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Abstract: Medical asset tracking systems track a medical device with a mobile node and determine
its status as either in or out, because it can leave a monitoring area. Due to a failed node, this system
may decide that a mobile asset is outside the area, even though it is within the area. In this paper, an
efficient classification method is proposed to separate mobile nodes disconnected from a wireless
sensor network between nodes with faults and a node that actually has left the monitoring region.
The proposed scheme uses two trends extracted from the neighboring nodes of a disconnected mobile
node. First is the trend in a series of the neighbor counts; the second is that of the ratios of the
boundary nodes included in the neighbors. Based on such trends, the proposed method separates
failed nodes from mobile nodes that are disconnected from a wireless sensor network without failures.
The proposed method is evaluated using both real data generated from a medical asset tracking
system and also using simulations with the network simulator (ns-2). The experimental results show
that the proposed method correctly differentiates between failed nodes and nodes that are no longer
in the monitoring region, including the cases that the conventional methods fail to detect.
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1. Introduction

With the development of various embedded computing platforms and low power sensing
components, a diverse set of applications using wireless sensor networks (WSN) has been implemented
in the past decade. These applications can be divided into two categories based on the type of sensor
nodes that they use. These are static sensor networks and mobile sensor networks. Static sensor
networks are composed of many stationary nodes, and these sensor nodes are located at various
positions to sense local phenomena around them. These nodes have the characteristic that their
positions rarely change. Such systems are used in applications, such as environmental monitoring [1,2],
structural health monitoring [3–5], industrial asset monitoring [6], building automation [7,8], static
asset management [9] and traffic monitoring applications [10]. On the other hand, mobile sensor
networks are composed of many mobile nodes. In these networks, one or more mobile nodes are
attached to a mobile object to monitor its movement and current location in real time. Such systems
can be applied to healthcare systems [11–13], mobile asset tracking [14–17] and human monitoring
applications [18].
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Among various applications where WSN devices are applied, one important application that
these systems can benefit is the application of mobile asset tracking. By attaching miniature sized
wireless devices, the location and presence of various high-cost mobile assets can be tracked. As
an example, in the hospital environment, while patients are encouraged to access different types of
devices that are provided for their convenience, the problem of burglary is a major issue. In a recent
report, hospitals face yearly losses of $150,000 dollars due to such unpredicted losses of assets [19].
Currently, designated personnel monitor such assets manually, but the use of wireless systems can
easily and effectively minimize such incidents.

To provide such a wireless system, a mobile asset tracking system was developed and installed
at the emergency room of a medical center with the objective of reducing nurses’ workloads. This
experience also served the purpose of validating the performance of the asset tracking system in a real
application environment. In the system, mobile assets (e.g., wheelchairs and syringe pumps) move
within the emergency room, freely move out of the tracking area and then can choose to come back
to the region, as well. A mobile node is attached to a target asset, and the system tracks the current
location of the node using the characteristics of the RF (radio frequency) signals. Specifically, this
system is used for two different tasks: asset discovery and asset management. For asset discovery, the
approximate location of each mobile medical asset is required; on the other hand, for asset management,
the accurate quantity of assets both inside and outside of the target region needs to be known. This
system displays the current location of various mobile assets and classifies them as either an inside
asset or an outside asset based on the assets’ current location and the connection status of the wireless
node attached to the mobile asset. Each medical asset with a mobile node is shown in Figure 1.

(a) (b) (c) (d)

Figure 1. Mobile medical assets with mobile nodes. (a) IV Pole; (b) Syringe Pump; (c) Ventilator;
(d) Wheel Chair [17]. (With the permission of IEEE publisher).

The challenge in designing such a system is the fact that wireless nodes can fail, and it is difficult
for the system to distinguish nodes that left the coverage area from the nodes that failed to provide
effective service. The main reason behind this complication is the fact that these two types of activities
show similar behavior: disconnection from the network. Empirically, during the initial studies with
the mobile asset tracking system, several reports regarding this issue were generated. As the outcome
of radio dis-connectivity from the network is the same for the two cases, the previous patterns of
the wireless connection are carefully investigated to devise an efficient classification method. This
method has to effectively distinguish between nodes that leave the monitoring area and faulty nodes
that fail to provide service while (physically) within the monitoring area. Specifically, in this work,
the classification method uses trends of the neighbor count sequences and link quality statistics for
the suddenly disconnected (due to any reason) mobile nodes and also the same information from
(previously connected) neighboring boundary nodes in the monitoring area. These collected trends are
monitored to distinguish nodes that naturally leave the monitoring area from the nodes that fail to
provide satisfactory service.
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The evaluations using real traces collected from a real hospital environment show that the system
successfully tracks and distinguishes the mobile assets with 100% accuracy, and the system reduces
about 97% of the asset management time.

Specifically, the contributions of the paper can be summarized in four-fold.

• This work develops a framework to classify failed nodes from mobile nodes, which can leave a
monitoring region without failures using a sequence of neighbors of them. This method can be
applied to many mobile asset-tracking services.

• This work proposes a node state classifier using trends extracted from the neighbor counts and
the ratios of the boundary nodes included in the neighbor counts. To the extent of our knowledge,
the proposed method is the first state classification technique, for mobile nodes, that does not use
heartbeat messages or routing protocols.

• This work classifies a mobile node disconnected from a wireless sensor network as either a faulty
node within a monitoring region or a node that leaves (or already left) the region without failures
based on the trends of connectivity metrics.

• This work presents simulations and experiments using a network simulator, and real datasets
with the proposed classifier are used. Their results indicate that this state classifier can detect
most failed nodes that cannot be identified properly by conventional methods.

The rest of this paper is organized as follows. The related work and background of this study
are presented in Section 2. The architecture of the mobile asset tracking system and its components
are presented in Section 3. The failure detection method is explained in Section 4. The experimental
environment and the experiment results are presented in Section 5. Finally, conclusions are given in
Section 6.

2. Related Work

Several works on node failure detection in WSNs are briefly reviewed in this section.
Meier et al. [20] and Rost and Balakrishnan [21] proposed a distributed node monitoring tool

(DiMo) and Memento, respectively. DiMo and Memento are network management tools for WSNs.
These methods divide all nodes into two categories: observer nodes and remote nodes. Each remote
node transmits heartbeat messages to its observer node periodically. If the observer node does not
hear any heartbeat message for a certain threshold from the remote node, the observer considers the
remote node as a faulty node. However, they do not consider a situation in which a mobile node can
leave a WSN without failures.

Zia et al. [22] proposed a node failure detector that distinguishes between a node failure and a
node movement. This method uses two types of nodes: observer nodes and target nodes. When a
target node leaves the communication range of an observer node, the observer cannot distinguish
between the target’s movement and the target’s failure. In order to handle this situation, the observer
uses additional information obtained from one of the initiated nodes in the network. Initiated nodes
are a few designated nodes that collect neighbor information from all nodes by propagating a message
periodically. When an initiate node receives a message including “the target is alive” from one of the
neighbors of the target, the initiator relays the response to the observer. The observer then recognizes
that the target has moved. However, the method also does not consider a situation in which the target
can leave the network.

Ramanathan et al. [23] proposed Sympathy, a tool to debug and detect failures occurring in WSNs.
Sympathy runs at individual node, and failure detection occurs at a sink node. There are two types
of packets in WSNs: monitored traffic and metric traffic. Each sensor node produces the former, and
Sympathy produces the latter. Sympathy monitors the traffic to identify failure nodes and to decide
the sources of failures. If a node produces monitored traffic less than a given threshold, Sympathy
considers the node to be failed. However, Sympathy is not applicable to mobile nodes that leave the
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monitoring area without failures. As the sink node cannot hear any messages from all mobile nodes
that normally leave the WSN, Sympathy incorrectly considers them to be failed.

Kim and Chung [24] proposed a failure detection method based on the connection state of a
mobile node and its battery lifetime. It is used to detect faulty mobile nodes in mobile asset tracking
systems. This method runs on a central server. A mobile node is attached to a mobile object, which is
mobile within a monitoring region, leaves it freely and then returns to the area repeatedly. Therefore,
the status of a mobile node is either in or out. This failure detection method using the connection state
is primarily intended for detecting failed nodes with the in status; on the other hand, the method using
the battery lifetime considers the out status. Although a battery lifetime estimator can detect failed
nodes that have the out status and the low battery power at the same time, it cannot detect failed nodes
that have sufficient battery power. On the other hand, the proposed method in this paper detects failed
nodes with the out status regardless of the battery level.

Duche and Sarwade [25] proposed a node failure detection method using the the round-trip delay
time occurring in both directions along a routing path in WSNs. This method detects failure nodes by
measuring the latency in a round-trip path and comparing it to a certain threshold. The round-trip
delay time of a failed node will be higher than the threshold value or infinite. However, this method
cannot detect the failure of a mobile node that can leave the network without failure.

In summary, previous methods can efficiently detect node failures in certain ways. As they use a
connection state determined by using heartbeat messages, those methods consider all mobile nodes
with the left state to be a failed node. However, most of those methods do not consider a situation in
which a mobile node can leave the monitoring region. Therefore, those methods erroneously consider
a mobile node that has left the monitoring region without failures to be a failed node. To overcome
this shortcoming, the classification method presented in this work distinguishes a faulty node from
mobile nodes, which normally disconnects from the wireless sensor network.

3. System Component

3.1. Description

This section formalizes the system architecture of a medical asset tracking system developed in
this work and the features of each component composing the system. The system architecture is shown
in Figure 2. This system is composed of four-tuple S = (T, G, A, M), where T is the asset tracking
application, G is the gateway, A = a1, a2, ..., am is the set of anchor nodes and M = m1, m2, ..., mn is the
set of mobile nodes [24].

Figure 2. System architecture [24].

A wireless sensor network is developed based on the ZigBee specifications and on IEEE
802.15.4 [26]. The devices included in the network form a multiple-depth tree by themselves,
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exchanging messages with one another. They operate under the beacon-enabled mode to achieve
a low duty cycle. A personal area network coordinator (PANC) included in the gateway starts the
network formation process, and each node maintains a neighbor list table. This table typically contains
neighbors’ addresses and received signal strength indication (RSSI) values for each connection. The
anchor nodes and the mobile nodes are developed on the same hardware platform with the same
software running on them. However, their functions are different with respect to their device type.

A mobile node is attached to a medical asset and always becomes a leaf node of the network.
This node is a battery-powered device with a battery-saving sleep mode. If an anchor node and a
mobile node can exchange radio signals, then the anchor node becomes a neighbor of the mobile node.
However, a mobile node does not include other mobile nodes as a neighbor. Initially, each mobile node
selects a parent node from neighbors that send signals that exceed a threshold. If the signal strength
from the current parent is less than the threshold, the mobile node selects another parent node. Each
mobile node wakes up periodically and exchanges polling messages with its parent to check whether
the wireless connection between them is valid. After confirming the connection, this mobile node
gathers RSSI values from its neighboring anchor nodes and sends them to its parent. After transmitting
the data, the node enters a sleeping phase.

Anchor nodes are stationary nodes at a fixed location that form a tree network structure to transmit
sensing data generated by each node to a gateway. They are installed in a monitoring region or on
the boundaries of the target monitoring area and provide a high spatial resolution and a monitoring
infrastructure for the mobile nodes. Every anchor node already knows its own position and acts as
a router, which forwards messages for mobile nodes and other anchor nodes toward and from the
gateway. Each anchor node uses heartbeat messages to detect disconnections of its neighbors.

The gateway is considered as an interface between the application and the wireless sensor
network. The gateway receives RSSI values reported by a mobile node through the anchor nodes.
The trilateration algorithm in the gateway determines the location of the mobile node using RSSI
values received from the node. This location algorithm also uses filters to eliminate invalid RSSI values
and to increase the location accuracy. This filter is a simple threshold-based algorithm. This location
algorithm will not be discussed in detail in this paper as the details are outside the scope of this study.

The asset tracking application system gathers the location data of all individual nodes from the
gateway. It takes the role of keeping track of the current locations of all mobile nodes, determining
the enter/exit state of each mobile node, counting the number of assets within (and outside) the
monitoring area and displaying all of the gathered data on its graphical user interface.

3.2. Testbed

The 40 m × 30 m emergency room where the prototype system was installed is enclosed with
entrances and concrete walls. There are four treatment sections, all of which have no doors and are
partitioned by concrete walls, a computed tomography (CT) room, two X-ray rooms, a control room
for CT and X-ray scans, nurses’ and doctors’ offices, a waiting room, a staff station, a storage room and
a hallway. Concrete walls and metal doors also partition the control room, CT room and X-ray rooms.
The emergency room has about 100 medical assets, and four nurses spend about 30 min manually
checking whether each asset is within the target area. Nurses selected 21 mobile medical objects, a
subset of the ∼100 assets, to evaluate the developed system. The medical asset tracking system is
composed of an application, a gateway, 38 anchor nodes deployed within the emergency room or on
the boundary of the area and 21 mobile nodes attached to 21 mobile medical objects, one for each
object. The medical assets here are two wheelchairs, four ventilators, five syringe pumps and 10 IV
poles. Using the system, one nurse can finish the work within one minute. Figure 3 shows a map of the
emergency room enclosed with bold solid lines. They indicate the boundary of the monitoring area.
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Figure 3. Map of the emergency room.

From an operational perspective, the system required maintenance approximately once every
two weeks to exchange the batteries on the mobile assets. Each mobile asset was randomly mobile
with a wakeup-and-report interval of 30 s. The RSSI-based location estimations showed an accuracy of
∼2.5 m, which was enough to satisfy the staff’s requirements in a non-line-of-sight (NLOS)-dominated
environment. On the other hand, the anchor nodes were powered using wall plugs; thus, they were
awake for the entire testing period.

4. Node Classification

In this section, a node classification method is introduced. The classification is between nodes
that f ailed, therefore not being able to transmit RSSI-included messages, and nodes that leave the
target detection region. These nodes are defined as failed nodes and left nodes, respectively, and
comprehensively termed disconnected nodes. A straightforward solution is to use the last reported
location of a disconnected node. If the final location of a disconnected node is within a monitoring
area, then the node is considered to be a failed node. Otherwise, the node is considered to be a left
node, which naturally left the target monitoring area. However, this method is not suitable for this
system, since all anchor nodes are deployed within the monitoring area or on the boundary of the
region. As a result, the developed system and many monitoring systems are incapable of “detecting”
packets that are external to this area.

To overcome this shortcoming, the method proposed in this work uses two trends associated with
the neighbor counts and the ratios of the boundary nodes included in the neighbors. Let m be a mobile
node, B be the boundary of a monitoring area, d be the Euclidean distance between m and B, N(m) be
the number of m’s neighbors and N(Bm) be the number of m′s neighbors on B, N(Bm) ≤ N(m). Then,
while m moves far away from the monitoring area, as d increases, N(m) decreases and N(Bm)/N(m)

increases. Finally, both N(Bm) and N(m) become zero when m loses all communication links with its
neighbors. Figure 4 shows these concepts.

In Figure 4, the thresholds, Tnc and Tr, are used to determine whether a disconnected mobile
node sends its last value from either inside or outside of the monitoring region. To calculate Tnc and
Tr, a mobile node disconnected from a WSN is mapped onto the nearest location on the boundary
of the monitoring area from its last location. Then, the two values, Tnc and Tr, are estimated. Based
on the trends and the thresholds, the proposed method classifies a disconnected mobile node as
either a left node or a failed node. The two trends are complementary to each other in various
environments. For example, the trend of the neighbor counts reported by a mobile node within
the monitoring area may decrease due to barriers, such as walls, other medical assets and people.
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In this case, an incorrect decision caused by the trend of the neighbor counts can be corrected by
observing the ratios of boundary nodes. However, the proposed method does not incur an additional
communication cost, because the neighbors’ data are essential to calculate the position of a mobile
node in a radio-frequency-based positioning system.

Figure 4. Concepts on the trends of the neighbor counts and the ratios of the boundary nodes and
two thresholds.

From the above concepts, the proposed method can possess the following properties. Let AI
and AO be the area within (i.e., inside) and outside the region of a monitoring area, in which the
radio signals of the boundary nodes can propagate, respectively. If the ratio of the boundary nodes
of a mobile node is greater than zero, the node is considered to be outside the monitoring area with
probability AO/(AI + AO), where AO ∩ AI = φ. In addition, let m be a mobile node that has left a
sensor network without failures and stayed outside a monitoring area, l be the line segment crossing v
and w, which are m’s two nearest nodes on the boundary of the area, d1 be the length of l and d2 be the
shortest distance between l and m. If 0 < d1 ≤ r, the communication range of a node, and m is located
in the line segment, l, with the distance d2 > 0, then d2 is greater than

√
r2 − (d1/2)2.

4.1. Data Sequence

When a mobile node is disconnected from a WSN, two sequences are extracted from the history
of its neighbor counts. The neighbor counts of a mobile node are a set of observations Pt, each of which
is recorded at time t, because they are reported continually at every update period. Therefore, the
history of neighbor counts is represented as the time series P = P1, P2, . . . , Pz−1, Pz, where Pz is the
last value reported by a mobile node. Each Pi has the property, 1 ≤ Pi ≤ |A|, where A is the set of
anchor nodes and 1 ≤ i ≤ z. After the time z, the mobile node is disconnected from the network. As
the history contains a large number of values, it is not feasible to extract the trends from the entire
history P given the resource limitations on a sensor node platform. Therefore, a short sequence Q is
extracted from P. To select Q, a data window expands from Pz−1 of the history P of a disconnected
mobile node to the first value that is greater than Tnc. Q is represented as Q = Q1, Q2, . . . , Qw−1, Qw,
where Q1 = Pi, . . . , Qw−1 = Pz−1, Qw = Pz, where |Q| ≤ |P|, i = z− w + 1. Another sequence R is
extracted from Q, and it is represented as R = R1, R2, . . . , Rw−1, Rw, where Rj = Bj/Qj, |R| = |Q|,
0 ≤ Bj ≤ Qj, 1 ≤ j ≤ w and Bj indicates the number of boundary nodes contained in Qj.

4.2. Estimating Neighbor Counts

The number of neighbors of a mobile node at a location within a monitoring area or on
the boundary of the area is estimated in this section. The estimated neighbor count is used to
determine Tnc and Tr and to calculate the missing neighbor rate, defined as (NCE−NCO)/NCE, where
NCO ≤ NCE, and NCO and NCE indicate the observed neighbor count and the estimated neighbor
count, respectively.
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4.2.1. Grid Model

If it is assumed that anchor nodes are uniformly distributed in a grid pattern, then the number
of neighbors of a mobile node is estimated as follows. Let X1, X2, . . . , Xn be the number of neighbor
nodes that a mobile node can have when they are measured with a fixed interval. As a sensor network
contains N anchor nodes, the probability that the radio coverage of a mobile node contains k anchor
nodes can be represented as P(X = k). Therefore, the probability that a mobile node has k neighbors is:

P(X = k) =
(

N
k

)
pk(1− p)N−k (1)

where N is the number of anchor nodes within the monitoring area and p is the probability that an
anchor node falls within the mobile node’s radio coverage.

It is assumed that anchor nodes are uniformly distributed within a rectangular monitoring area.
The probability, p, is AO/AM, where AO represents the overlapping area between the radio coverage
of a mobile node and the monitoring area and AM represents the area of the monitoring region.

The expected number of neighbor nodes of a mobile node is:

E(X) =
N

∑
k=1

k× P(X = k) (2)

= Np×
N

∑
k=1

(
(N − 1)!

(N − k)!× (k− 1)!

)
p(k−1)(1− p)(N−k) (3)

= Np× 1 = Np (4)

If the radio coverage of a mobile node contains the monitoring area, E(X) is equal to N. If
the monitoring area contains the radio coverage or the two areas are overlapping, E(X) is equal to
(N×π×R2)

AM
, because AO is π × R2, where R indicates the radio range of a mobile node. If the two areas

are overlapping, E(X) is equal to (N × AO)/AM.

4.2.2. Real Deployment

The grid model is a simple and computationally inexpensive method. However, it cannot
be applied to this medical asset tracking system because the anchor nodes cannot be deployed
in a grid pattern within the emergency room, which is not a rectangle, as well as it has several
walls. In addition, anchor nodes were not allowed to be installed on a marble wall. Under these
restricted circumstances, the number of neighbors of a mobile node is estimated in two phases,
the filter phase and the refinement phase, to shorten the processing time. In the filter phase, the
candidate neighbors of the node are found using a minimum bounding rectangle (MBR) in which the
communication coverage of the node is contained. This phase is not computationally expensive because
at most four comparisons are required to determine whether an anchor node is within the MBR. The
candidate neighbors construct the set C defined as C = c1, c2, . . . , cq, where C ⊂ A, the set of anchor
nodes. Each element in C has the properties, ∀ci ∈ C and ci ∈ {(xi, yi)|(MinX ≤ xi ≤ MaxX) and
(MinY ≤ yi ≤ MaxY)}, where (xi, yi) is the location of ci, 1 ≤ i ≤ q, and MinX, MinY, MaxX and
MaxY are the coordinates of the MBR of a mobile node.

In the refinement phase, the candidate neighbors are checked for whether they are really the
neighbors of the mobile node. The number of nodes processed in this phase is reduced due to the initial
filter phase. To select the actual neighbors of the node from C, the distance between the node and ci in C
is calculated. The actual neighbors of the node construct the set N defined as N = n1, n2, . . . , nk, where
N ⊂ C. Each element in N has the property dist(m, nj) ≤ r, where dist is the distance function, m
indicates the mobile node, nj indicates that of each element in N, 1 ≤ j ≤ k and r is the communication
range of mobile node m. Therefore, the number of neighbors of the mobile node equals |N|.
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4.2.3. Trend Detection

To extract the trend from Q and R, a linear regression model is used. This model finds the
best-fitting straight line for all data in a data sequence and decides the trend of the sequence in
accordance with the slope of the fitting line. The trend detection used here is the regression of neighbor
counts over time and that of ratios of boundary nodes over time. Consider a regression model, where
a dependent variable yi is linked to an independent variable xi through the following equation:

yi = axi + b (5)

The equation above describes the relationship between y and x and represents a line with an
intercept of b on the y-axis and a slope of a. The two values, a and b, for which the sum of the squares of
the estimated errors is the minimum, have to be estimated. The estimation equation is given as follows:

Sum of Square Error(SSE) =
n

∑
i=1

(axi + b− yi)
2 (6)

and:
∂SSE

∂a
= 2×

n

∑
i=1

xi(axi + b− yi) (7)

∂SSE
∂b

= 2×
n

∑
i=1

(axi + b− yi) (8)

Setting these expressions equal to zero and solving for a and b produce:

a =
n ∑n

i=1(xiyi)−∑n
i=1 xi ∑n

i=1 yi

D
(9)

b =
∑n

i=1 x2
i ∑n

i=1 yi −∑n
i=1 xi ∑n

i=1(xi)(yi)

D
(10)

where D = n ∑n
i=1 x2

i − (∑n
i=1 xi)

2; a represents the slope, and b represents the y-axis intercept. This
slope represents the direction of the trend. A negative slope represents a decreasing trend; a positive
slope represents an increasing trend; and zero represents that there is no change in the data sequence.
Therefore, a left node from a monitoring area has a decreasing trend in Q and an increasing trend in
R simultaneously.

4.3. Classification

The classification method proposed in this work uses a binary classifier that categorizes a mobile
node disconnected from a WSN as either a failed node or a left node. This classifier uses four values.
These are two trends extracted from Q and R and two thresholds Tnc and Tr used to determine whether
a disconnected mobile node sends its last value from either inside or outside of a monitoring region.
Therefore, the classification rule to distinguish between a failed node and a left node consists of four
conditions related to the trends and the thresholds. The classification rule is given as:

H =

{
Left Node, if S(Q) < 0 and Qw < Tnc and S(R) > 0 and Rw > Tr

Failed Node, otherwise
(11)

where S indicates the slope and Qw and Rw indicate the last neighbor count and the last ratio of the
boundary nodes, respectively, that a disconnected mobile node transmitted.

5. Performance Evaluation

To study the properties of the classification method presented in this work, several experiments
are performed in two phases. In the first phase, the ns-2 simulator version 2.31 is used to capture the
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potential performance with different scenarios. In the second phase, real trace data are used, which
were generated by the medical asset tracking system deployed in a real emergency room environment.
This simulation evaluates the environmental changes, which affect the performance of the proposed
classification scheme.

5.1. Simulation

5.1.1. Environment

Two simulated networks are constructed for the simulations: one is for a grid model, and the other
is for a real deployment. The simulated network for a real deployment is equal to that of the medical
asset tracking system in Figure 3. A summary of the environment is shown in Table 1. Each mobile
node wakes during every report interval, broadcasts a heartbeat message, collects responses from its
neighbors and generates the neighbor data. In this simulation, 10 mobile nodes leave the monitoring
area through a door, and 11 mobile nodes fail in the area. Although the communication range of actual
nodes is 30 m in the free space, it is estimated to be reduced to about 12 m in the emergency room by
the indoor path loss model defined by the International Telecommunication Union (ITU) [27].

Table 1. Summary of simulation environment.

Parameter Value
Area 40 m × 30 m

Number of anchor nodes (grid pattern) 36
Number of anchor nodes (real deployment) 38

Number of mobile nodes 21
Communication range 12 m

Average neighbor count (grid pattern) 7.95
Average neighbor count (real deployment) 10.04

Minimum length of both Q and R 2
Maximum length of both Q and R 5

Mobility model Random Waypoint

The performance of the proposed method is compared in terms of the report interval, moving
speed, missing neighbor rate and elevator waiting time. The report interval indicates the period of time
during which a mobile node collects and sends its neighbor data to the sink node. In this simulation,
the moving speed of a mobile node is assumed to be less than or equal to 1.1 m/s because the node
attached to a mobile medical asset in an emergency room moves slowly with a patient. It is slower
than the range of normal walking speeds, 1.2∼1.4 m/s, of a person; however, it is faster than the
walking speeds, 0.6 m/s, of hospitalized patients [28]. The missing neighbor rate is affected by data
collisions. If the number of collisions increases, the missing neighbor rate increases, and the number
of neighbors of a mobile node decreases. The elevator waiting time is the time required to take an
elevator when a mobile node goes to another department. Figures 5 and 6 show the results of this
experiment. In the figures, the metric, SR(success rate), is defined as SR = (FF + LL)/(F + L), where
FF and LL indicate the numbers of failed nodes and left nodes, which are determined by the proposed
method, respectively; F indicates the number of failed nodes and is set to 11; and L indicates that of
left nodes and is set to 10.
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(a) (b)

(c) (d)

Figure 5. Detection results of both failed and left nodes in a grid model according to the
parameter changes. (a) Report interval; (b) Moving speed; (c) Missing neighbor rate; (d) Elevator
waiting time.

(a) (b)

(c) (d)

Figure 6. Detection results of both failed and left nodes in a real deployment model according to the
parameter changes. (a) Report interval; (b) Moving speed; (c) Missing neighbor rate; (d) Elevator
waiting time.
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5.1.2. Report Interval

This section evaluates the impact of the time interval in which a mobile node reports its values.
The report interval varies from 5 to 50 s. The moving speed, the missing neighbor rate and the elevator
waiting time are set to 1.1 m/s, 0% and 0 s, respectively. Figures 5a and 6a show the results. The figures
show that the success rate decreases when the report interval is greater than 10 s. These results indicate
that some left nodes are classified as a failed node incorrectly because they reported their last values
within the monitoring area. Therefore, most of the left nodes with an incorrect state do not satisfy
the condition Qw < Tnc. On the other hand, all failed nodes within the area are correctly considered
as failed nodes, and they are divided into three groups. First, the failed nodes, which move within
the area, do not commonly satisfy the two conditions of Qw < Tnc and Rw > Tr in the classification
rule. Second, the failed nodes that are continually located near the door do not commonly satisfy the
two conditions S(Q) < 0 and S(R) > 0. Finally, the failed nodes, which are continually located far
from the door, do not satisfy the four conditions. However, the proposed method correctly classifies all
failed nodes and all left nodes when the report interval is less than or equal to 5 s. In this case, the
moving distance of a mobile node between two consecutive reports is less than the communication
range. Therefore, the left nodes can report their last values from outside of the monitoring area at least
once before being disconnected from the sensor network, and they satisfy the classification rule.

5.1.3. Moving Speed

This section evaluates the impact of the moving speed of a mobile node. The moving speed varies
from 0.2 to 1.4 m/s. The report interval, the neighbor missing rate and the elevator waiting time are
set to 10 s, 0% and 0 s, respectively. Figures 5b and 6b show the results. The figures clearly show that
the success rate decreases when the moving speed is increasing. These results indicate that several
nodes are classified incorrectly as failed nodes within the monitoring area because they reported their
last values within the area. Some nodes do not satisfy the condition Qw < Tnc; others do not satisfy
the condition Rw > Tr. However, the proposed method correctly classifies all failed nodes and all left
nodes when the moving speed is less than or equal to 0.5 m/s. In this case, the moving distance of a
mobile node between two consecutive reports is less than the communication range. This means that
the left nodes can report their last values from the outside of the monitoring area at least once before
they are disconnected from the sensor network. Therefore, all left nodes are classified correctly.

5.1.4. Missing Neighbor Rate

This section evaluates the impact of the missing node rate. In this simulation, the missing neighbor
rate varies from 0% to 0.3%. The report interval, the moving speed and the elevator waiting time are set
to 10 s, 1.1 m/s and 0 s, respectively. The missing neighbor rate is used to calculate the threshold, Tnc,
which distinguishes between an inside node and an outside node. The average value of the missing
neighbor rates observed at all mobile nodes is 0.11%, and the range of the missing neighbor rates
is 0%∼3.33%. Figures 5c and 6c show the results. As shown clearly in the figures, the success rate
decreases when the rate is greater than or equal to 0.05%. These results indicate that some left nodes are
classified incorrectly as failed nodes. The reduced threshold, Tnc, is the main cause of these incorrect
decisions. The classification condition related to the rate is Qw < Tnc, and the threshold is calculated
as Tnc = Tnc × (1−missing neighbor rate). As Tnc decreases and Qw does not change, the number of
failed nodes that do not satisfy the condition Qw < Tnc increases. The proposed method has a highest
success rate when the missing neighbor rate equals zero. As collisions among data transmissions can
affect nodes in a non-uniform way, the most suitable value for the missing neighbor rate is zero, which
can be applied to all nodes in common without incorrect decisions.
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5.1.5. Elevator Waiting Time

This section evaluates the impact of the waiting time to get on an elevator. As the emergency room
is in a 12-story building with two elevators and the elevators are located outside the emergency room,
a patient with a mobile medical asset has to take an elevator to go to another department. Therefore,
the waiting time for an elevator makes a mobile node send its value frequently from outside of the
monitoring area. In this simulation, the report interval, the moving speed and the missing neighbor
rate are set to 10 s, 1.1 m/s and 0%, respectively. The elevator waiting time varies from 0 to 50 s.
Figures 5d and 6d show the results. The “max” in the figures indicates the maximum window size.

In Figures 5d and 6d, the graphs (max = 5) clearly show that the success rate decreases when the
waiting time is both 40 and 50 s. This result indicates that some left nodes are classified incorrectly
as failed nodes. These incorrect decisions occur because Q and R have the same data. If the waiting
time is long, a mobile node sends many reports at the same location outside of the monitoring area.
In this case, Q and R can contain the same neighbor data if the node sends the same value more
than five times, the maximum length of Q and R. As these identical values in Q and R generate an
unchanged trend, the left node is considered as a failed node. In this case, the range of the lengths of Q
and R is 2∼5.

This problem can be solved if the lengths of Q and R are variable. The length of Q increases until
a value greater than the threshold Tnc appears. Then, Q and R can contain at least one value reported
by a mobile node in the monitoring area. The graphs (max = 7 and max = 8) in the figures show the
result using the variable length. The range of the lengths is 2∼9 in Figure 5d, and it is 2∼7 in Figure 6d.
The figures show that the proposed classifier separates all failed nodes from all left nodes correctly.

5.2. Evaluation with Real Datasets

Unlike simulation-based evaluations, the environmental changes, which affect the performance of
the proposed method, become complicated when operating in real environments. To test the proposed
algorithms in such systems, operational traces from the initial system deployed at the hospital are
collected. This dataset consisted of the reports written by the nurses and the log data generated by the
system for a two-week duration. Nurses in the emergency room counted the number of mobile assets
outside and inside the detection region three times a day. The nurses also compared their manual
counts with the system and check if the two results differ. If the results do differ, the nurses record the
numbers and the names of the assets with incorrect statuses in their reports. Of the 14-day experimental
period, four different days with the differences in the nurses data and system data were observed. The
data from these days were selected as the experimental data for the real dataset-based evaluations.

The performance of the proposed method is compared to those of two other previously proposed
schemes: the observation of heartbeat messages and the estimation of battery lifetime [19]. The
observation that is similar to the method proposed in [17] is used as the baseline approach. An anchor
node in the observation monitors heartbeat messages that a mobile node sends periodically. The
anchor node is one of the neighbors of the mobile node. If an anchor node does not receive the message
within 3 min from a mobile node, it sends a message indicating that the “mobile node leaves” the
gateway. The gateway considers the mobile node to have left the detection region if it does not receive a
message indicating a network-joining message within 2 min from any anchor node in the network. The
estimation of battery lifetime estimates whether a mobile node has low battery power. This method
considers a mobile node as a failed node if the node with a low battery level is disconnected from the
WSN. To evaluate the performance levels of these methods, the number of inside and outside nodes
and their neighbor counts are extracted from the log data, which the system generated on the two
aforementioned dates. In addition to the log data, the records containing the periods that indicate the
times to replace the battery are collected. With these data, the three methods detect failure nodes from
mobile nodes disconnected from the WSN. If a failure detection method identifies a failed node, it
increases the number of inside assets and decreases the number of outside assets. The nurse’s reports
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are used as a reference to confirm whether the number of failure nodes detected by the methods
is correct.

5.2.1. Neighbor Count

The average neighbor counts of the mobile nodes are compared in this section They are collected
both using simulation and real-world traces in Figure 7. In the emergency room, the average neighbor
counts for different types of assets are slightly different given the fact that assets are stored in different
places based on what they are. As Figure 7 clearly shows, the neighbor count of a mobile node in the
emergency room is higher than that of a mobile node in the simulation. This is because several anchor
nodes outside the communication range of a mobile node can communicate with the mobile node in
the emergency room due to RF reflection.

Figure 7. Average neighbor count in the simulation and in the emergency room.

5.2.2. Detection Results of Inside and Outside Nodes

The numbers of internal and external node count computed for the three different methods are
shown in Figure 8. Here, a two-day dataset is used to observe the performance in greater detail. The
proposed method uses the variable lengths of both Q and R. The range of the lengths is 2∼10. In
Figure 8, the first bar generated by the observation method indicates that 14 out of 21 nodes are inside
the emergency room and that seven nodes are outside the area. This result is generated when the
observation is applied to the log data generated by the mobile asset tracking system when the evening
group used it on 15 July. The second bar on that date is generated by the battery estimation method.
Its result is equal to that of the observation. However, their results are different from the counts in the
fourth bar (written by the nurses on that date), since those methods cannot actively identify any failure
nodes. Given that a mobile node can leave the emergency room, the observation incorrectly considers
the mobile nodes, which fail while within the emergency room as nodes that left the monitoring area
(i.e., left nodes). The battery lifetime estimation method also incorrectly considers the failed nodes
with sufficient battery power as left nodes. On the other hand, the proposed method using trend
analysis successfully detects the three failed nodes and four left nodes and then changes the number
of inside and outside assets (the third bar on that date). Although a mobile node reports its data
every 30 s, four left nodes report their data at least once when outside the monitoring area while
they wait for an elevator before moving to a different department. This additional report from an
outsider node (i.e., left node) allows the system to correctly classify all left nodes properly. Unlike these
nodes, the three failed nodes do not commonly satisfy the condition Qw < Tnc, because they failed
inside the monitoring area (i.e., emergency room). The classification result from the proposed scheme
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successfully matched the observations made manually by the nurses; thus, this result indicates that the
classification process was successful. The result for 17 July is also similar to that of the observations
for the 15 July data. By observing the results generated by the proposed method and the nurse’s
reports, it is clear that the classifier proposed in this work identifies all of the failed nodes that the
other approaches cannot identify.

Figure 8. Detection results of the number of inside and outside nodes for real data generated in the
emergency room [17]. (With the permission of IEEE publisher).

5.3. Discussion

Throughout this evaluation, the performance of the method presented in this work is evaluated
in terms of the report interval, moving speed, missing neighbor rate and elevator waiting time under
the environments: (1) the anchor nodes are installed both on the boundary of the monitoring area
and within it; and (2) a mobile node can move far away from the area without any failures. From the
evaluation results, it is clearly understood that the classification between a left node and a failed node
is difficult by the fact that it cannot be assured that a mobile node will report its values outside the
monitoring area before it is entirely disconnected from the wireless infrastructure (of anchor nodes).
The mobile medical asset tracking system can adjust the report interval to increase the classification
rate between a failed node and a left node. It is clear that the classification can be near 100% when
the report interval is less than 10 s in Figures 5a and 6a. However, a short report interval shortens
the lifetime of a mobile node due to frequent data transmissions. Attaching a tilt sensor [29] to a
mobile node can solve this problem. Then, the mobile node with the tilt sensor can report its location
and neighbor data when it moves continually for more than a predefined time. This predefined time
can be configured with respect to the size of the monitoring area and a person’s average walking
speed. If this scheme is adapted to a mobile node, the report interval of the node can be shorter
(by being adaptive) and will only minimally impact the lifetime of the mobile nodes. When a mobile
node reports its data every 30 s, its battery lifetime is about 14 days. A lithium battery is attached
to each mobile node. The battery and node properties are shown in Table 2. On the other hand, the
lifetime of a mobile node with a tilt sensor is estimated to be about 120 days under the two following
assumptions. First, a mobile node exchanges a heartbeat with its neighbors every 120 s. Furthermore,
if the mobile node recognizes that it consecutively moves for more than the predefined time
(e.g., computed as 10 s in the target environment and a walking speed of 1.5 m/s), it assembles
and reports the neighbor data. Second, the actual moving time of a mobile node, based on the
empirically collected dataset, is estimated to be about 144 min, which is only 10% of an entire day.
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Therefore, by disabling reports while the mobile devices are stationary, the number of reports can be
decreased and the lifetime of the nodes increased.

Table 2. Summary of battery and node properties [24].

Parameter Value
Capacity 1300 mAH

Duration of sleeping phase 30 s
Duration of polling phase 5 s

Duration of location updating phase 2 s
Sleeping current 0.07 mA
Polling current 12.5 mA

Location updating current 40 mA

6. Conclusions

This paper proposes a classification scheme to distinguish nodes that failed to transmit packets
(i.e., failed nodes) and nodes that leave the monitoring area (i.e., left nodes) under the environments,
where mobile nodes can freely move around a monitoring region, leave the region and return to the
area repeatedly. If a system to track mobile assets uses heartbeat messages to detect a left node without
being aware of possible node failures, the system can generate errors of detecting nodes within the
detection region as nodes that leave the area. The proposed method in this paper utilizes two trends
that are complementary. One is extracted from a series of neighbor counts generated at each mobile
node, and the other is extracted from the ratios of boundary nodes included in the neighbor counts.
By using trends of these measurements, the proposed classification method successfully separates
failed nodes from mobile nodes that disconnected from wireless sensor networks due to their mobility.
The performance of the proposed scheme is compared to those of conventional schemes that use the
heartbeat messages and the battery lifetime of mobile nodes. Performance evaluations using real
datasets and an ns-2 simulator show that the proposed scheme can detect the mobile nodes that fail
to provide proper performance and show that the proposed method has superior performance over
conventional schemes. By properly detecting faulty nodes in wireless sensor networks, a system to
track mobile assets can improve its reliability and increase its asset management performance. For
future research, optimizations for power consumption will be studied to prolong the lifetime of each
mobile node. This issue will consider various techniques, such as communication energy consumption,
low power sensing devices and small antennas.
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