
Sensors 2015, 15, 21518-21536; doi:10.3390/s150921518 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Heading Estimation for Indoor Pedestrian Navigation Using a 
Smartphone in the Pocket 

Zhi-An Deng *, Guofeng Wang, Ying Hu and Di Wu 

School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China;  

E-Mails: wangguofeng@dlmu.edu.cn (G.W.); huying@dlmu.edu.cn (Y.H.); wudi@dlmu.edu.cn (D.W.) 

* Author to whom correspondence should be addressed; E-Mail: dengzhian@dlmu.edu.cn;  

Tel.: +86-411-8472-9223. 

Academic Editor: Kourosh Khoshelham 

Received: 26 June 2015 / Accepted: 21 August 2015 / Published: 28 August 2015 

 

Abstract: Heading estimation is a central problem for indoor pedestrian navigation using 

the pervasively available smartphone. For smartphones placed in a pocket, one of the most 

popular device positions, the essential challenges in heading estimation are the changing 

device coordinate system and the severe indoor magnetic perturbations. To address these 

challenges, we propose a novel heading estimation approach based on a rotation matrix and 

principal component analysis (PCA). Firstly, through a related rotation matrix, we project 

the acceleration signals into a reference coordinate system (RCS), where a more accurate 

estimation of the horizontal plane of the acceleration signal is obtained. Then, we utilize 

PCA over the horizontal plane of acceleration signals for local walking direction 

extraction. Finally, in order to translate the local walking direction into the global one, we 

develop a calibration process without requiring noisy compass readings. Besides, a turn 

detection algorithm is proposed to improve the heading estimation accuracy. Experimental 

results show that our approach outperforms the traditional uDirect and PCA-based 

approaches in terms of accuracy and feasibility. 

Keywords: indoor navigation; heading estimation; rotation matrix; principal component 

analysis; smartphone sensors 
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1. Introduction 

Though various indoor pedestrian navigation systems, such as WiFi localization [1], ultra-wideband [2] 

and radio frequency identification (RFID) [3], have been developed, how to achieve accurate and 

seamless navigation at low cost is still a challenging task. Most existing technologies depend on some 

form of dedicated infrastructure, which is expensive for large scale deployment and always not 

continuously available during pedestrian walking. Recently, a pedestrian dead reckoning (PDR) system [4] 

using a smartphone has been considered as a promising solution to seamless indoor navigation. The 

smartphone plays an indispensable role in our daily lives and can be carried almost everywhere we go. 

This, coupled with the fact that inertial sensors are typically installed in even the low-cost smartphones, 

has made smartphones ideal devices for continuous indoor navigation. 

A central problem for PDR using a smartphone [5] is the user heading estimation. When the user 

heading and related walking distance per step are obtained, the user location can be determined by 

computing relative displacement, starting from the initial location that is assumed to be known. If the 

heading estimation problem is solved well, it can also benefit many other application areas. 

Particularly, the user heading may be transferred into the user facing direction, which is a critical 

component in augmented reality, social activities, and human computer interactions [6]. 

Existing heading estimation approaches [7–9] using smartphone inertial sensors always assume that 

the heading misalignment between device forward direction and the user heading remains constant. 

Thus, the user heading can be directly determined by device attitude estimation once the offset is 

known. The assumption is true when the user holds the smartphone in hand or against the ear during 

phone calling. However, for a smartphone placed in a pocket [10], the yaw angle may change 

dynamically even when the pedestrian is walking straight, thus rending previous heading estimation 

approaches inapplicable. Practically, it is more convenient and realistic to enable user acceptance of 

PDR by assuming a more natural device positions, such as in the pocket. Thus, this work focuses on a 

smartphone put in a pant pocket, since it is likely the most popular wearing positions, especially for 

young males [11].  

Recently, principal component analysis (PCA) has been utilized for heading estimation by 

exploiting the acceleration signal patterns in the horizontal plane. Though reasonable accuracy 

performance has been reported in these experiments, some critical problems still need to be addressed 

to enhance accuracy and feasibility. Firstly, it is a challenging task to obtain the horizontal plane of 

acceleration signals, since the local device coordinate system may vary all the time while a pedestrian 

is walking. When placed in a pant pocket, the smartphone swings with the femur bone, continuously 

altering the device coordinate system. Secondly, even if the local walking direction is accurately 

extracted in the local device coordinate system, translating it into the global one is still a challenge. 

The PCA-based approach implements this translation by deploying a compass, which suffers from 

severe magnetic perturbations in modern man-made structures [12] and is unavailable for most  

indoor environments. 

In order to overcome the aforementioned challenges, we present a novel heading estimation 

approach based on Rotation Matrix and Principal Component Analysis (RMPCA). The proposed 

RMPCA may achieve accurate user heading estimation, regardless of the smartphone orientation and 

placement within the pocket. Our work makes the following three contributions:  
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First, to adapt the changing device coordinate system and achieve an accurate estimation of the 

horizontal plane of acceleration signals, we project all the acceleration signals into a reference 

coordinate system using a related rotation matrix. The rotation matrix is computed by an extended 

Kalman filter (EKF)-based attitude estimation model.  

Second, after extracting the local walking direction by utilizing PCA over the horizontal plane, we 

develop a calibration process to translate the local walking direction into the global one. Compared 

with the traditional approaches, the major advantage of our calibration process is that we avoid 

introducing the noisy compass, which is almost always unavailable in most indoor environments.  

Third, we propose a turn detection algorithm to improve the heading estimation accuracy. PCA for 

local walking direction extraction suffers from significant performance degradation when a user turn 

occurs. Thus, we deploy relative heading change for heading estimation once a user turn is detected. 

In the rest of this paper, we first discuss the related works in Section 2. Section 3 introduces an 

overview and some key concepts of the proposed approach. Section 4 describes the approach in detail. 

The experimental results are reported and discussed in Section 5. Conclusions and our future works are 

presented in the last section.  

2. Related Works 

Many existing heading estimation approaches for PDR deploy wearable sensors fixed on the human 

body. In [13], zero velocity updates (ZUPTs) are introduced into the EKF to achieve a reliable user 

heading estimation when foot-mounted sensors are used. In [14], the user heading is obtained by 

computing the locations of two infrared ray receiver modules mounted on the subject’s shoulders.  

In [15], stereo cameras attached on the user’s chest are deployed for heading estimation during 

pedestrian navigation. Compared with the unconstrained wearable sensors, those carefully attached on 

fixed human positions always provide more accurate and robust heading estimation results. This is 

because not only some more extra information such as ZUPT can be exploited, but also the heading 

misalignment between device forward direction and user heading is always constant during pedestrian 

walking. However, carrying dedicated devices, which are typically useless for users in their daily lives, 

with a fixed position for long duration makes them impractical for PDR applications. For the mass 

market, it is more practical and less intrusiveness to deploy the pervasively available smartphone as a 

common device for heading estimation. 

Most existing smartphone-based user heading estimation approaches [16,17] are based on the highly 

simplified assumption that the heading misalignment between device forward direction and the user 

heading remains constant. For a hand-held smartphone, the assumption is true, since the forward 

device direction is always the same as the user heading. Thus, traditional attitude estimation techniques 

such as Kalman filter [18] or its variants may be directly applied to achieve reliable heading estimation. 

However, for a smartphone freely placed in other positions, the assumption is seriously corrupted by 

the changing device coordinate system. As a result, the smartphone attitude estimation is insufficient 

for heading estimation, since the misalignment angle may vary with body locomotion. 

Recently, studies [5,19] have demonstrated that the positions of the device on the user’s body can 

be successfully detected by analyzing acceleration patterns generated during walking locomotion. 

Therefore, it is feasible to determine the user heading by assuming the known device placements. 
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Kunze et al. [20] have deployed PCA for walking direction extraction with the device placed in the 

user’s pant pocket. They first obtain the horizontal plane of acceleration signals by related vertical 

acceleration component, which is the acceleration signal when the user is approximately static. Then, 

the local walking direction at device coordinate system is extracted by applying PCA, and finally 

translated into the global walking direction by a digital compass. Steinhoff et al. [21] have conducted 

an experimental study of such PCA-based techniques, and further improves the heading estimation 

accuracy by properly filtering acceleration signals. However, the PCA based approach is prone to the 

inaccurate estimation of horizontal acceleration plane caused by changing device coordinates. 

Hoseinitabatabaei et al. [22] have proposed an uDirect approach to extract the user heading directly 

within a specific region, where the forward acceleration dominates the horizontal acceleration 

components. Unfortunately, such a region is always corrupted by sideway acceleration components 

according to our experimental study. More importantly, neither the PCA nor the uDirect approach can 

be used indoors, because they both rely on a compass to translate the local direction into the global one, 

which is almost always unavailable due to the serve indoor magnetic perturbations [23,24]. 

This work proposes a novel RMPCA approach for user heading estimation using a smartphone 

placed in the user’s pant pocket. We also utilize PCA due to its success in local walking direction 

extraction. Compared with the PCA-based approach, RMPCA achieves more accurate estimation of 

the horizontal plane, since we obtain the vertical acceleration component in the projected reference 

coordinate system. Furthermore, we choose a specific reference coordinate system so that the local 

walking direction can be easily transformed into the global one without requiring noisy compass 

readings. Experimental results show that the proposed RMPCA approach outperforms the previous 

PCA and uDirect approaches in terms of accuracy and feasibility. 

3. Overview 

The user heading estimation is defined as the process of seeking the relative orientation of a user’s 

coordinate system (UCS) with respect to the global coordinate system (GCS). Let GCS be an Earth 
coordinate system defined by axes GX , GY , and GZ , which point east, north and the opposite direction 

of the gravity vector, respectively. As shown in Figure 1a, The UCS is defined by axes UX , UY , and 

UZ , with UY  being tangential to the trajectory, UZ  coinciding with GZ , UX  being the right side of 

user body and given by the cross product of UY  and UZ . In order to define the user’s orientation in 

GCS, we exploit the acceleration pattern generated during pedestrian walking. The inertial signals are 

measured on a smartphone with a three-axis accelerometer and a three-axis gyroscope built in, thus 

referring the third coordinate system called device coordinate system (DCS). DCS is defined by axes 

DX , DY , and DZ , where DX  and DY  axes are parallel to phone screen and point rightward and 

forward, respectively, and DZ  is given by the cross product of DX  and DY . The GCS and DCS are 

depicted in Figure 1d and Figure 1b, respectively. The final coordinate system is the reference 

coordinate system (RCS), as shown in Figure 1c. RCS is the DCS at a specific moment when the user 

holds the smartphone in hand and initially starts the PDR application. 

The proposed RMPCA mainly includes three steps. Firstly, acceleration signals measured at the 

DCS are projected into the RCS, by computing the related rotation matrix. Secondly, PCA over the 

horizontal plane of projected acceleration signals at RCS is applied for local walking direction 
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extraction. Finally, the user’s local walking direction is transformed into a global one by a calibration 

process. There are three assumptions used in RMPCA. First, the smartphone is initially held and gazed 
at by the user for a few seconds, while the smartphone’s forward axis DY  is aligned with the user’s 

walking direction axis UY . This duration is always available, since the user needs to gaze at and 

manipulate the smartphone when he starts the application and sets related parameters. Second, the 

user’s initial orientation is assumed to be known as a priori, as in many other works [25,26]. This 

assumption is always reasonable, since the user’s continuous trajectories and related orientations can 

be initially obtained by several external positioning systems, such as Global Position System (GPS) 

tracking [25] when the user enters a building, WiFi localization [27] or landmarks [28]. Third, the user 

walks forward and relatively straight during a short period most of the time. Practically, since the user 

sways sideways while taking each step during straight walking, the walking direction is determined 

within a stride (i.e., two adjacent steps). If the third assumption is invalid due to a user turn, we 

combine a turn detection algorithm to improve the heading estimation performance. 

 

Figure 1. Illustration of the defined coordinate system: (a) UCS (b) DCS (c) RCS (d) GCS. 

4. Methodology 

4.1. Projection of Acceleration Signals into the RCS by Rotation Matrix 

To extract the local walking direction, all the acceleration signals within a stride should be firstly 

projected into the horizontal plane. The PCA-based approach achieves this by deploying a recognized 

gravity vector. However, the DCS may vary a lot, even within one step, due to the leg rotational 

movements, thus rendering the recognized gravity vector at a certain DCS unusable directly. To adapt 

the changing DCS, we project all the acceleration signals into a RCS, and then apply the gravity vector 

at RCS to obtain the horizontal plane. To achieve this projection, we exploit the rotation matrix 

between DCS and RCS, since all inertial signals are measured at varying DCS.  

We develop an EKF-based attitude estimation model to compute the related rotation matrix. Instead 

of deploying Euler angles, we apply a rotation quaternion to describe the smartphone orientation, since 
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it can avoid the singularity problems [29]. Firstly, we construct the relationship between a rotation 

quaternion and the smartphone orientation. The projection of acceleration signals at RCS into DCS  

can be represented as follows: 

( ) ( )( )( ) ( )T
DCS DCS RCS

RCSt t ta C q a=  (1)

where ( )( )DCS
RCS tC q  is the rotation matrix of DCS with respect to RCS at time t , ( )RCS ta  and ( )DCS ta  

are the 3 1×  acceleration vectors at time t  relative to RCS and DCS . For the sake of simplicity, we 

will omit the argument t . The rotation matrix can be described by a quaternion:  

( )
( ) ( )

( ) ( )
( ) ( )

2 2 2 2
0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2
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q q q q q q q q q q q q
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C q

 + − − − +
 + − + − − 
 − + − − + 

 (2)

where [ ]0 1 2 3= 
T

q q q qq  is the normalized quaternion, 0q  is the scalar part of the quaternion and 

[ ]1 2 3, ,q q q  is the vector part.  

Secondly, according to the rigid body kinematic equations [29], the discrete-time model of rotation 

quaternions can be given as: 

( )( ) ( ) ( ) ( )( )1 s s = exp 0.5 cos 0.5 θ sin 0.5 θ θk k k k k k k kT T+ × Ω = × Δ + Ω × Δ Δq w q I w q  (3)

where sT  is the system interval, kq  and 1+kq  are the quaternions at time instants skT  and ( )1 sk T+  

respectively, 
Tx y z

k k k kw w w =  w  is the angular velocity vector at time instants skT  relative to DCS, 

I  is an 3 3×  identity matrix, ( ) ( ) ( )2 2 2
θ x y z

k s k k kT w w wΔ = + + , and ( )k sTwΩ  is given by: 

( )

0

0

0

0

x y z
k k k

x z y
k k k

k s s y z x
k k k
z y x
k k k

w w w

w w w
T T

w w w

w w w

 − − −
 − Ω =
 −
 − 

w  (4)

The quaternion 1+kq  is determined when the initial condition is set as [ ]0 1 0 0 0
T

q = .  

Finally, the EKF is applied to fuse the gyroscope data with the accelerometer data for device 

attitude estimation. We deploy the smartphone rotation quaternion as a state vector. The state transition 

vector equation can be given by: 

1  = q
k k k kF+ +q q w  (5)

where the state transition matrix ( )( )sexpk kF T= Ω w , and: 

0[ ]

2

k
q gyro gyroks
k k k kT

k

qT e I
w w w

e

 × +
= Ξ = −  − 

 (6)

0 1 2 3= 
Tk k k k

k q q q qq      is the rotation quaternion at time instants skT , 0
kq  is the scalar part and 

1 2 3= 
Tk k k

k q q qe      is the vector part, gyro
kw is the white Gaussian measurement noise vector for 
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gyroscope at time instants skT , and [ ]ke ×  is a standard vector cross-product operator. Equations (5) 

and (6) are derived from Equation (3), and can be considered as a first order approximation of the 

“noisy” transition matrix [30]. The approximation always performs well, since the gyroscope 
measurement noise vector gyro

kw  is small enough in the application area. Consequently, the process 

noise covariance matrix kQ  is given by: 

( )Tq q gyro T
k k k k k kQ Qw w= = Ξ Ξ  (7)

where 2
gyro

gyro
kQ Iσ=  is the covariance matrix for gyroscope measurement noise vector gyro

kw . 

The measurement model is constructed based on the acceleration signals observed when the human 

body is almost not affected by any acceleration: 

( )( )1 1 1 = 
TDCS RCS a

k RCS k ka C q g v+ + ++  (8)

where 1ka +  is the recognized gravity vector at DCS, RCSg  is the gravity vector at RCS, and 1
a
k+v  is the 

related white Gaussian measurement noise. Let 1kR +  be the covariance matrix of the measurement 

noise. To filter out the disturbance of significant human motions, we construct adaptive measurement 
noise covariance matrix 2

1
R

k aR Iσ+ = : 

2
2 1 2

σ , ε
σ

, otherwise
R a k a

a
+ − <

= 
∞

a g
 (9)

Thus, the measurement model can be approximated as a linearized formula: 

( )( )1 1 1 1 1 1 1  
T

DCS a
k k k k k RCS k kH Ha q q C q g v− −

+ + + + + + += − + +  (10)

where 
1 1 1

1 1 1 , 0a
k k k

k k kH
q q v

a q −
+ + +

+ + + = == ∂ ∂  is the related Jacobian matrix, 1 ˆk k kFq q−
+ =  is the best state 

estimation of 1kq +  available, namely the a priori state estimate, ˆ kq  is the quaternion estimation result 

of EKF at time instants skT .  

Based on the state model in Equation (5) and the measurement model in Equation (10), with the 
process noise covariance matrix kQ  and measurement noise covariance matrix 1kR + , the EKF for 

estimating the state vector 1kq +  may be established. Detailed procedures for executing the EKF may 

be found in [31]. Therefore, after estimating the state vector 1kq + , the projection of acceleration 

signals at DCS into RCS may be derived from Equation (1): 

( ) ( )( ) ( )RCS DCS DCS
RCSt t ta C q a=  (11)

where ( )tq  is the related smartphone rotation quaternion at time t , ( )RCS ta  is the obtained projected 

acceleration signals at RCS.  

4.2. PCA for Local Walking Direction Extraction 

PCA for walking direction extraction is based on the observation that the most variations in the 

horizontal plane will be parallel to the walking direction [20]. As shown in Figure 2a, the walking 

cycle of humans includes two main phases, the stance phase and the swing phase. The stance phase is 
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usually defined as a period of the walking cycle, started with a heel strike moment and ended with a 

toe off moment [22]. Each phase corresponds to a footstep. As shown in Figure 2b, we empirically find 

that the norm of the acceleration signal is a robust feature for footstep detection. We deploy a peak 

detection algorithm [32,33] with two thresholds, which are used to eliminate false peaks caused by 

device shakes with too short time intervals or too small magnitude:  

Th

Th

T T

AccNorm g A

Δ ≥
 − ≥  

(12)

where TΔ  is the time interval between every two adjacent peaks, AccNorm  is the norm of the three 

dimensional acceleration signal, g  is the local gravity, ThT  and ThA  are the time threshold and the 

magnitude threshold for filtering false peaks, respectively. Therefore, each recognized peak point can 

stand a footstep. Moreover, as seen in Figure 2b, the peak point during the swing phase has a larger 

magnitude than that during the stance phase. This can be used to distinguish between the two phases 

within a stride. The peak detection algorithm may be applied successfully under most smartphone 

placements [33], such as in a hand or a pocket, though the two thresholds should be adjusted according 

to the different magnitude of acceleration signals.  

After recognizing a stride with the related acceleration signals, we obtain the horizontal plane at 

RCS by computing the related vertical component. We apply a sliding window over all three 

dimensions of the acceleration signals at the initial time when the smartphone is held initially by the 
user. If the variances of all dimensions are close to 0 and the total magnitude approaches 9.81 2m s , 

the signal is very likely to be dominated by the vertical component, and thus being recognized as the 
local gravity vector. Denote the gravity vector at RCS as the 3 1×  vector RCSg , the acceleration signals 

can be projected into the horizontal plane as given: 

( ) 2

hor  = 
TRCS RCS RCS RCS RCS RCSa a g a g g−  (13)

where RCSa  and hor
RCSa  are the acceleration at RCS and the related horizontal component, respectively.  

(a) (b) 

Figure 2. Acceleration patterns of pedestrian walking with the smartphone put in the 

pocket: (a) Walking cycle includes two phases: stance phase and swing phase; (b) The 

peak detection algorithm detects one stride with two footsteps (peak points). 
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After obtaining the horizontal plane at RCS, PCA extracts the local walking direction by computing 

the related first eigenvector, as shown in Figure 3. However, PCA for walking direction extraction 

suffers from the 180° ambiguity problem. The obtained first eigenvector cannot distinguish between 

the forward and backward walking directions. To address this problem, we exploit the observation that, 

around the peak point during the stance phase, the thigh keeps swinging forward distinctly with the 

rotating smartphone. Thus, at that moment, there should be a positive (negative) rotation along positive 
(negative) direction of the rotation axis UX . Figure 4 shows the angular velocity along the negative 

direction of the rotation axis, whose angular movement is negative at the peak point during the stance 
phase. After a rough estimation of the parallel direction of rotation axis UX  as referred in [21], we can 

align the positive direction of rotation axis UX  to the right side of the body by requiring the angular 

movement to be positive. Then, an approximation of the forward direction can be obtained by a 

rotation of 90° in the horizontal plane, and ultimately is used to eliminate the 180° ambiguity problem.  

 

Figure 3. Illustration of PCA for eigenvector extraction over the horizontal plane of 

acceleration signals to infer the local walking direction at RCS. 

 

Figure 4. The rotation value along the negative (positive) direction of the rotation axis UX  

should be negative (positive) at the peak point during stance phase. This can be used to 

align the positive direction of the rotation axis UX  to the right side of user body.  
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4.3. Calibration Process for Determining Global Walking Direction 

The local walking direction vector at RCS can be firstly projected into the UCS. Let RCS
UCSC  be the 

rotation matrix of RCS with respect to UCS, RCSD  be the local walking direction vector obtained at 

RCS. The walking direction vector at UCS can be given by: 
UCS RCS RCS

UCSD C D=  (14)

where =
TUCS UCS UCS UCS

x y zD D DD     is the walking direction vector at UCS. Assume that RCS is 

subjected to three subsequent rotations, i.e., a rotation by a pitch angle xθ  around UX , a rotation by a 

roll angle yθ  around UY , and, finally, a rotation by a yaw angle zθ  around UZ . The total rotation 

matrix can be obtained from three elementary rotation matrices: 

( ) ( ) ( )RCS
UCS z z y y x xC C CC θ θ θ=  (15)

( )
1 0 0

0 cos sin

0 sin cos
x x x x

x x

C θ θ θ
θ θ

 
 = − 
  

 (16)

( )
cos 0 sin

0 1 0

sin 0 cos

y y

y y

y y

C

θ θ
θ

θ θ

 
 =  
 − 

 (17)

( )
cos sin 0

sin cos 0

0 0 1

z z

z z z zC

θ θ
θ θ θ

− 
 =  
  

 (18)

According to the first assumption in Section 3, the yaw angle zθ  at RCS is zero, since the 

smartphone’s forward axis DY  is aligned with the user’s walking direction axis UY . The unknown pitch 

angle xθ  and roll angle yθ  can be obtained by exploiting the local gravity vector as follows: 

UCS RCS RCS
UCSg C g=  (19)

where [0 0 9.81]UCS Tg =  is the local gravity vector at UCS and RCSg  is the measured gravity vector 

at RCS. After knowing the three angles, i.e., the pitch angle xθ , the roll angle yθ , and the yaw angle 

zθ , the rotation matrix RCS
UCSC  can be computed by Equation (15).  

According to the second assumption, we assume that the initial yaw angle of the user orientation at 
GCS is 0ψ . Finally, the global walking direction, i.e. the yaw angle ψ  at GCS, can be given as: 

0arctan
2

UCS
y

UCS
x

D

D

πψ ψ
 

= + −  
 

 (20)

4.4. Turn Detection Algorithm for Improving RMPCA 

The basic idea of turn detection is to exploit the heading change pattern during pedestrian walking. 

The user heading changes alternative between positive and negative with the similar amplitude when 
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pedestrian walks straight and sways sideways, as shown in Figure 5. If the heading change pattern is 

corrupted to some degree, a user turn is detected. We deploy the gyroscope outputs in horizontal plane 

to compute the heading change for each step. Derived from Equations (11) and (14), the angular 

velocity at UCS can be given by related rotation matrix: 

( ) ( )( ) ( )UCS RCS DCS DCS
UCS RCSt t tw C C q w=  (21)

where ( )tq  is the related rotation quaternion at time t , ( )UCS tw  and ( )DCS tw  are the representations 

of angular velocity signal at UCS and DCS at time t  respectively, RCS
UCSC  is the rotation matrix of RCS 

with respect to UCS, and ( )( )DCS
RCS tC q  is the rotation matrix of DCS with respect to RCS at time t . 

Therefore, the heading change for each step can be given by: 

( ),
1

iN
UCS

i k i U gyro
k

Z Twδθ
=

=  (22)

where iδθ  is the heading change for step i , ( ),
UCS
k i UZw  is the angular velocity component rotating 

around UZ  of the thk −  angular velocity sample for step i , iN  is the total number of samples within 

the step i , and gyroT  is the related sampling interval of gyroscope outputs. 

After computing the heading change for each step, if we find a positive (negative) heading change 

follows a positive (negative) one, and the absolute heading change of the two steps exceeds a given 
threshold th1δθ , the heading change pattern during straight walking is considered to be corrupted. As a 

result, a user turn is reported. Therefore, we estimate the global walking direction by adding the 

current step heading change on the heading of previous step. Inversely, if a positive (negative) heading 

change follows a negative (positive) one, and the absolute heading change is smaller than a given 
threshold th2δθ , we recognize that the user turn terminates and deploy RMPCA again. 

 

Figure 5. Identification of turns. 
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5. Evaluation 

5.1. Experimental Setup 

We have tested our heading estimation approach in an office building, as shown in Figure 6.  

Six subjects with different physical characteristics were asked to walk along the path denoted by a red 

solid line in Figure 6. The size of the walking path is 14.4 m × 12 m with a total length of 52.8 m, 

which requires an average of 88 steps (44 strides) to complete. Each subject firstly held the phone in 

hand and stands for few seconds to start the application. Then, the subject put the phone into the 

pocket and walked along the path. The subjects were free to change the device orientation arbitrarily 

when he put the phone into the pocket. Each subject repeated the above procedure at least 10 times. 

Thus, 5280 samples could be collected for the evaluation of the proposed approach. To label the 

ground truth, the subjects were asked to walk along the densely placed tags on the ground carefully. 

We also used a camera to record the entire walking procedure. Before carrying out experiments, we 

did necessary calibrations to make the gyroscope outputs more precise and robust. As in many other 

literatures [25,26] do, the user’s initial state, including location and orientation, is assumed to be 

known as a priori. 

The experiments were performed indoors, where severe magnetic perturbations existed and were 

difficult to calibrate. Thus, the compared approaches PCA and uDirect adopted outdoors could not 

deploy a compass to transform the local walking direction into the global one. For convenience of 

comparisons, the local walking directions obtained by the PCA and uDirect approaches were also 

transformed into the global one by our calibration process. Therefore, in our experiments, the accuracy 

performance differences of the compared approaches were mainly caused by their local walking 

direction extraction schemes. 

 

Figure 6. Indoor test environment.  

5.2. Heading Estimation Performance Analysis 

Figure 7 compares the heading estimation error distributions of different approaches, respectively. 

Clearly, RMPCA performs best, since the estimation errors distributed in the large magnitude field are 
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much less than those of the other two approaches. Similar results can be seen in Figure 8. The 50th 

percentile absolute heading estimation errors of RMPCA, PCA and uDirect are 4.6°, 9.5°, and  

6.9°, respectively, while the 75th percentile absolute errors are 12.1°, 18.5° and 20.3°. RMPCA 

reduces the mean absolute estimation error by 25.8% (3.1°), and 31.0% (4.0°) than PCA and uDirect, 

respectively. Figure 9 shows the heading estimation results of the compared approaches for one trace. 

One can clearly see that the heading estimation of our RMPCA is the closest to the baseline direction. 

The main difference between PCA and our RMPCA is the estimation scheme of the vertical 

acceleration components, which is used to infer the horizontal plane of acceleration signals. PCA 

obtains the vertical components by finding acceleration signals whose magnitude approaches 
29.81 m s  and the variance of three dimensions is close to 0. However, this scheme suffers from two 

drawbacks. First, the obtained vertical components are always suboptimal due to the noisy components 

introduced by walking locomotion. Second, the DCS of the obtained vertical component does not 

coincide with the DCS of the other acceleration signals within the same stride. Thus, directly 

deploying the obtained vertical component to compute the horizontal plane renders an inaccurate 

estimation. In contrast to the PCA approach, our RMPCA approach avoids the second drawback by 

projecting the acceleration signals into the same RCS. For the first drawback, the noisy components 

introduced by the body locomotion will be alleviated substantially by choosing the RCS when users 

stand and start the application for few seconds. Therefore, our RMPCA approach performs much better 

than the PCA approach.  

For the uDirect approach, the local walking direction is extracted at the moment when the side-to-side 

acceleration component is minimized during the walking cycle. Unfortunately, such a moment is 

susceptible to sideway acceleration components. Even when the side-to-side acceleration component is 

indeed minimized, the walking direction component may not dominate the horizontal plane of 

acceleration signals, according to our experimental study. Therefore, uDirect approach performs the 

worst and is more likely to generate heading estimation errors of large magnitude. 

 

Figure 7. Heading estimation error distribution. 
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Figure 8. Performance comparisons of the absolute heading estimation error: mean, 

standard deviation (SD), 50th percentile and 75th percentile. 

 

Figure 9. Heading estimations of different approaches vs. baseline. 

5.3. Turn detection for Heading Estimation Improvement 

If the user is making a turn, the proposed RMPCA and compared approaches all suffer from 

degraded performance. This may be contributed to the substantial sideway acceleration jitters during 

the user turn, which corrupt the acceleration pattern exploited by the heading estimation approaches. 

As seen in Figure 9, the estimated headings all deviate from the baseline headings significantly when 

the user makes three turns. Therefore, we deploy the turn detection algorithm proposed in Section 4.4 

to improve the heading estimation. Once a turn is reported, we estimate the current heading for each 

step by adding the current heading change in Equation (21) to the heading of previous step. The 

heading change scheme for heading estimation performs relatively well during a short period, while 
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estimation error may accumulate rapidly due to the jitters caused by body locomotion. Thus, if a turn 

termination is recognized, we deploy the proposed RMPCA for heading estimation again. Figure 10 

shows the heading estimation performance improvement of RMPCA by combing the proposed turn 

detection algorithm. Since the estimation errors of large magnitude caused by the user turns are 

reduced, the tail of the error distribution is cut down. Particularly, the turn detection algorithm reduces 

the mean absolute error, standard deviation (SD), 90th percentile from 8.93°, 12.75°, and 21.3° to 

8.05°, 11.12°, and 19.1°, respectively. 

(a) (b) 

Figure 10. Heading estimation performance comparisons between RMPCA with and 

without turn detection. (a) Error distribution; (b) Statistical results of the absolute error. 

5.4. PDR Application 

Although the heading estimation for PDR using a smartphone under a highly controlled situation, 

such as held in hand, has been widely used, it is still an unsolved problem for smartphones placed in 

the user’s pant pocket. The proposed RMPCA aims to solve this problem by three steps: project the 

acceleration signals into RCS by a related rotation matrix, then estimate the local walking direction at 

RCS by applying PCA, and finally obtain the global walking direction at GCS by a calibration process. 

In order to calculate the walking distance, a step length estimation model should also be developed. 

Though the step lengths are determined by various factors, including height, attitude, and walking 

frequency [16,33], for the same pedestrian, it mainly depends on the walking speed. For different 

pedestrians, we may develop a memorization function to store the personal parameters of step length 

estimation model. Considering the strong correlation of the walking speed with the amplitude of the 

measured acceleration, we deploy the empirical model [34] given as follows: 

4
max min= -StepLength K Acc Acc  (23)

where maxAcc  and minAcc  represent the maximum and minimum amplitudes of vertical acceleration 

components during each stride, K  is the personalized parameter that need to be calibrated for each 

pedestrian. Figure 11 shows the tracking trajectories comparisons of one trace between different 

heading estimation approaches. Clearly, the heading estimation error is the main localization error 

source for PDR. Thus, the proposed RMPCA with the smallest heading estimation error obtains the 
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best tracking performance. As shown in Table 1, the proposed RMPCA are the only approach whose 

mean error and 50th percentile error are within 1.5 m. RMPCA reduces the mean localization error by 

32.2% (0.66 m), and 37.7% (0.84 m) than that of PCA and uDirect, respectively. 

 

Figure 11. Tracking performance comparisons of one trace between different heading 

estimation approaches. 

Table 1. Comparisons of real-time localization errors (m). 

Heading Estimation Approaches 
Real-Time Localization Errors 

Mean Standard Deviation 50th Percentile 95th Percentile

RMPCA 1.39 1.16 1.43 3.58 
PCA 2.05 1.62 2.14 5.04 

uDirect 2.23 1.84 2.30 5.67 

6. Conclusions and Future Work 

This paper presents RMPCA, an approach to determine pedestrian walking direction indoors using a 

smartphone placed in the user’s pant pocket, independent of the smartphone’s orientation. First, we 

develop an EKF-based attitude estimation model to compute the rotation matrix between DCS and 

RCS, which is used to adapt the changing DCS and obtain the horizontal plane acceleration signals at 

RCS. Then, PCA is applied over the horizontal plane for local walking direction extraction. Finally, we 

develop a calibration process for global walking direction translation without requiring noisy compass 

readings, which are almost unavailable in most indoor environments. Besides, a user turn detection 

algorithm exploiting heading change pattern is used to improve the heading estimation. Experimental 

results show that our approach reduces the mean absolute heading estimation error by 25.8%  

(3.1°), and 31.0% (4.0°) compared that of PCA and uDirect, respectively.  

In future works, to verify the effectiveness of the proposed RMPCA, we will perform the 

experiments at more complicated conditions, such as on various curved walking paths and with 

random walking velocities. The effect of other smartphone mounting positions, including in a bag, 

against the ear during phone calling and in a swinging hand, will also be studied for the proposed 

RMPCA. More importantly, we will further expand the proposed heading estimation approach to the 
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long term indoor navigation application, which has been paid few attentions. The main challenge is the 

accumulated error caused by gyroscope biases. We will introduce some landmarks or building map 

information for gyroscope bias calibrations and related orientation self-calibrations. Besides, some 

external localization techniques such as Wi-Fi fingerprinting and RFID may be combined to provide 

the initial user position and orientation estimations. 

Acknowledgments 

This research is supported by National Natural Science Foundation of China (Granted Nos. 

61301132, 61300188, and 61301131) and the Fundamental Research Funds for the Central 

Universities (Granted No. 3132014211).  

Author Contributions 

Zhi-An Deng proposed the original idea and wrote this paper; Guofeng Wang analyzed the data and 

gave some valuable suggestions; Ying Hu developed the turn detection algorithm; Di Wu designed the 

experiments and revised the paper. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Deng, Z.-A.; Xu, Y.B.; Ma, L. Indoor positioning via nonlinear discriminative feature extraction 

in wireless local area network. Comput. Commun. 2012, 35, 738–747. 

2. Chehri, A.; Fortier, P.; Tardif, P.M. UWB-based sensor networks for localization in mining 

environments. Ad Hoc Netw. 2009, 7, 987–1000.  

3. Kong, J. Fault-tolerant RFID reader localization based on passive RFID tags. IEEE Trans. Parall. 

Distr. 2014, 25, 2065–2076.  

4. Renaudin, V.; Combettes, C. Magnetic, acceleration fields and gyroscope quaternion  

(MAGYQ)-based attitude estimation with smartphone sensors for indoor pedestrian navigation. 

Sensors 2014, 14, 22864–22890. 

5. Qian, J.; Pei, L.; Ma, J.; Ying, R.; Liu, P. Vector graph assisted pedestrian dead reckoning using 

an unconstrained smartphone. Sensors 2015, 15, 5032–5057. 

6. Hoseinitabatabaei, S.A.; Gluhak, A.; Tafazoll, R. A survey on smartphone-based systems for 

opportunistic user context recognition. ACM Comput. Surv. 2013, 45, 1–55. 

7. Deng, Z.-A.; Hu, Y.; Yu, J.; Na, Z. Extended kalman filter for real time indoor localization by 

fusing WiFi and smartphone inertial sensors. Micromachines 2015, 6, 523–543. 

8. Callmer, J.; Tornqvist, D.; Gustafsson, F. Robust heading estimation indoors using convex 

optimization. In Proceedings of the 16th International Conference on Information Fusion 

(FUSION), Istanbul, Turkey, 9–12 July 2013; pp. 1173–1179. 

9. Chen, Z.; Zou, H.; Jiang, H.; Zhu, Q.; Soh, Y.C.; Xie, L. Fusion of WiFi, smartphone sensors and 

landmarks using the Kalman filter for indoor localization. Sensors 2015, 15, 715–732. 



Sensors 2015, 15 21535 

 

 

10. Diaz, E.M.; Gonzalez, A.L.M.; de Ponte Müller, F. Standalone inertial pocket navigation system. 

In Proceedings of the IEEE/ION Position, Location and Navigation Symposium (PLANS) 2014, 

Monterey, CA, USA, 5–8 May 2014; pp. 241–251. 

11. Ichikawa, F.; Chipchase, J.; Grignani, R. Where’s the phone? A study of mobile phone location in 

public spaces. In Proceedings of the 2005 Mobility Conference on Mobile Technology 

Applications & Systems Retrieve, Guangzhou, China, 15–17 November 2005; pp. 1–8. 

12. Afzal, M.H.; Renaudin, V.; Lachapelle, G. Assessment of indoor magnetic field anomalies using 

multiple magnetometers. In Proceedings of the 23rd International Technical Meeting of the 

Satellite Division of the Institute of Navigation (ION GNSS 2010), Portland, OR, USA,  

21–24 September 2010; pp. 1–9. 

13. Foxlin, E. Pedestrian tracking with shoe-mounted inertial sensors. IEEE Comput. Gr. Appl. 2005, 

25, 38–46.  

14. Jung, W.; Woo, W.; Lee, S. Orientation tracking exploiting ubiTrack. In Proceedings of the 

UbiComp 2005, Tokyo, Japan, 11–14 September 2005; pp. 47–50. 

15. Jirawimut, R.; Prakoonwit, S.; Cecelja, F.; Balachandran, W. Visual odometer for pedestrian 

navigation. IEEE Trans. Instrum. Meas. 2003, 52, 1166–1173. 

16. Pei, L.; Chen, R.; Chen, Y.; Leppakoski, H.; Perttula, A. Indoor/outdoor seamless positioning  

technologies integrated on smart phone. In Proceedings of the IEEE International Conference on  

Advances in Satellite and Space Communications, Colmar, France, 20–25 July 2009; pp. 141–145. 

17. Roy, N.; Wang, H.; Choudhury, R.R. I am a smartphone and I can tell my user’s walking 

direction. In Proceedings of the 12th Annual International Conference on Mobile Systems, 

Applications, and Services, Bretton Woods, NH, USA, 16–19 June, 2014; pp. 354–354. 

18. Evennou, F.; Marx, F. Advanced integration of WiFi and inertial navigation systems for indoor 

mobile positioning. Eurasip J. Appl. Signal Proc. 2006, 2006, 1–11. 

19. Kunze, K.; Lukowicz, P.; Junker, H.; Troster, G. Where am I: Recognizing on-body positions of 

wearable sensors. Locat. Context Aware. 2005, 3479, 264–275. 

20. Kunze, K.; Lukowicz, P.; Partridge, K.; Begole, B. Which way am I facing: Inferring horizontal 

device orientation from an accelerometer signal. In Proceedings of the International Symposium 

on Wearable Computers, Linz, Austria, 4–7 September 2009; pp. 149–150. 

21. Steinhoff, U.; Schiele, B. Dead reckoning from the pocket—An experimental study. In 

Proceedings of the IEEE International Conference on Pervasive Computing and Communications 

(PerCom), Mannheim, Germany, 29 March–2 April 2010; pp. 162–170. 

22. Hoseinitabatabaei, S.A.; Gluhak, A.; Tafazolli, R.; Headley, W. Design, realization, and 

evaluation of uDirect—An approach for pervasive observation of user facing direction on mobile 

phones. IEEE Trans. Mob. Comput. 2014, 13, 1981–1994. 

23. Afzal, M.H.; Renaudin, V.; Lachapelle, G. Use of earth’s magnetic field for mitigating gyroscope 

errors regardless of magnetic perturbation. Sensors 2011, 11, 11390–11414. 

24. De Vries, W.; Veeger, H.; Baten, C.; van der Helm, F. Magnetic distortion in motion labs, 

implications for validating inertial magnetic sensors. Gait Posture 2009, 29, 535–541. 

25. Kim, Y.; Chon, Y.; Cha H. Smartphone-based collaborative and autonomous radio fingerprinting. 

IEEE Trans. Syst. Man Cybern. C Appl. Rev. 2012, 42, 112–122. 



Sensors 2015, 15 21536 

 

 

26. Li, F.; Zhao, C.; Ding, G.; Gong, J.; Liu, C.; Zhao, F. A reliable and accurate indoor localization 

method using phone inertial sensors. In Proceedings of the 14th ACM International Conference 

on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012; pp. 1–10. 

27. Ma, L.; Xu, Y.B. Received signal strength recovery in green WLAN indoor positioning system 

using singular value thresholding. Sensors 2015, 15, 1292–1311. 

28. Wang, H.; Sen, S.; Elgohary, A.; Farid, M.; Youssef, M.; Choudhury, R.R. No need to war-drive: 

unsupervised indoor localization. In Proceedings of the 10th International Conference on Mobile 

Systems, Applications, and Services (MobiSys’12), Low Wood Bay, Lake District, UK,  

25–29 June 2012; pp. 197–210. 

29. Chou, J.C.K. Quaternion kinematic and dynamic differential equations. IEEE Trans. Robot. Autom. 

1992, 8, 53–64. 

30. Sabatini, A.M. Quaternion-based extended Kalman filter for determining orientation by inertial 

and magnetic sensing. IEEE Trans. Biomed. Eng. 2006, 53, 1346–1356. 

31. Bar-Shalom, Y.; Li, X.-R.; Kirubarajan, T. Estimation with Applications to Tracking and 

Navigation; Wiley: New York, NY, USA, 2001. 

32. Kourogi, M.; Kurata, T. Personal positioning based on walking locomotion analysis with  

self-contained sensors and a wearable camera. In Proceedings of the Second IEEE/ACM 

International Symposium on Mixed and Augmented Reality, Tokyo, Japan, 8–10 October 2003; 

pp. 103–112.  

33. Brajdic, A.; Harle, R. Walk detection and step counting on unconstrained smartphones. In 

Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous 

Computing, Zurich, Switzerland, 8–12 September, 2013; pp. 225–234. 

34. Jahn, J.; Batzer, U.; Seitz, J.; Patino-Studencka, L.; Boronat, J.G. Comparison and evaluation of 

acceleration based step length estimators for handheld devices. In Proceedings of the 2010 

International Conference on Indoor Positioning and Indoor Navigation (IPIN), Zurich, 

Switzerland, 15–17 September 2010; pp. 1–6. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


