × 31 0.956 0.956 0.956 0.956 0.956 0.957 0.958 0.959 0.960 0.960 0.960 0.960 0.960 0.960 

Mean 0.957 0.958 0.959 0.959 0.960 0.960 0.960 0.960 0.960 0.961 0.961 0.961 0.961 0.961 

3.2. Experiments on a Real-World Scene 

The real-world scene depth maps obtained using an Asus Xtion PRO LIVE depth camera and 

Milani’s Kinect dataset, the results of applying the proposed method and previously proposed  

methods are shown in Figure 7. The rows 7 to 12 of Figure 7 show the processed results of Milani’s 

Kinect dataset. 
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Figure 7. Real-world database and Milani’s Kinect dataset. 

In addition to the experimental results for the spatial domain, the experimental results for the 

temporal domain are shown in Figures 8 and 9. In Figure 8, there are three columns; the leftmost 

column shows the RGB images, the middle column shows the depth images, and the rightmost column 

shows the temporally filtered depth images. The red dot (256,180) in the rightmost column is the 
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observation point selected to examine the variation in 100 frames. The experiment was performed with 

a search range of 40 and a patch size of 3 × 3. The experimental result is shown in Figure 9; the red 

square line denotes the original pixel variations and the diamond blue line denotes the filtered pixel 

variations in 100 frames. 

 

Figure 8. Temporally filtered images. 

 

Figure 9. Temporal filtering results for 100 frames. 

4. Discussion 

The proposed method successfully solved the problems of depth holes (outliers), inaccurate depth 

values, and temporal variations in pixel values. The experimental results demonstrated the high 

performance of the proposed method not only for the Tsukuba Stereo Database but also for real-world 

scenes. In the previous section, the experiments showed different results in different patch sizes, search 

ranges, temporal filtering, and comparisons with competitors. 
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As shown in Figure 5, Tables 3 and 4, the application of the bigger patch size (25 × 25) resulted in 

the highest PSNR. The mean computational time was also less than that for the other small patch sizes; 

because a smaller patch fills fewer holes in the hole-padding process, it was necessary to apply the 

patch many times to fill the holes in the entire image. Applying larger patches resulted in shorter 

computational times (almost half the computational time taken for the patch size of 3 × 3) but higher 

PSNR values. 

Table 5 shows the PSNR performance for different search ranges. In the modified TSS, as the 

search range increases, the PSNR improves considerably; this is because for larger search ranges,  

a larger number of reference patches are considered and selected, leading to improved PSNR 

performance. The application of smaller search ranges deteriorates the PSNR performance. However, 

Tables 3 and 4 show that the computational time is shorter for smaller search ranges and larger for 

larger search ranges. 

Table 2 shows the SSIM performance for different patch sizes and Table 6 shows the SSIM 

performance for different search ranges. In these two tables, the most SSIM values after denoising are 

greater than 0.95; that means the denoised depth maps are very similar to the ground truth maps in the 

visual scene. 

Figure 4 shows comparisons of the PSNR and computational time between the proposed method 

and previously proposed methods. For the method proposed in [7], the computational time is 

considerably long and blurring reduces the PSNR performance. The method proposed in [21] is 

strongly dependent on RGB images and nonadaptive thresholds; therefore, when the scene changes, 

the PSNR performance decreases. Moreover, the method requires considerable time for computing  

the weighting metric for every single pixel. In Figure 7, our proposed method also shows better 

performance than [7,21] in the visual scene. 

The patch size and search range strongly affect the PSNR performance and computational time. 

Although the computational times for the patch sizes of 9 × 9, 11 × 11, 13 × 13, 15 × 15, 17 × 17,  

19 × 19, 21 × 21, 23 × 23, and 25 × 25 are extremely similar, 25 × 25 exhibits enhanced performance 

compared with others. Even if the computational times for 9 × 9, 11 × 11, 13 × 13, 15 × 15, 17 × 17, 

19 × 19, 21 × 21, and 23 × 23 are considerably a little shorter than that for 25 × 25. Nevertheless, from 

Figures 5 and 6, the patch size 25 × 25 could be realized the best mean PSNR improvements and mean 

SSIM performance. And the mean PSNR improvement starts to dip before patch size 17 × 17,  

but mean SSIM performances are similar for any patch size. Therefore, the patch size of 25 × 25 is  

the most favorable choice for obtaining the optimal balance between the PSNR performance and  

the computational time. Additionally, the search range of approximately 96 corresponds to a short 

computational time and high PSNR performance for the image size of 640 × 480 pixels. Summary,  

the patch size of 25 × 25 and the search range of 96 × 96 performed the optimal performance. 

In Figure 9, the temporal filtering result shows constant and smooth variations (blue and diamond 

lines), unlike the original maps and the maps to which previously proposed methods were applied.  

The pixel values showing the smooth variation were also close to the original pixel values. In the 

experiment, the threshold was set to ten. However, in an optimal situation, an adaptive threshold 

should be used for different scenes to enhance the quality of depth images. Setting an appropriate 

threshold for different scenes to maintain the variation constant is challenging. 
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The proposed method showed superior PSNR performance compared with previously proposed 

methods. However, the computational time remains a problem in real-time applications, and future 

work should focus on developing methods for simultaneously achieving high performance and a short 

computational time. 

5. Conclusions 

This study presented a method for spatial and temporal denoising, removing depth noise,  

providing accurate depth values, and eliminating temporal variation in depth maps generated using 

RGB-D cameras. 

The proposed method was applied to the well-known Tsukuba Stereo Database and a real-world 

scene database generated using an Asus Xtion PRO LIVE, and resulted in considerable improvement 

in the PSNR and SSIM of both datasets. The experimental results showed that in addition to PSNR and 

SSIM improvements, filtered depth maps of the proposed method were produced. The proposed 

method is based on the exemplar-based inpainting method proposed in [17], which has not been used 

for padding depth maps generated using RGB-D cameras. The most critical function of the proposed 

method is selecting the filling order of pixels around holes. The weighting scheme used is based on the 

isophote of the depth values forming a linear structure. The experiment results for the Tsukuba Stereo 

Dataset showed an improvement of 9.764 dB in the PSNR. 

Increasing the PSNR and SSIM improvements and reducing the computational time for both the 

Tsukuba Stereo Dataset and real-time applications to obtain an enhanced quality of depth images are 

the focus of a study that is currently underway. 
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