In Vivo Neural Recording and Electrochemical Performance of Microelectrode Arrays Modified by Rough-Surfaced AuPt Alloy Nanoparticles with Nanoporosity
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Fabricated Microelectrode Arrays
2.2. Materials and Reagents
2.3. Preparation of Rough-Surfaced Aupt Alloy Nanoparticles with Nanoporosity
2.4. Electrochemical and Physical Characterization
2.5. In Vitro Background Noise Measurements
2.6. In Vivo Neural Recording and Data Analysis
3. Results and Discussion
3.1. Morphological and Structural Analysis
3.2. Electrochemical Behavior
3.3. Background Noise Analysis
3.4. Improvement of In Vivo Extracellular Recording
3.5. Durability Test
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Alegre, M.; Lopez-Azcarate, J.; Tainta, M.; Rodriguez-Oroz, M.C.; Valencia, M.; Gonzalez, R.; Guridi, J.; Iriarte, J.; Obeso, J.A.; Artieda, J. Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in parkinson’s disease. J. Neurosci. 2010, 30, 6667–6677. [Google Scholar]
- Dupre, K.B.; Cruz, A.V.; Mccoy, A.J.; Delaville, C.; Gerber, C.M.; Eyring, K.W.; Walters, J.R. Effects of l-dopa priming on cortical high beta and high gamma oscillatory activity in a rodent model of parkinson’s disease. Neurobiol. Dis. 2015, 86, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Xie, J.; Wang, X.; Wang, X.; Xiao, Z.; Hou, Y.; Lei, C.; Min, L.; Qu, Q.; He, T. Altered neuronal activity in the pedunculopontine nucleus: An electrophysiological study in a rat model of parkinson’s disease. Behav. Brain Res. 2016, 305, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Lalo, E.; Thobois, S.; Sharott, A.; Polo, G.; Mertens, P.; Pogosyan, A.; Brown, P. Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with parkinson disease. J. Neurosci. 2008, 28, 3008–3016. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, M.; Geng, X.; Song, Z.; Albers, H.E.; Yang, M.; Zhang, X.; Xie, J.; Qu, Q.; He, T. Altered neuronal activity in the primary motor cortex and globus pallidus after dopamine depletion in rats. J. Neurol. Sci. 2015, 348, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Bai, W.; Ju, W.; Xin, T. An aberrant link between gamma oscillation and functional connectivity in aβ 1–42 -mediated memory deficits in rats. Behav. Brain Res. 2016, 297, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.C. Implantable microscale neural interfaces. Biomed. Microdevices 2007, 9, 923–938. [Google Scholar] [CrossRef] [PubMed]
- Herwik, S.; Kisban, S.; Aarts, A.A.A.; Seidl, K.; Girardeau, G.; Benchenane, K.; Zugaro, M.B.; Wiener, S.I.; Paul, O.; Neves, H.P. Fabrication technology for silicon-based microprobe arrays used in acute and sub-chronic neural recording. J. Micromech. Microeng. 2009, 19, 74008–74011. [Google Scholar] [CrossRef]
- Norlin, P.; Kindlundh, M.; Mouroux, A.; Yoshida, K.; Hofmann, U.G. A 32-site neural recording probe fabricated by DRIE of SOI substrates. J. Micromech. Microeng. 2002, 12, 414–419. [Google Scholar] [CrossRef]
- Wise, K.D.; Angell, J.B.; Starr, A. An integrated-circuit approach to extracellular microelectrodes. IEEE Trans. Biomed. Eng. 1970, 17, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Wise, K.D.; Sodagar, A.M.; Yao, Y.; Gulari, M.N.; Perlin, G.E.; Najafi, K. Microelectrodes, microelectronics, and implantable neural microsystems. Proc. IEEE 2008, 96, 1184–1202. [Google Scholar] [CrossRef]
- Fekete, Z. Recent advances in silicon-based neural microelectrodes and microsystems: A review. Sens. Actuaturs B Chem. 2015, 215, 300–315. [Google Scholar] [CrossRef]
- Aarts, A.; Pereira Neves, H.; Puers, R.; Van Hoof, C. An interconnect for out-of-plane assembled biomedical probe arrays. J. Micromech. Microeng. 2008, 18, 777–786. [Google Scholar] [CrossRef]
- Chang, C.W.; Chiou, J.C. Development of a three dimensional neural sensing device by a stacking method. Sensors 2009, 10, 4238–4252. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.F.; Maleki, T.; Ziaie, B. A self-assembled 3d microelectrode array. J. Micromech. Microeng. 2010, 20, 035013. [Google Scholar] [CrossRef]
- Du, J.; Roukes, M.L.; Masmanidis, S.C. Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates. J. Micromech. Microeng. 2009, 19, 1403–1407. [Google Scholar] [CrossRef]
- Lopez, C.M.; Andrei, A.; Mitra, S.; Welkenhuysen, M.; Eberle, W.; Bartic, C.; Puers, R.; Yazicioglu, R.F.; Gielen, G.G.E. An implantable 455-active-electrode 52-channel cmos neural probe. IEEE J. Solid State Circuits 2013, 49, 248–261. [Google Scholar] [CrossRef]
- Torfs, T.; Aarts, A.; Erismis, M.A.; Aslam, J. Two-dimensional multi-channel neural probes with electronic depth control. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.K.; Patterson, W.R.; Bull, C.W.; Beals, J. Development of a chipscale integrated microelectrode/microelectronic device for brain implantable neuroengineering applications. IEEE Trans. Neural Syst. Rehab. Eng. 2005, 13, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Seidl, K.; Spieth, S.; Herwik, S.; Steigert, J.; Zengerle, R.; Paul, O.; Ruther, P. In-plane silicon probes for simultaneous neural recording and drug delivery. J. Micromech. Microeng. 2010, 20, 105006–105011. [Google Scholar] [CrossRef]
- Spieth, S.; Schumacher, A.; Holtzman, T.; Rich, P.D.; Theobald, D.E.; Dalley, J.W.; Nouna, R.; Messner, S.; Zengerle, R. An intra-cerebral drug delivery system for freely moving animals. Biomed. Microdev. 2012, 14, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Pongrácz, A.; Fekete, Z.; Márton, G.; Bérces, Z.; Ulbert, I.; Fürjes, P. Deep-brain silicon multielectrodes for simultaneous in vivo neural recording and drug delivery. Sens. Actuators B Chem. 2013, 189, 97–105. [Google Scholar] [CrossRef]
- Wu, F.; Stark, E.; Im, M.; Cho, I.J.; Yoon, E.S.; Buzsáki, G.; Wise, K.D.; Yoon, E. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. J. Neural Eng. 2013, 10, 056012. [Google Scholar] [CrossRef] [PubMed]
- Royer, S.; Zemelman, B.V.; Barbic, M.; Losonczy, A.; Buzsáki, G.; Magee, J.C. Multi-array silicon probes with integrated optical fibers: Light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur. J. Neurosci. 2010, 31, 2279–2291. [Google Scholar] [CrossRef] [PubMed]
- Kiss, M.; Földesy, P.; Fekete, Z. Optrode for multimodal deep-brain infrared stimulation. Procedia Eng. 2014, 87, 1537–1540. [Google Scholar] [CrossRef]
- Abaya, T.V.F.; Diwekar, M.; Blair, S.; Tathireddy, P.; Rieth, L.; Clark, G.A.; Solzbacher, F. Characterization of a 3D optrode array for infrared neural stimulation. Biomed. Opt. Exp. 2012, 3, 2200–2219. [Google Scholar] [CrossRef] [PubMed]
- Zorzos, A.N.; Boyden, E.S.; Fonstad, C.G. Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. Opt. Lett. 2010, 35, 4133–4135. [Google Scholar] [CrossRef] [PubMed]
- Kanno, S.; Lee, S.; Harashima, T.; Kuki, T.; Kino, H.; Mushiake, H.; Yao, H.; Tanaka, T. Multiple optical stimulation to neuron using si opto-neural probe with multiple optical waveguides and metal-cover for optogenetics. In Proceedings of the 35th Annual International Conference of the IEEE EMBS, Osaka, Japan, 3–7 July, 2013; pp. 253–256.
- Johnson, M.D.; Franklin, R.K.; Gibson, M.D.; Brown, R.B.; Kipke, D.R. Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings. J. Neurosci. Methods 2008, 174, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Frey, O.; Pd, V.D.W.; Spieth, S.; Brett, O.; Seidl, K.; Paul, O.; Ruther, P.; Zengerle, R.; de Rooij, N.F. Biosensor microprobes with integrated microfluidic channels for bi-directional neurochemical interaction. J. Neural Eng. 2011, 8, 066001. [Google Scholar] [CrossRef] [PubMed]
- Frey, O.; Holtzman, T.; Mcnamara, R.M.; Theobald, D.E.H.; Wal, P.D.V.D.; Rooij, N.F.D.; Dalley, J.W.; Koudelka-Hep, M. Simultaneous neurochemical stimulation and recording using an assembly of biosensor silicon microprobes and su-8 microinjectors. Sens. Actuaturs B Chem. 2011, 154, 96–105. [Google Scholar] [CrossRef]
- Du, J.; Blanche, T.J.; Harrison, R.R.; Lester, H.A.; Masmanidis, S.C. Multiplexed, high density electrophysiology with nanofabricated neural probes. PLoS ONE 2011, 6, e26204. [Google Scholar] [CrossRef] [PubMed]
- James, C.D.; Spence, A.J.H.; Dowell-Mesfin, N.M.; Hussain, R.J. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays. IEEE Trans. Biomed. Eng. 2004, 51, 1640–1648. [Google Scholar] [CrossRef] [PubMed]
- Paik, S.J.; Park, Y.; Dan’Cho, D. Roughened polysilicon for low impedance microelectrodes in neural probes. J. Micromech. Microeng. 2003, 13, 373–379. [Google Scholar] [CrossRef]
- Zhang, S.; Tsang, W.M.; Srinivas, M.; Sun, T. Development of silicon electrode enhanced by carbon nanotube and gold nanoparticle composites on silicon neural probe fabricated with complementary metal-oxide-semiconductor process. Appl. Phys. Lett. 2014, 104, 193105. [Google Scholar] [CrossRef]
- Desai, S.A.; Rolston, J.D.; Guo, L.; Potter, S.M. Improving impedance of implantable microwire multi-electrode arrays by ultrasonic electroplating of durable platinum black. Front. Neuroeng. 2010, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Keefer, E.W.; Botterman, B.R.; Romero, M.I.; Rossi, A.F.; Gross, G.W. Carbon nanotube coating improves neuronal recordings. Nat. Nanotechnol. 2008, 3, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Castagnola, E.; Ansaldo, A.; Fadiga, L.; Ricci, D. Chemical vapour deposited carbon nanotube coated microelectrodes for intracortical neural recording. Phys. Status Solidi B 2010, 247, 2703–2707. [Google Scholar] [CrossRef]
- Cogan, S.F.; Ehrlich, J.; Plante, T.D.; Smirnov, A.; Shire, D.B.; Gingerich, M.; Rizzo, J.F. Sputtered iridium oxide films for neural stimulation electrodes. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 89, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Negi, S.; Bhandari, R.; Rieth, L.; Solzbacher, F. In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays. Biomed. Mater. 2010, 5, 015007. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, K.A.; Langhals, N.B.; Joseph, M.D.; Richardson-Burns, S.M.; Hendricks, J.L.; Kipke, D.R. Poly(3,4-ethylenedioxythiophene) (pedot) polymer coatings facilitate smaller neural recording electrodes. J. Neural Eng. 2011, 8, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.R.; Morgan, S.J.; Chen, J.; Kapsa, R.M.; Wallace, G.G.; Paolini, A.G. Conducting polymer coated neural recording electrodes. J. Neural. Eng. 2013, 10, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Mandal, H.S.; Knaack, G.L.; Charkhkar, H.; Mchail, D.G.; Kastee, J.S.; Dumas, T.C.; Peixoto, N.; Rubinson, J.F.; Pancrazio, J.J. Improving the performance of poly(3,4-ethylenedioxythiophene) for brain–machine interface applications. Acta Biomater. 2014, 10, 2446–2454. [Google Scholar] [CrossRef] [PubMed]
- Abidian, M.R.; Corey, J.M.; Kipke, D.R.; Martin, D.C. Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Small 2010, 6, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, K.A.; Uram, J.D.; Yang, J.; Martin, D.C.; Kipke, D.R. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (pedot) film. J. Neural Eng. 2006, 3, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Kozai, T.D.Y.; Langhals, N.B.; Patel, P.R.; Deng, X.; Zhang, H.; Smith, K.L.; Lahann, J.; Kotov, N.A.; Kipke, D.R. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 2012, 11, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shih, J.; Zhu, J.; Kotov, N.A. Layered nanocomposites from gold nanoparticles for neural prosthetic devices. Nano Lett. 2012, 12, 3391–3398. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kim, G.H.; Baek, N.S.; Han, Y.H.; Kim, A.Y.; Chung, M.A.; Jung, S.D. Fabrication of multi-electrode array platforms for neuronal interfacing with bi-layer lift-off resist sputter deposition. J. Micromech. Microeng. 2013, 23, 449–462. [Google Scholar] [CrossRef]
- Deng, M.; Yang, X.; Silke, M.; Qiu, W.; Xu, M.; Borghs, G.; Chen, H. Electrochemical deposition of polypyrrole/graphene oxide composite on microelectrodes towards tuning the electrochemical properties of neural probes. Sens. Actuaturs B Chem. 2011, 158, 176–184. [Google Scholar] [CrossRef]
- Zhou, H.; Xuan, C.; Li, R.; Tao, L.; Duan, Y.Y. Poly(3,4-ethylenedioxythiophene)/multiwall carbon nanotube composite coatings for improving the stability of microelectrodes in neural prostheses applications. Acta Biomater. 2013, 9, 6439–6449. [Google Scholar] [CrossRef] [PubMed]
- Depan, D.; Misra, R.D.K. The development, characterization, and cellular response of a novel electroactive nanostructured composite for electrical stimulation of neural cells. Biomater. Sci. 2014, 2, 1727–1739. [Google Scholar] [CrossRef]
- Samba, R.; Herrmann, T.; Zeck, G. Pedot-cnt coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities. J. Neural Eng. 2015, 12, 016014. [Google Scholar] [CrossRef] [PubMed]
- Gerwig, R.; Fuchsberger, K.; Schroeppel, B.; Link, G.S.; Heusel, G.; Kraushaar, U.; Schuhmann, W.; Stett, A.; Stelzle, M. Pedot-cnt composite microelectrodes for recording and electrostimulation applications: Fabrication, morphology, and electrical properties. Front. Neuroeng. 2011, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, M.; Chen, X.; Li, Y.; Wang, J. Electrochemical co-reduction synthesis of aupt bimetallic nanoparticles-graphene nanocomposites for selective detection of dopamine in the presence of ascorbic acid and uric acid. Sensors 2015, 15, 16614–16631. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, E.; Salehi, K.F.; Norita, M. Electrooxidation of hydroquinone on simply prepared au-pt bimetallic nanoparticles. Sci. China Chem. 2013, 56, 746–754. [Google Scholar]
- Leng, J.; Wang, W.M.; Lu, L.M.; Bai, L.; Qiu, X.L. DNA-templated synthesis of ptau bimetallic nanoparticle/graphene nanocomposites and their application in glucose biosensor. Nanoscale Res. Lett. 2014, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.J.; Wang, A.J.; Ma, X.; Xiang, R.Y.; Chen, J.R.; Feng, J.J. One-pot synthesis of porous pt-au nanodendrites supported on reduced graphene oxide nanosheets toward catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2014, 3, 290–296. [Google Scholar] [CrossRef]
- Choi, J.H.; Jeong, K.J.; Dong, Y.; Han, J.; Lim, T.H.; Lee, J.S.; Sung, Y.E. Electro-oxidation of methanol and formic acid on ptru and ptau for direct liquid fuel cells. J. Power Sources 2006, 163, 71–75. [Google Scholar] [CrossRef]
- Balkis, A.; O’Mullane, A.P. Direct electrochemical formation of alloyed aupt nanostructured electrocatalysts for the oxidation of formic acid. Mater. Chem. Phys. 2014, 143, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Tao, X.; Jian, T.; Wu, H.; Zhao, T.; Tang, W. Sandwich-structured ag/graphene/au hybrid for surface-enhanced Raman scattering. Electrochim. Acta 2014, 119, 43–48. [Google Scholar] [CrossRef]
- Yong, H.K.; Kim, A.Y.; Kim, G.H.; Han, Y.H.; Chung, M.A.; Jung, S.D. Electrochemical and in vitro neuronal recording characteristics of multi-electrode arrays surface-modified with electro-co-deposited gold-platinum nanoparticles. Biomed. Microdevices 2016, 18, 1–7. [Google Scholar]
- Yu, J.; Fujita, T.; Inoue, A.; Sakurai, T.; Chen, M. Electrochemical synthesis of palladium nanostructures with controllable morphology. Nanotechnology 2010, 21, 85601–85607. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Deng, S.; Lei, J.; Ju, H.; Gunasekaran, S. Electrochemical synthesis of reduced graphene sheet–aupd alloy nanoparticle composites for enzymatic biosensing. Biosens. Bioelectron. 2011, 29, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Wang, R.; Chen, M.; Zhang, Y.; Ding, Y. Dealloying to nanoporous au/pt alloys and their structure sensitive electrocatalytic properties. Phys. Chem. Chem. Phys. 2010, 12, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Jang, H.Y.; Hong, S.; Park, S. Synthesis of hollow and nanoporous gold/platinum alloy nanoparticles and their electrocatalytic activity for formic acid oxidation. J. Colloid. Interface Sci. 2012, 388, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kim, G.H.; Kim, A.Y.; Han, Y.H.; Chung, M.A.; Jung, S.D. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays. J. Neural Eng. 2015, 12, 066029. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Gong, R.; Huang, H.; Wang, J. Design, fabrication, simulation and characterization of a novel dual-sided microelectrode array for deep brain recording and stimulation. Sensors 2016, 16, 880. [Google Scholar] [CrossRef] [PubMed]
- Quiroga, R.; Nadasdy, Z.; Ben-Shaul, Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 2004, 16, 1661–1687. [Google Scholar] [CrossRef] [PubMed]
- Rutishauser, U.; Schuman, E.M.; Mamelak, A.N. Online detection and sorting of extracellularly recorded action potentials in human medial temporal lobe recordings, in vivo. J. Neurosci. Methods 2006, 154, 204–224. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.F.; Grill, W.M. Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo. J. Neural Eng. 2009, 6, 1771–1779. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.; Wang, J.Q.; Wang, J.; Cao, B.; Li, Y.; Pang, S.W. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity. J. Neural Eng. 2015, 12, 056018. [Google Scholar] [CrossRef] [PubMed]
- Franks, W.; Schenker, I.; Schmutz, P.; Hierlemann, A. Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans. Biomed. Eng. 2005, 52, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Shahrokhian, S.; Rastgar, S. Construction of an electrochemical sensor based on the electrodeposition of au-pt nanoparticles mixtures on multi-walled carbon nanotubes film for voltammetric determination of cefotaxime. Analyst 2012, 137, 2706–2715. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Wang, G.; Zhang, W.; Li, M.; Kan, X. Fabrication of Fe3O4 nanoparticles modified electrode and its application for voltammetric sensing of dopamine. Electroanalysis 2005, 17, 744–748. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, R.; Chai, Y.; Song, Z. Electrodeposition of gold–platinum alloy nanoparticles on carbon nanotubes as electrochemical sensing interface for sensitive detection of tumor marker. Electrochim. Acta 2011, 56, 6715–6721. [Google Scholar] [CrossRef]
- Reddy, S.; Swamy, B.E.K.; Jayadevappa, H. Cuo nanoparticle sensor for the electrochemical determination of dopamine. Electrochim. Acta 2012, 61, 78–86. [Google Scholar] [CrossRef]
- Baranauskas, G.; Maggiolini, E.; Castagnola, E.; Ansaldo, A.; Mazzoni, A.; Angotzi, G.N.; Vato, A.; Ricci, D.; Panzeri, S.; Fadiga, L. Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio. J. Neural Eng. 2011, 8, 066013. [Google Scholar] [CrossRef] [PubMed]
- Márton, G.; Bakos, I.; Fekete, Z.; Ulbert, I.; Pongrácz, A. Durability of high surface area platinum deposits on microelectrode arrays for acute neural recordings. J. Mater. Sci. Mater. Med. 2013, 25, 931–940. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, C.; Phillips, J.M. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J. Physiol. 1981, 321, 225–257. [Google Scholar] [CrossRef] [PubMed]
- Abidian, M.R.; Martin, D.C. Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials 2008, 29, 1273–1283. [Google Scholar] [CrossRef] [PubMed]
- Latikka, J.A.; Hyttinen, J.A.; Kuurne, T.A.; Eskola, H.J. The conductivity of brain tissues: Comparison of results in vivo and in vitro measurements. In Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, 25–28 October 2001; pp. 910–912.
- Bugaysen, J.; Bronfeld, M.; Tischler, H.; Bargad, I.; Korngreen, A. Electrophysiological characteristics of globus pallidus neurons. PLoS ONE 2010, 5, e12001. [Google Scholar] [CrossRef] [PubMed]
- Suyatin, D.B.; Wallman, L.; Thelin, J.; Prinz, C.N.; Jörntell, H.; Samuelson, L.; Montelius, L.; Schouenborg, J. Nanowire-based electrode for acute in vivo neural recordings in the brain. PLoS ONE 2013, 8, e56673. [Google Scholar] [CrossRef] [PubMed]
- Angelov, S.D.; Koenen, S.; Jakobi, J.; Heissler, H.E.; Alam, M.; Schwabe, K.; Barcikowski, S.; Krauss, J.K. Electrophoretic deposition of ligand-free platinum nanoparticles on neural electrodes affects their impedance in vitro and in vivo with no negative effect on reactive gliosis. J. Nanobiotechnol. 2016, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
Microelectrode Site | Rs (KΩ) | Rct (MΩ) | Cdl (μF) |
---|---|---|---|
bare Au microelectrode site | 12.1 | 61 | 0.12 |
AuNPs modified site | 17.3 | 4.6 | 0.78 |
AuPt alloy modified site | 20.5 | 0.45 | 4.02 |
AuNPs Modified Site | AuPt Alloy Modified Site | |
---|---|---|
Average impedance at 1 kHz (MΩ) | 0.9 | 0.23 |
Average spike amplitude | 281.2 | 273.7 |
Average SNR | 3.4 | 4.8 |
Microelectrode Modified Materials | Deposition Techniques | Spike SNR | Impedance at 1 kHz (KΩ) | References |
---|---|---|---|---|
Platinum black | Ultrasonic electroplating | - | 5 | [36] |
CNT/gold composite | Electrochemical deposition | - | 38 | [37] |
PEDOT | Electrochemical deposition | ~1.6 | 370 | [38] |
PEDOT/pTS composite | Electrochemical deposition | 4.1 | 35 | [42] |
Surfactant-templated ordered PEDOT | Electrochemical deposition | 5.1 | 130 | [45] |
PEDOT-PSS composite/Poly(p-xylylene) | CVD/electrochemical deposition | 4.7 | ~60 | [34] |
PEDOT-CNT composite | Electro-polymerization | - | 15 | [40] |
GaP nanowires | MOVPE | - | 1200 | [83] |
Platinum black | Electrochemical deposition | - | 38 | [78] |
Platinum nanoparticles | Electrophoretic deposition | - | ~40 | [84] |
AuPt nanoparticles | Electro-co-deposition | - | 40 | [61] |
Rough-surfaced AuPt alloy nanoparticles | Electro-co-deposition/chemical dealloying | 4.8 | 230 | This work |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Gong, R.; Zheng, L.; Wang, J. In Vivo Neural Recording and Electrochemical Performance of Microelectrode Arrays Modified by Rough-Surfaced AuPt Alloy Nanoparticles with Nanoporosity. Sensors 2016, 16, 1851. https://doi.org/10.3390/s16111851
Zhao Z, Gong R, Zheng L, Wang J. In Vivo Neural Recording and Electrochemical Performance of Microelectrode Arrays Modified by Rough-Surfaced AuPt Alloy Nanoparticles with Nanoporosity. Sensors. 2016; 16(11):1851. https://doi.org/10.3390/s16111851
Chicago/Turabian StyleZhao, Zongya, Ruxue Gong, Liang Zheng, and Jue Wang. 2016. "In Vivo Neural Recording and Electrochemical Performance of Microelectrode Arrays Modified by Rough-Surfaced AuPt Alloy Nanoparticles with Nanoporosity" Sensors 16, no. 11: 1851. https://doi.org/10.3390/s16111851
APA StyleZhao, Z., Gong, R., Zheng, L., & Wang, J. (2016). In Vivo Neural Recording and Electrochemical Performance of Microelectrode Arrays Modified by Rough-Surfaced AuPt Alloy Nanoparticles with Nanoporosity. Sensors, 16(11), 1851. https://doi.org/10.3390/s16111851