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Abstract: Resource-constrained wireless networks are emerging networks such as Radio
Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might
have restrictions on the available resources and the computations that can be performed.
These emerging technologies are increasing in popularity, particularly in defence,
anti-counterfeiting, logistics and medical applications, and in consumer applications with
growing popularity of the Internet of Things. With communication over wireless channels,
it is essential to focus attention on securing data. In this paper, we present an encryption
scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for
pseudorandom number generators (PRNG), and employ this technique to generate keys
and authentication parameters for resource-constrained wireless networks. Our scheme
is lightweight, as in it requires less resource when implemented and offers high security
through increased unpredictability, owing to continuously changing parameters. Our work
focuses on accomplishing high security through simplicity and reuse. We evaluate our
encryption scheme using simulation, key similarity assessment, key sequence randomness

assessment, protocol analysis and security analysis.
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1. Introduction

The Internet of Things (IoT) paradigm, coupled with developments in related domains such as
cloud computing, is creating a more connected world, with sensors, unique identification and artificial
intelligence [1]. This has meant that technologies such as wireless body area networks (WBAN, which
facilitate remote healthcare and assisted living) and radio frequency identification (RFID, facilitating
unique identification of objects) are increasing in popularity, in an increasingly automated world, with
intelligent devices.

RFID systems consist of RFID tags, RFID readers and backend servers. RFID tags are electronic
circuits (with or without a power source) containing a unique identifier, which helps record and identify
each object uniquely, among a set of other objects. RFID readers or interrogators are devices that initiate
communication with these tags, and in case of passive tags without a power source, energize them
sufficiently for them to be able to respond. RFID readers transmit the tag’s response to a backend
server, querying it for further information about the object represented by the tag. On validating
the tag, the server transmits the information to the reader, with optional information to the tag [2].
RFID tags, especially passive tags without power source, can use the reader’s signal strength to stay
alive very briefly, during which time to perform any required computations and respond with the
unique identifier. WBAN systems, on the other hand, contain on-body sensors and a hub (also a node
on the body). The hub is usually connected to a personal server (PS), such as a cellular phone or
a computer, which is further connected to the monitoring server at the hospital. The hub collects
all health data recorded by individual sensors and transfers this to PS, which then forwards it to the
monitoring server [3]. Because WBAN sensors are deployed on the human body and have varied
length of deployment, optimizing resource usage between sensing and communication becomes critical.
A common mechanism is to let the sensors enter “sleep” state, which can be woken up by the hub for
communication [4]; very similar to RFID tags.

We have considered the examples of RFID tags and WBAN sensors here to illustrate the
characteristics of some of the devices that are part of the IoT. Factors such as reduced size, required
functionality, longevity in the deployed environment and low manufacturing cost in these technologies
imply that these devices typically have resource restrictions.

With communication being mostly wireless in such application environments, data security assumes
focus. However, the ability of a manufacturer to include sophisticated cryptography for data security
is limited by the factors imposing resource restrictions. This calls for techniques that are optimized
or lightweight, and which do not require considerable resources when deployed on these devices.
Furthermore, with encryption algorithms typically published, the strength of the cryptosystems rests
on the security of the key [5].

In our work, we present an encryption scheme based on pseudorandom number generators (PRNG,

discussed in Section 3) for resource-constrained wireless networks. We refer to our scheme as
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the Butterfly encryption scheme. Our work employs a technique to update PRNG seeds with each
message transmission that has been inspired by the Butterfly effect [6,7]. Our seed update mechanism
(Section 3.1), in addition to parameters such as timestamps, ensures generation of a new key for each
message encryption, making it also context-specific (owing to varied timestamp, messages and entities).
Our scheme also includes a message signature generation mechanism, which is used to accomplish
integrity verification and mutual authentication. The Butterfly encryption scheme was initially proposed
for RFID systems [8]. We generalize it and extend it to WBANSs in Section 4. To evaluate our work
(Section 5), we consider key similarity and randomness assessment, followed by complexity assessment
and security analysis. This combination of analyses enables us to understand the nature of the keys
generated by our approach, and assess its complexity, in an attempt to verify its security and applicability
to resource-constrained wireless networks.

2. Related Work

In resource-constrained devices, especially RFID tags and WBAN sensors, any improvement in
efficiency in terms of reuse in circuits or functions would be beneficial. Typically, one popular choice
for key generation in such systems are PRNG, since they generate unique sequences given different
seeds, and depending on the algorithm, can operate with large periods without repeating sequences.
PRNG algorithms such as Blum—Blum-Shub [9], J3Gen [10] and lightweight PRNG proposals by
Martin et al. [11] are among many such algorithms proposed for cryptographic and resource-constrained
applications. PRNG algorithms have become a very important component of cryptographic algorithms
and protocols. In a typical setting, regular communication is usually preceded by a separate key
agreement phase. Alternatively, key exchange and agreement can be combined with the regular message
exchange to reduce overhead. Furthermore, separate functions (typically message digest generation
algorithms [12]) are used to accomplish authentication, in a process that may involve the presence of
a trusted certificate authority or a trusted enterprise server [13—15]. In this section, we discuss some of
these approaches to key management and authentication in RFID and WBAN:Ss.

Often, mathematical hash algorithms are included as part of a symmetric cryptosystem for the purpose
of facilitating message integrity verification. In some approaches, hash algorithms are also used to
assist in authentication. One such approach is the application of the new SHA-3 standard (Keccak
algorithm) [16] to compute message digests using pseudorandom numbers, keys and RFID tag IDs,
proposed by Dong et al. [12]. The hash also contains an internally updated key, while the pseudorandom
number is updated with each communication. In other approaches, hashes are used with digital signatures
and trusted third party certificates for authentication. A different take on such mechanisms is to use
a public key generator (PKG) to compute and distribute public keys and associated parameters [14].
The PKG computes and distributes partial public and secret keys to entities. When an entity needs to
generate a signature, it uses its own identifier as a partial public key and requests the corresponding
secret key from the PKG. Using the parameters generated by the PKG, the entity is able to generate
its own certificateless signatures for authentication. This is a way of accomplishing authentication and
non-repudiation by association with PKG, and implicitly a certificate authority. Their approach scheme

does not specify whether it is designed to authenticate entities on each update. This is a factor to consider
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because of the increased load that public key functions and complex mathematical functions (such as
exponentiation) will place on an already resource-constrained entity.

To exchange keys and accomplish authentication in WBANs and RFID systems, various mechanisms
have been employed. An interesting approach to exchange keys in WBANSs is suggested by
Kovacevic et al. [15]. They use the visible light channel from a light source to establish secret keys and
radio channel for authentication. The light source is generated using a multi-touch screen, using on-off
keying modulation to transmit the keys to the body sensors, which need to be placed in such a way as to
be able to recognize the light source. This key is used to generate a keyed hash that is used as one of the
parameters for authentication. Their approach adds an additional burden on the WBAN user to place the
sensors close to or on the light source for key exchanges, which is more of an inconvenience. This is in
addition to the limitation of the keys being exchanged literally in the open via a light source. In RFID
systems, Choi et al. [17] propose the use of physically unclonable functions (PUF), which are based
on physical (electrical) characteristics. However, their work requires that challenge-response pairs are
pre-computed using the PUF-based function and stored on the devices. It is to be noted that PUF-based
implementations are subject to high sensitivity to changing physical characteristics of the tag.

While their work employs physical channel key exchange, Zhu et al.’s work [13] employs symmetric
cryptography for key exchange and authentication. Their work includes a block-wise key update
technique with XTEA encryption. Keys are updated block-wise (subkeys) and each block is transmitted
by the server, encrypted using XTEA cipher. The subkeys are updated on successful authentication.
With each update linked to the previous keys in this transmit-acknowledge mechanism of operation, this
scheme is prone to de-synchronization attack. This can be accomplished by an attack blocking the key
update message and transmitting an unrelated message in its place. This would cause the tag to roll back
its update, causing de-synchronization.

Asymmetric cryptography, no matter how computationally extensive, is something that is being
suggested for use in RFID and WBANSs. The expectation (as per IEEE 802.15.6 standard for WBANS [4],
and the EPCglobal [18] and ISO/IEC 29167-1:2014 specifications for RFID tags [19]) is for systems
to employ asymmetric algorithms to accomplish several or all aspects of security. As a possible way
to get the best of both symmetric and asymmetric techniques, Liu ef al.’s work [20] suggests ways
to use techniques based on ECDH (Elliptic curve-based Diffie-Hellman exchange) or AES (Advanced
Encryption Standard) to accomplish key agreement and authentication among entities. However, as
identified by the ISO/IEC 29167-1:2014 specification, use of sophisticated cryptography “impacts power
consumption and processing time for the RFID components and may degrade system performance” [19],
which would inevitably mandate increase in resources with requirements to perform exponentiation and
Elliptic Curve Cryptography point multiplication for various computations, thereby increasing the cost.

Alternative approaches for security in resource-constrained networks also include using stream
ciphers, such as the work by Luo et al. [21] and Shen et al. [22]. Luo et al.’s work employs the WG-7
stream cipher for RFID systems, while the work by Shen ef al. uses PRNG and non-linear filters to
compute hash values for authentication.

In our approach, we discuss a mechanism of continuously updating PRNG seeds that is naively based
on the Butterfly effect [6,7]. We use this technique to update seeds in generating keys for encryption,
which are updated with each message encryption and transmission. We also present an encryption
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scheme that employs both these techniques and discuss the protocol of operation. Our scheme is
lightweight and facilitates reuse of common modules, which helps in reducing resource utilization in
resource-constrained devices. Our approach also capitalizes on the deterministic nature of PRNG and on

synchronized updates to the PRNG seeds to accomplish key generation, as well as mutual authentication.

3. Butterfly Encryption Scheme

Butterfly effect is a concept in chaos theory, defined by Poulin [7] (originally coined by Lorenz [6] as
“hypersensitivity to perturbation”. This means that in a nonlinear deterministic system, if the initial
conditions are changed ever so slightly, there will be drastic changes in the output of a later state.
The Butterfly seed generation algorithm and the associated encryption scheme for RFID systems
(A preliminary version of this work, intended only for RFID systems was presented at and has been
published in the proceedings of the 22nd International Conference on Software, Telecommunications
and Computer Networks (SoftCOM) 2014 [8].) are inspired by this concept. The basic principle behind
the Butterfly seed generation algorithm is this—changing a single bit in the seed of a pseudorandom
number generator (PRNG) will change the output of the PRNG significantly. In this section, we discuss
briefly the seed update algorithm, which is a naive adaptation of the concept of Butterfly effect, and we
summarize the encryption scheme that employs it.

3.1. Butterfly Seed Generation Algorithm

PRNG are employed by cryptographic algorithms typically for generating encryption keys
or nonces for other purposes. PRNG are inherently deterministic [23,24]. Their application
is common in lightweight systems that have severe resource constraints that limit their ability
to perform sophisticated computations for achieving security (e.g., lightweight passive RFID
systems) [10,11,25,26]. Their deterministic nature, combined with a changing seed, can make the PRNG
into a powerful authentication/simple key generation system, useful for RFID applications.

Let us consider a PRNG ¢() that generates n-bit pseudorandom numbers. Entities Alice and Bob,
when synchronized with a particular initial seed, will be able to demand specific random numbers from
each other. A simple authentication scheme could have Alice requiring that Bob respond with the z'"
random number generated using such a synchronized PRNG, to which Bob’s response could include its
own demand that Alice respond with the (z + of fset)! random number. To increase unpredictability,
which would ultimately lead to increased security, we explored another way of updating the seeds that
would also facilitate synchronization and increased uncertainty.

This uses the naive adaptation of the Butterfly effect discussed earlier in this section. This approach
uses state identifiers to (a) update the PRNG seed to a specific state; and (b) facilitate synchronization
among entities. This scheme is thus able to facilitate entities to ‘generate’ encryption keys instead of
exchanging keys and as a result generate parameters that enable mutual authentication.

Let us consider that the PRNG operation is governed by Equation (1)

r={g(s;)} (D)



Sensors 2015, 15 23150

Here, r is the pseudorandom number generated by the PRNG ¢() using a seed s;. With the Butterfly
algorithm, we facilitate the seeds to be inverted bitwise, beginning with the least-significant bit (LSB),
until a chosen bit j. This means that the bits in the seed will be inverted (or, changed) one at a time
beginning with the LSB until bit j. In other words, the Butterfly seed generation can be thought of as
a function ¢() that transforms a PRNG seed (.5) into a variant of the same, as indicated by Equation (2).

si=¢(5) 2)

Such design of a seed update mechanism allows flexibility in implementation, facilitating varying
levels of unpredictability. This is because the implementation could take one of the following
forms—(a) with each seed update, only one bit, identified by j, can be inverted, which would mean
that the implementation would only need to offset to the particular bit and invert it, something that can
be realized using shift registers (on hardware), applicable in severely resource-constrained applications;
or, (b) with each seed update, all bits until and including the bit j can be inverted, implying that it would
change the seed significantly, leading to higher unpredictability. An additional unpredictable element
can be introduced in the choice of j. In simple implementations, j could be merely an incrementing
number that identifies the position of the bit to be inverted. In an alternative implementation, it could be
a number chosen at random that indicates the specific bit (or set of bits) to be changed.

Although this is not a direct replication of the Butterfly effect or the mathematical theory governing it,
we see that our adaptation facilitates increasing the overall uncertainty in a system, thereby contributing
to increasing security especially when algorithms used for PRNG and encryption are published.
Furthermore, there would be no predictable pattern in the seed to an adversary (if he does not know
the initial seed)—it would depend on the initial seed, and one bit of the seed would be changed at the
end of each period of the PRNG (or on demand).

Our adaptation of the Butterfly effect, thus, facilitates design of key management and
challenge-response authentication mechanisms, which have an implicit mechanism that increases the
overall unpredictability, ultimately leading to increased security.

3.2. Encryption Scheme Employing Butterfly Seed Generation

In this section, we briefly discuss the encryption scheme and associated protocol that employs the
Butterfly algorithm for seed update. This scheme was initially proposed for RFID systems, however, it
can be extended to other resource-constrained systems such as WBANS, as we discuss in the next section.

Concepts central to the encryption scheme are enveloping and reuse. This scheme uses multiple
envelopes to add to the security and reuse of functions (such as PRNG) to ensure reduced resource
usage. This scheme uses the Butterfly seed update algorithm to generate unique keys for each encryption
cycle. The scheme works as illustrated in Figure 1. For our discussion, we consider that the PRNG ¢()
is initialized with seed s;,;; and that the current seed is s;. The message and the encryption cycle are

identified by the sequence number .
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Figure 1. Working of the proposed encryption scheme [8].

3.2.1. Preliminaries

When required to transmit a message M, the entity first updates the seed to determine the updated
seed s; using Equation (2). Following this, the entity encrypts (using XOR operation) the message using

s; as the key (Equation (3)). This is the first envelope around the message to be transmitted.
m; = M P Sj (3)

Further, let ¢; be the timestamp that the communication initiator retrieves prior to communication and
6; be the message signature of m,;. Communicating entities store IDs and other information associated
with the authenticated entities in memory (e.g., server storing ID and key information for an RFID tag
in RFID systems). We assume that each such record associated with an entity in a database (or, a ‘row’
entry in a database) is identified uniquely by a number, 7.

To accomplish the enveloping concept, two keys are used by this scheme (in addition to s; itself being
used as a key, Equation (3)). These are the data encryption key /; and the transfer key Kp. Both keys
are generated by PRNG as follows:

Ki=g(f(o(s;) ti)) )

Ky = 9( Sj ) @)

Here, f() is the combination function, which combines input parameters. In our implementation,
we used the XOR operation for combination. If and when required depending on the needs of the
application, the combination function can be replaced without affecting the overall design of this scheme.
K is used to encrypt m; adding a second envelope over the data, while K is used to encrypt the final

message sent by the entity.
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Data encryption can be accomplished by any symmetric encryption algorithm, such as AES [27],
however, we used XOR to keep computations and resource usage low. The advantage of using XOR
for encryption, especially when designs are implemented on hardware, is that XOR’s involutory nature
makes it possible to use the same function for both encryption and decryption. (XOR is its own
inverse. This is the involutory property of the XOR function.) Once again, although we used XOR
in our description of this proposal, any symmetric encryption algorithm can be used with this scheme.
Data encryption employed in this scheme is governed by Equation (6), where cipher, is the cipher text,
FEke,, () represents encryption of message message, with key Key,, and & indicates the XOR function.
Note that the parameters used in Equation (6) will change depending on the stage of encryption, i.e.,
Key, = K; when encrypting m; and Key, = K in the final encryption.

cipher, = Ek.,, ( message, ) = message, ® Key, (6)

Another aspect we considered in this scheme was to use PRNG for generating message signatures.
Although it is typical to use hash functions to generate message digests (used as signatures) [22],
PRNG have the ability to generate unique sequences given a specific seed. We therefore used PRNG to
generate message signature, ;, for a given message and time (Equation (7)). Note that the combination
function, f(), combines the current seed, message and timestamp to identify the context in the particular
message transfer.

0i=g( f( s, mi t;)) (7)
3.2.2. Protocol of Operation

The protocol of operation is illustrated in Figure 2. (Note that the reader is shown as an optional entity
to indicate that the use of intermediary devices in communication, as with using RFID readers in RFID
systems, are optional and limited to specific resource-constrained networks.)

When communication begins, i.e., either initiated by an intermediary through a communication
request or by the entity, Alice, the first step involves the entity retrieving the current timestamp, t;.
Alice encrypts this using the synchronized transfer key K7 and transfers M0 = Eg.(t; ) || MC
(where || represents concatenation). The parameter, M C), is the 2-bit message code, which indicates the
type of message being communicated. The possible messages, identified by various message codes, are
summarized in Table 1. In case of M0, MC'is set to 0.

On reception of this message, Bob chooses a random integer value for j (0 < 7 < m, with m being
the length of the seed in bits). Bob retrieves the previously synchronized transfer key and extracts the
timestamp ¢;. Following this, Bob computes seed s; (Equation (2)) and generates keys /; and Kr.
It computes m; (Equation (3)), and following this the cipher text ¢; (Equation (6)). It uses the various
computed parameters to generate message signature, ¢; (Equation (7)). It then assembles its response,
M as follows:

My = B (e[t ][ 6:) [ 5[] MC || e (8)

Note that ¢;, 6;, t; and message sequence number, ¢, are encrypted using K1 as the final stage of

encryption or final envelope. This is indicated by Ek..() in Equation (8).
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Figure 2. Protocol of Operation (Generalized Version of the Protocol Presented in [8]).

Table 1. Message Code (M C') format and description [8].

MC Bit Pattern Description

MC =0 00 First message sent by Alice
MC =1 01 Response sent by Bob (Equation (8))
MC =2 10 Acknowledgement sent by Alice (Equation (10))

Special message: Instructs Bob to update

MC=3 11 . e A .
its PRNG seed, if Alice is valid (Equation (11))

3.2.3. Decryption

On receiving My, Alice uses j to compute s;, and hence, K;(using the stored timestamp, ¢;) and
Kr. It uses K to retrieve ¢;, 6;, t; and message sequence number, 7. Next, it computes 6; to verify
message integrity. Bob’s authenticity is verified if 0; ycceivea 1 €qual t0 0; generated- This is because
only an authorized entity with synchronized states will be able to generate the proper keys using s;.
Following its verification, Alice recovers m,; and hence message M. Following this, Alice transfers
an acknowledgement pattern (ack;) with the new timestamp (¢;;1) and transfers this with any optional
messages to be transferred to the intermediaries (Equations (9) and (10)).

Cack = EKi ( ACK H ti+1 ) (9)
ack; = Ex, (Caer || 7] 6;) || MC (10)
Here, ¢, is the acknowledgement cipher, K and K; are the same keys used by Bob, ACK is the

pre-agreed acknowledgement pattern, ¢;,; is the latest timestamp at Alice, 7 is the previous sequence
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number sent by Bob, and M C = 2 to indicate acknowledgement. Values of K, K, ¢ used here are

those used by Bob and this helps in synchronization.
3.2.4. Seed Refresh

In case either entity wants to update or refresh the seed, they can send a seed refresh message, m,,
as specified by Equation (11). The message m, contains the seed update cipher (c,), which the seed
update initiator computes. This contains the combination of the current seed, s; and the new seed, s,
encrypted using K; (as per Equation (4)). Furthermore, in mg,, ¢, is the current timestamp and the
generated message signature is 6,,. In this case, j is the Butterfly state randomly chosen by the initiator
of the seed update and M C' = 3.

msu:EKT(Cu Htu ||Z||9u>||]|’ MCHnt (1)

Algorithm 1: Key Generation and Encryption in the Butterfly Encryption Scheme.
Input: Seed bit identifier (7), updated seed (s;), timestamp (Z;).

Output: Transmitted message (M) or Seed update response (14,).
Choose j;

sj o(s);

Ki < g( f(s5,ti));

Kr < g(s));

//Choose appropriate message code (2 bits):

if (First message, Bob < Alice) then M C <+ 00;
else if (Response, Alice < Bob) then M C' + 01;
else if (ACK, Bob < Alice) then MC' <+ 10;
else if (Special message) then M C' < 11;

m; <— M & 855
c; < m; D Ki;
Oi < f(ti | mi [ s5);

if MC = 00o0r MC = 01 or MC = 10 then
Ex, (params) < (¢ || t; || i || 0;) © Kr;
//Generate Message to be Transmitted:
My = Ex,(params) || j || MC || n;
else if M/C' = 11 then
Cy $— Ciy by 1t 0, 0;;
//Generate Seed Update Message:
Msy = Exc (cu || tu || 0[] 0u) (| 51| MC [ 11
end
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The pseudocode for the Butterfly encryption scheme is summarized in Algorithm 1. This encryption
scheme was proposed for RFID systems, to ensure security due to high unpredictability introduced by
the changing seed states and random choices. In the next section, we discuss a use case of extending this

scheme to be applied to Wireless Body Area Network (WBAN) applications.

4. Extending Butterfly Encryption Scheme to WBANSs

RFID tags, especially Class-0/1 passive tags [28], are even more resource-constrained than WBAN
on-body sensors. This is primarily because of the absence of an on-chip power source, which limits
the operating time of the tag. The Butterfly encryption scheme was proposed for RFID systems as
a lightweight security proposal.

HOSPITAL
(MONITORING
STATION)

Legend

$1: Heart Rate Sensor

CELLULAR
PHONE 52, 53: ECG Sensors
(PERSONAL S4: BP Sensor
WBAN SERVER)

S0: Body Central Unit

Figure 3. A Typical WBAN System [29].

In WBANS, a sparse network of sensors (“Body Sensor Units”, BSUs) are deployed either directly on
the human body, inside the body or embedded in everyday clothes, to record and transmit health data.
The BSUs record and transmit data to a Body Central Unit (BCU) or the “WBAN hub” [30], which
aggregates data sent by all BSUs and relays the aggregation to a hospital monitoring station. However,
the hub might not have sufficient infrastructure to relay the data directly to a monitoring station, and
therefore typically uses a Personal Server (PS) as an intermediary. A personal server can be either fixed
or mobile, typical examples of which include cellular phones, personal digital assistants (PDAs), desktop
or laptop computers [3]. A typical setup of wireless body area networks is illustrated in Figure 3, with
BSUs—SI1 (heart rate, measured in beats per minute, bpm), S2 (blood pressure in millimeters of mercury,
mmHg), and S3 (blood glucose level in milligrams per decilitre, mg/dl), and SO being the BCU, using
cellular phone as a personal server.

WBAN sensors are connected to a power source (batteries), which enables them to perform the
required “sensing” operation, among other tasks. However, the presence of a power source does not
imply that the sensors can be always on, since that would increase the battery consumption and require
frequent maintenance (battery replacement). For optimal performance, sensors may be programmed to
enter “sleep” state following message transmission, for a predetermined duration of time [4]. This, in

a way, makes them similar to active RFID tags.
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Our approach can be used to protect the communication between the sensor nodes and the WBAN
body central node or the hub (phase I), and can also be employed for the communication between
the hub and the personal server (phase 2). With the personal server and the monitoring station known
to have higher computational abilities, we do not consider their security in the purview of our work.
Butterfly can be employed in both phase 1 and phase 2 communication in WBANs. When we consider
phase 1, we assume that each sensor node has a specific identifier (ID) that the protocol identifies as 7;
and that each node has a specific seed s,, that is stored at deploy time. The hub stores all these seeds
and IDs in memory, and maintains a separate seed for its own communication with the personal server.
Note that the reader role is eliminated in this application of the encryption scheme.

Our approach also facilitates either entity to be able to demand the other generate specific parameters
for encryption and authentication. This begins with the random choice of j at the initiator and retrieval
of the timestamp (¢;). If the initiator is the sensor node, it computes the keys and the message
signature based on the value of j and ¢;, and transmits the encrypted recorded data to the hub as
specified in Section 3.2. Following this, the hub authenticates the node using 7, and j, and sends
an acknowledgement on successful authentication. The same mechanism can be applied when used
in phase 2 of the WBAN communication, with the personal server and the hub generating specific
parameters on demand, as decided by j and ¢;.

The simplicity of the Butterfly encryption scheme enables us to extend it to other resource-constrained
application domains, such as WBANs, with negligible changes or adaptations. If and when the scenario
demands, the Butterfly algorithm can also be extended to generate longer keys (e.g., 256 bits, 512 bits,
or more), which would also add to the security. This however will be dependent on the symmetric
encryption algorithm that is used to encrypt messages. We used XOR in our implementation, however,
any other symmetric encryption algorithm can be used.

Our proposal is primarily focused on key generation and authentication through message signatures,
whether it is considered in its initial form proposed for RFID systems [8] or as extended to WBAN:S.
The foundation for this is the Butterfly seed update algorithm, based on a naive adaptation of the Butterfly
effect. This is an attempt to reuse available functions to accomplish multiple functions such as key
generation, encryption, message signature generation, which results in achieving security objectives
such as confidentiality, integrity, (mutual) authentication, and non-repudiation (by association).
Simplicity and reuse in this approach encourage its application in other resource-constrained wireless
applications such as WBANS, as discussed in this section. In the next section, we discuss the evaluation
of our encryption scheme, assessing the encryption keys generated and the overall security of the system.

We also present a discussion on the resource utilization by this scheme.

5. Evaluation and Results

Our evaluation of the Butterfly encryption scheme involved three parts:

e Key Sequence Evaluation: We implemented our approach using Java programming language
to verify the working of the concept and generation of key sequences for further evaluation.
We used the generated key sequences to test similarity between consecutive keys using Sorensen’s
Similarity Index (SST) [31] and to verify the randomness in key sequences using the Statistical
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Test Suite (STS) published by NIST (National Institute of Standards and Technology) [32].
Using the results so obtained, we compared the performance of our approach with the RFID
security proposals by Zhu et al. [13] and Dong et al. [12], and with an AES-based key generation
approach for WBANSs proposed by Liu ef al. [20]. Note that we also implemented the proposals
by Zhu et al., Dong et al., and Liu et al. using Java to generate key sequences for our assessment.

e Hardware Complexity Evaluation: We estimated the approximate resource requirement for
implementing the Butterfly encryption scheme on hardware.

e Security Evaluation: We also performed a security assessment using Scyther protocol
analyzer [33-36] and qualitative security analysis to evaluate the security of our
encryption scheme.

5.1. Key Sequence Evaluation
5.1.1. Methodology

We implemented the Butterfly seed update algorithm and the encryption scheme using Java to first
verify the concept. In our implementation, the PRNG used to choose the value of the variable j at
random, which decides the state of the seed (s;), was initialized to 1928BC'333250CCCF'F, while the
seed (s) itself was initially set to 12345678. We used the Java Random class to introduce random delays
(0 and 2 s) between consecutive key generations, as an attempt to emulate real-time communication,
and used methods in the Random class to extract PRNG sequences. Furthermore, we used the Java
method System.currentTimeMillis() to extract the timestamp. We extracted 10240 key sequences
for our assessment.

According to Kerckhoff’s principle [5], the knowledge of the operational specifics of a cryptosystem
(except the key) must not reduce its security. This led us to assess the keys generated by our
approach using two aspects—similarity between consecutive keys and randomness/unpredictability
in the individual sequences. To extract the characters in each key and quantify similarity between

consecutive keys, we used S5, which is computed as summarized by Equation (12).

2xn(ANB)

551 = n(A) + n(B)

(12)
Here, n(AN B) represents the number of characters (or, numbers) in the key pair that are the same, n(A)
and n(B) represent the total number of characters (or, numbers) in each of the keys A and B of the key
pair, respectively.

Following the assessment of similarity between key sequences, we evaluated the randomness in each
key sequence using NIST STS [32]. STS is primarily used to assess the randomness and unpredictability
of sequences generated by random and pseudorandom number generators. Although our proposal is
not intended as a random or pseudorandom number generator, we used it to assess the key sequences
since it serves as a means to evaluate the randomness associated with the generated keys. Randomness
is a measure of security, since the more random sequences are, the harder it will be for an adversary to

crack or guess. This helps us assess the unpredictability associated with our scheme, and hence security.



Sensors 2015, 15 23158

We used 10000 (128-bit) key sequences for this assessment (sample size, m). STS determined the range
of acceptable proportions, i.e., the confidence interval, using Equation (13) [32].

p(1—p)
m

Con fidence interval, CI = p =+ 3 (13)

Here, p is (1 — «), with « being the significance level. In our assessment, & = 0.01 and sample size

m = 10000. The confidence interval is CT = 0.99 43/ 2220099 — (). 99+ (.00298496. Therefore, for
a set of sequences to be considered random, the minimum (acceptable) number of sequences that have
to pass the test are (0.99 — 0.00298496) x 10000 = 0.98701504 x 10000 ~ 9870 sequences. To evaluate
the randomness, we considered the following tests in STS—Frequency (monobit) test, Frequency tests
within a block (block size = 32 bits), Runs test, Longest runs of ones in a block, and Discrete Fourier

transform (DFT) test.
5.1.2. Results

Figure 4 illustrates the variation for the first 108 key comparisons (note that we have illustrated only
108 key sequences to demonstrate the variation within the space confines of a page). Table 2 summarizes
the average S.SI values over 10239 key comparisons. K; displays considerable variation, which can be
attributed to the changing values of timestamp and s;, that generate these keys. We also observe that
the variation in Kp is lower as compared to K;. This can be attributed to the random choice of the
numerical value of j, which when chosen at random could result in the same value, and hence the
same bit being inverted. In our implementation, we considered the option of inverting only one bit
identified by j (option (a) discussed in Section 3.1). Although the transfer key remains the same for
a few communications in our proof-of-concept implementation, we must note that the value of K; keeps
changing, which implies that the cipher resulting from encrypting the parameters using K7 also keeps
changing, minimizing the effect of reduced variation. This serves as a way of increasing the uncertainty
associated with a transmitted message, as the contextual parameters that change with each message
ensure that the communication remains secure.

In comparison with other key generation schemes [12,13,20], we observe that the keys generated by
our approach perform better in terms of similarity (or, ensuring dissimilarity). The keys generated in the
proposal by Zhu et al. [13] includes a scheme of updating the keys block-wise, which retains the other
(non-updated) blocks of keys similar to the previous keys, increasing the average SS1.

Table 2. Summary of similarity between keys.

Configuration Average SSI (S51,,)

Butterfly (K;) 0.3809
Butterfly (K1) 0.3833
Liu er al. [20] 0.3826
Zhu et al. [13] 0.4110

Dong et al. [12] 0.3815
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Figure 4. Variation in S ST coefficients. (a) Butterfly (K;); (b) Butterfly (Kr7); (¢) Liueral.’s
proposal; (d) Zhu et al.’s proposal; (e) Dong et al.’s proposal.

Evaluation of similarity between keys helped us determine that consecutive keys are dissimilar, which
was an attempt to verify whether similarity could be exploited by adversaries to be able to crack or guess
keys. To continue this attempt at evaluating the unpredictability of keys, we assessed the randomness
in individual key sequences. STS demonstrated that all sequences considered for assessment passed the
criterion (>9870). With regard to the Discrete Fourier Transform test, however, our results indicated
that although the variability in all schemes considered is sufficiently high, there are a few sequences in
which the periodic features are found to be higher than would be expected in a random sequence. Based
on the STS results in Table 3, we also observed that the sequences generated by our Butterfly approach
perform at par to sequences generated using standard algorithms such as AES (Liu et al. [20]), SHA-3
(Dong et al. [12]), and the block-wise key update mechanism by XTEA (Zhu et al. [13]).

The passed sequences indicate that the key sequences generated by our scheme are able to pass the
tests for randomness, when assessed with the expectations for a random or a pseudorandom number
generator. This is an encouraging aspect, since it highlights the randomness associated with individual
key sequences, thereby supporting our claims of increased unpredictability, and thus security.
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Table 3. NIST STS Assessment: Summary of results (Number of sequences out of 10,000
that passed each test).

Configuration (Keys Considered) FM Test! FB Test? Runs Test LR Test2 DFT Test 4

Butterfly (K;) 9895 9908 9906 9896 9862
Butterfly (K1) 9906 9906 10,000 9917 10,000
Liu et al. [20] 9913 9914 9888 9912 9837
Zhu et al. [13] 9891 9892 9892 9886 9832
Dong et al. [12] 9898 9926 9890 9894 9833

1. Frequency (Monobit) Test; 2: Frequency Test within a Block; 2: Longest Runs of Ones in a Block;

4: Discrete Fourier Transform (Spectral Test).

5.2. Hardware Complexity Evaluation

To estimate the approximate resource requirement for implementing our approach, we estimated the
logical circuit blocks that might be necessary for a hardware implementation of our scheme, considering
that some of the blocks could be reused for different functions. If the size of the message (following
operations such as concatenation) increases to beyond maximum length of the message supported by
such reused functions (especially in hardware implementations), the data to be processed is processed
as blocks of maximum allowed length. For example, if an n-bit XOR circuit is used, then, data will be
processed as blocks of n in case the final data to be processed has a length [ > n. We summarize the
logic circuit estimation in Table 4 (note that n is the size of the key in bits).

Table 4. Logic Circuit Estimation.

Logic Circuit Count

PRNG n bit x1
Addition 5 bit x1
XOR * n bit x1
NOT (Invert) 1bit x1
MUX (Multiplexer) 2:1x1

* XOR is used for encryption and as combination function in our scheme.

5.3. Security Evaluation

We performed a security assessment of the protocol of operation (Figure 2) using Scyther protocol
analyzer [33-36]. Scyther uses the Dolev and Yao adversary model [33,37], which assumes perfect
cryptography, abstract messages and that the adversary has full control over the network. In the
paragraphs that follow, we discuss the security claims [35,36], the associated results and their
implications on some network attacks, while we summarize the Scyther assessment results in Table 5.
In our discussion of the Scyther results, we also include how each claim verified by Scyther impacts
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the behavior of our scheme with respect to standard security goals [38]—confidentiality, integrity,

authentication, non-repudiation (by association) and forward/backward secrecy.

Table 5. Results: Evaluation of the Protocol Using Scyther [8].

Bob Alice
Claim
Status Comments Status Comments

Secret m; OK NAWB * OK NAWB
Secret t; OK NAWB OK NAWB
Secret ¢ OK NAWB OK NAWB
Secret 71 OK NAWB OK NAWB
Secret 0 OK NAWB OK NAWB
Secret s; OK NAWB OK NAWB
Secret K; OK NAWB OK NAWB
Secret K OK NAWB OK NAWB
Secret s pew  OK NAWB OK NAWB
Secret t; pew OK NAWB OK NAWB
Secret 61 OK NAWB OK NAWB
Alive OK  NA-VerifiedT  OK NAWB
Weakagree OK NA-Verified OK NAWB
Nisynch OK NAWB OK NAWB
Niagree OK NAWB OK NAWB

* NAWB = No attacks, within bounds; T NA-Verified = No attacks, verified.

Claim-1: Secrecy: The following parameters were expected to be secret in the communication
between entities: s;, K;, Kp my, t;, 1, 0;, Ty, 0y, ¢).

Result: With keys dynamically updated using timestamps, the Butterfly protocol of operation ensures
that all secrecy claims are valid. This implies that the secrecy of the message m; and the updated
seed s’ are both maintained a secret, thereby helping to achieve confidentiality. It has to be noted that
even the message signatures #; and ¢, are maintained a secret, since these are included in the second
envelope encrypted with K7, generated using seed s;. This implies that the integrity of the message can
be verified.

Claims-2 and 3: Alive and Weakagree: Previous messages have been encrypted using the same
scheme, and entities are using the same scheme in their communication.

Result: The protocol analyzer validates our claims that the entities are running the same scheme
(Weakagree) and all previous message sessions have used the proposed scheme (Alive).

Claim-4: Non-injective Synchronization (Nisynch): Prior communication sessions between entities
have been governed by the specifications of the protocol and entities are synchronized to their
current state.

Result: The analyzer validates our claim that the protocol and the scheme ensure that the internal
key generation states are synchronized in the communicating entities. This is possible due to the

presence of timestamps, sequence numbers and message codes, which not only protect the system
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against replay attacks, but also render de-synchronization attacks ineffective. This is augmented by
the multi-level enveloping technique employed by our scheme.

Claim-5: Non-injective Agreement (Niagree): The communicating entities agree upon some
parameters during the course of a session.

Result: The first seed s;,,;; is a central attribute in our scheme. This is never shared openly or even
through encrypted messages. Its variant s; is used for generating multiple keys, and a new seed s’ is
also communicated in an encrypted manner. This dependency on the initial seed protects the scheme
operation since it makes it harder for an adversary to guess the particular (current) state of a seed. This is
an important pre-agreed parameter, and the analyzer validates our claim that the entities can agree upon
important parameters (such as s’) during communication using this protocol.

Authentication and Non-repudiation: The receiver can authenticate the initiator from the transmitted
message, My, using 7, pre-shared secret seed s; and the value of j to generate encryption keys to
decrypt the received data. By computing 6;, it is able to confirm the identity of the sender. Furthermore,
the initiator can validate the responder upon receipt of the acknowledgement message, when it decrypts
ack; to generate 6; that it had previously sent. Thus, both entities can authenticate each other. Since the
initial seed is pre-shared and never exchanged, only a legitimate entity will be able to generate specific
values of 6; and the keys K; and K.

This implies that for each entity to be in continuous synchronization, neither of them can
deny the messages they send. This, in a naive manner, helps in accomplishing non-repudiation.
Although symmetric cryptosystems cannot guarantee non-repudiation without the use of asymmetric
components/digital signatures [37], our approach facilitates non-repudiation by association.
(Non-repudiation by association implies accomplishing this goal by being associated with a backend
server, which can be authenticated by another trusted entity using trusted third parties and digital
signatures.) Since entities are communicating with a server with unlimited resources, we assume the
server to be authentic, and by verifying itself to the server, the resource-constrained entity guarantees
that the messages sent by it are valid.

Forward and Backward secrecy: The use of timestamp to generate the encryption key K; continuously
changes the seed s; and hence the transfer key /Kr, which helps in ensuring secrecy of data. Even if
a contiguous set of keys were to be determined by an adversary, it would be challenging to determine
either past keys or future keys, since the internal PRNG seed is not disclosed and the computed keys
are dependent on the changing parameters. Thus, our approach helps preserve forward and backward
secrecy, adding to the overall security of the system.

6. Discussion

Our approach is primarily proposed as a key generation and authentication mechanism for
resource-constrained applications. Using simple operations such as pseudorandom number generation
and XOR, our scheme accomplishes several security objectives without requiring extensive resources.
The strength of this approach is in its ability to use pre-shared parameters with minimal changes
in each message transmission, which allows generation of fresh encryption keys for each message.

This introduces an element of uncertainty to the cryptosystem, which makes it harder for unauthorized
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entities to ‘guess’ the keys of the system. This improves security. Furthermore, by employing a multiple
enveloping mechanism, or including multiple rounds of encryption, our scheme ensures that there is
an implicit complexity that improves security.

The results presented in Section 5 substantiate our claim of the key sequences being sufficiently
random and the reduced similarity between consecutive keys. These results, in addition to reduced
resource requirements, show that our scheme can indeed be deployed in resource-constrained devices,
and accomplish standard security objectives. Security of the messages encrypted using a scheme is
also dependent on its ability to ensure that its parameters are secret, and that the entities are able
to successfully communicate using said scheme. Our assessment of the protocol of operation using
Scyther supports the ability of the scheme to accomplish secrecy over communication, while ensuring
synchronized states. With keys being generated and each key determined using a secret seed, whose
state is chosen at random, the reliance on a resourceful entity (such as a server) to compute keys
for a resource-constrained entity is eliminated. The implicit challenge-response mechanism of mutual
authentication also guarantees that entities are able to not only generate encryption parameters but also
authenticate each other, while ensuring synchronized states.

Perhaps the biggest benefit of this scheme is its ability to be extended to any domain, beyond
resource-constrained applications. The use of timestamps enables it to be deployed in scenarios that
might necessitate varying keys in the duration of a session. Our scheme facilitates use of continuously
changing keys within a session without complex computation, which means that the overall uncertainty
and hence, security of such a system can be increased.

Controlled changes to the seed using the Butterfly seed update algorithm helps ensure that the PRNG
seed changes with each message, reducing the probability of any unauthorized entities determining the
key sequences generated as a result. Changing seeds and timestamps ensure that there is an element of
context to the communication, making it meaningful only to authorized entities.

7. Conclusions

In this paper, we presented an approach to update seeds and generate keys at communicating entities.
Continuously updating PRNG seeds and using timestamps enable entities to be able to generate keys and
authentication parameters to accompany encrypted messages. Multi-level encryption employed by our
scheme ensures that the actual data is substantially cloaked. Our approach features a naive adaptation of
the Butterfly effect to update seeds, a mechanism that helps in accomplishing mutual authentication as
well. The simplicity in design enables our scheme to be deployed in resource-constrained entities, where
security is desired but increased computation is too costly and thus unwanted.

The use of changing parameters and timestamp ensures that there is sufficient unpredictability
associated with the system, making it harder for unauthorized entities to decipher. Our analyses
substantiate our claim of low resource requirement and high unpredictability. Furthermore, our scheme
facilitates entities to be able to sign their own messages and accomplish non-repudiation by association.

Depending on the needs of the application, our scheme can be deployed with any symmetric
cryptosystem to generate keys and authentication parameters. This would depend on the available
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resources and the security requirements, in addition to factors such as cost and required longevity of
the devices.

We set out to design a simple scheme that is able to accomplish unpredictability and security through
key generation (rather than exchange), generation of message signatures, and that employs an element
of randomness (timestamp). Our Butterfly encryption scheme is able to accomplish all these objectives,
while being suitable for resource-constrained devices, and facilitating its application in other domains

as well.
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