
sensors

Article

Mechanical Characterization of Hybrid Vesicles
Based on Linear Poly(Dimethylsiloxane-b-Ethylene
Oxide) and Poly(Butadiene-b-Ethylene Oxide)
Block Copolymers

Jeffery Gaspard 1, Liam M. Casey 2, Matt Rozin 2, Dany J. Munoz-Pinto 3, James A. Silas 1

and Mariah S. Hahn 4,*
1 Department of Chemical Engineering, Texas A&M University 3122 TAMU, College Station, 77840 TX, USA;

jeffery.gaspard@hotmail.com (J.G.); james.a.silas@gmail.com (J.A.S.)
2 Department of Chemical Engineering, University of Massachusetts, Amherst, 01003 MA, USA;

lmcasey@umich.edu (L.M.C.); mrozin@ucsd.edu (M.R.)
3 Engineering Science Department, Trinity University, San Antonio, 78212 TX, USA; dmunozpi@trinity.edu
4 Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Biotech 2434, Troy,

12180 NY, USA
* Correspondence: hahnm@rpi.edu; Tel.: +1-518-276-2236

Academic Editor: Jennie B. Leach
Received: 23 September 2015; Accepted: 4 March 2016; Published: 18 March 2016

Abstract: Poly(dimethylsiloxane-ethylene oxide) (PDMS-PEO) and poly(butadiene-b-ethylene oxide)
(PBd-PEO) are two block copolymers which separately form vesicles with disparate membrane
permeabilities and fluidities. Thus, hybrid vesicles formed from both PDMS-PEO and PBd-PEO
may ultimately allow for systematic, application-specific tuning of vesicle membrane fluidity
and permeability. However, given the relatively low strength previously noted for comb-type
PDMS-PEO vesicles, the mechanical robustness of the resulting hybrid vesicles must first be
confirmed. Toward this end, we have characterized the mechanical behavior of vesicles formed
from mixtures of linear PDMS-PEO and linear PBd-PEO using micropipette aspiration. Tension
versus strain plots of pure PDMS12-PEO46 vesicles revealed a non-linear response in the high tension
regime, in contrast to the approximately linear response of pure PBd33-PEO20 vesicles. Remarkably,
the area expansion modulus, critical tension, and cohesive energy density of PDMS12-PEO46

vesicles were each significantly greater than for PBd33-PEO20 vesicles, although critical strain
was not significantly different between these vesicle types. PDMS12-PEO46/PBd33-PEO20 hybrid
vesicles generally displayed graded responses in between that of the pure component vesicles.
Thus, the PDMS12-PEO46/PBd33-PEO20 hybrid vesicles retained or exceeded the strength and
toughness characteristic of pure PBd-PEO vesicles, indicating that future assessment of the membrane
permeability and fluidity of these hybrid vesicles may be warranted.

Keywords: polymersomes; poly(butadiene); poly(dimethylsiloxane); hybrid vesicles

1. Introduction

Block copolymer-based vesicles have been instrumental in developing mechanically robust
nano/micron-scale reactors, drug carriers, and sensors [1–9]. For each of these applications, membrane
fluidity (e.g., so as to achieve desired localization of molecular recognition elements) and membrane
permeability (e.g., so as to achieve desired reactant/product concentrations within the vesicle) are
as critical to device performance as membrane expansion modulus, strength, and toughness. In the
present manuscript, we propose to fabricate vesicles formed from graded mixtures of two distinct
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diblock copolymers toward the long-term goal of developing polymersomes with tailorable membrane
permeabilities and fluidities.

Toward this end, we chose to generate hybrid vesicles from linear poly(butadiene(1-2
addition)-b-ethylene oxide) (PBd-PEO) (Figure 1A) [9–17] and linear poly(dimethylsiloxane-b-ethylene
oxide) (PDMS-PEO) (Figure 1B) [18–21], two diblock copolymers that separately form vesicles of
markedly different membrane permeabilities and fluidities. Specifically, a standardly employed
PBd-PEO copolymer (PBd46-PEO30) results in vesicle membranes with a water permeability of
«3.1 µm/s [11] and an estimated lateral diffusion coefficient of «0.01 µm2/s [22]. In contrast, no
signs of physical separation between intravesicle and extravesicle water fractions were observed by
Pulsed Field Gradient (PFG)-NMR for vesicles formed from linear PEO15-PDMS15-PEO15 triblock
copolymers [21]. These PFG-NMR results indicate that PEO15-PDMS15-PEO15 vesicle membranes
present a minimal barrier to the diffusion of water. In addition, lateral diffusion coefficients for vesicles
formed from linear PDMS22´31-PEO6´9 diblock copolymers range from 4.6–6.0 µm2/s [20], over
100-fold greater than the lateral diffusivities estimated for PBd46-PEO30 membranes [22]. As such,
vesicles fabricated from mixtures of PBd-PEO and PDMS-PEO may display graded membrane fluidities
and permeabilities between those of the pure component vesicles.
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Figure 1. Structures (A) of poly(butadiene(1–2 addition)-b-ethylene oxide) versus poly(butadiene(1–4
addition)-b-ethylene oxide); and (B) of linear poly(dimethylsiloxane-b-ethylene oxide) versus comb-type
poly(dimethylsiloxane-b-ethylene oxide). Poly(butadiene(1–2 addition)-b-ethylene oxide) and linear
poly(dimethylsiloxane-b-ethylene oxide) were utilized herein for reasons detailed in the main text.

That said, the mechanical properties of PDMS-PEO/PBd-PEO vesicles must first be assessed
to ensure that these hybrid vesicles retain necessary membrane expansion modulus, strength, and
toughness. This is particularly important given that the mechanical properties of vesicles formed from
linear PDMS-PEO have not previously been evaluated. In addition, vesicles formed from comb-type
PDMS-PEO (Figure 1B) appear to display a critical tension of «7.6 mN/m and an average critical
strain under 8% [7,11,23–25], values well below the «16 mN/m critical tension and «20% critical
strain associated with vesicles formed from linear PBd-PEO of similar molecular weight [13,24].
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The present manuscript therefore investigates the mechanical behavior of hybrid vesicles formed from
graded mixtures of linear PDMS-PEO and linear PBd-PEO diblock copolymers under conditions of
high tension.

2. Materials and Methods

Linear poly(butadiene(1-2 addition)-b-ethylene oxide) (PBd33-PEO20; total Mn « 2700 g/mol,
PBd Mn « 1800 g/mol, PEO Mn « 900 g/mol; PI = 1.04; 95% 1–2 addition) and linear
poly(dimethylsiloxane-b-ethylene oxide) (PDMS12-PEO46; total Mn « 3100 g/mol, PDMS
Mn « 1000 g/mol, PEO Mn « 1800 g/mol; PI = 1.12) block copolymers were purchased from
Polymer Source Inc. Sucrose (ACS reagent grade), phosphate buffered saline (PBS), sodium chloride
(ACS reagent grade), and bovine serum albumin (BSA) were purchased from Fisher Scientific.
Dichloromethane (DCM; anhydrous, 99.9%) was purchased from Acros Organics. Nile Red (97%) was
purchased from Sigma-Aldrich.

2.1. Formation of Polymersomes

Seven distinct block copolymer vesicles were investigated: (1) 100 wt% PDMS12-PEO46 (100%
PDMS); (2) 95 wt% PDMS12-PEO46: 5 wt% PBd33-PEO20 (95% PDMS); (3) 75 wt% PDMS12-PEO46:
25 wt% PBd33-PEO20 (75% PDMS); (4) 50 wt% PDMS12-PEO46: 50 wt% PBd33-PEO20 (50% PDMS);
(5) 25 wt% PDMS12-PEO46: 75 wt% PBd33-PEO20 (25% PDMS); (6) 10 wt% PDMS12-PEO46: 90 wt%
PBd33-PEO20 (10% PDMS); and (7) 100 wt% PBd33-PEO20 (0% PDMS). To fabricate each block
copolymer vesicle type, thin films were first prepared per standard methodologies [12,13,26]. In brief,
a 5 mg/mL solution of each block copolymer mixture was prepared in DCM, a solvent which is able
to effectively solubilize both PDMS-PEO and PBd-PEO. Following transfer of 50 microliters of each
solution to separate 5 mL glass vials (surface area of vial bottom «0.8 cm2), the DCM solvent was
allowed to evaporate at room temperature over a period of 8 h. Polymersomes were subsequently
formed by rehydration of the block copolymer films at 0.125–0.25 wt % in 1–2 mL of a 300 mOsm/kg
sucrose solution for 24 h at 60 ˝C. In a subset of samples, a small amount of the hydrophobic fluorophore
Nile Red dissolved in DCM was added to the film rehydration solution to allow for visualization of
the vesicle membrane [1,10].

2.2. Optical Microscopy Imaging

Optical microscopy images of vesicle solutions were obtained using a closed-sample chamber
system. In order to provide contrast for imaging, vesicles were immersed in a saline solution of
«320 mOsm/kg, and images were obtained using a Zeiss Axiovert 200M inverted optical microscope
coupled to a Zeiss AxioCam MRm camera. Confocal images of Nile Red-containing polymersomes
immersed in an external saline solution of «310 mOsm/kg were obtained using a Leica TCS SP5
confocal microscope. Samples were imaged in a closed-sample chamber system at 543/600–700 nm
emission/excitation using a 63X oil objective lens with a numerical aperture of 1.25. Pictures were
taken at a resolution of either 512 ˆ 512 or 1024 ˆ 1024, a refresh rate of 400 Hz, a pinhole size of
100 µm, and a voltage of 700 V for the photomultiplier tube.

2.3. Micropipette Aspiration Measurements

To assess the mechanical properties of the synthesized vesicles, room temperature tension-strain
curves were generated by vesicle micropipette aspiration under iso-osmotic conditions. Glass
micropipettes were prepared using standard techniques [27–29] and placed into a custom manometer
system. Each pipette tip was coated with BSA to prevent undesired vesicle adhesion. Vesicles were
chosen in the 15–50 µm diameter range to avoid error in calculating tension and areal strain. Pressure
transducers (Validyne DP45-32) provided measurement of the imposed pressure on a vesicle system,
and micromanipulators (Narishige MHW-3) allowed the vesicles to be aspirated and handled.
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To generate tension-strain curves, applied pipette pressure was converted into membrane tension

(τ) using the following equation [30]: τ “
p∆PqDp

4
ˆ

1´
Dp

Dv

˙ , where ∆P is the applied pressure, Dp is the

pipette inner diameter, and Dv is the diameter of the exterior vesicle segment. Membrane tension

was then plotted against areal strain (α) [30]: α “
∆A
A

“

˜

ˆ

Dp

Dv

˙2
´

ˆ

Dp

Dv

˙3
¸

∆L
Dp

, where A is

the vesicle surface area and ∆L is the vesicle projection length within the micropipette. From the
resulting tension-strain curves, values were estimated for the area expansion modulus as well as other
mechanical properties, such as critical tension, critical areal strain, and the cohesive energy density.

2.4. Statistical Analyses

All data are reported as mean ˘ standard error of the mean. Differences in averages among
formulations were statistically evaluated using ANOVA followed by Tukey post hoc tests (SPSS version
22.0, IBM), with a p-value < 0.05 considered significant.

3. Results and Discussion

The present manuscript investigates the high tension mechanical behavior of vesicles formed from
graded mixtures of linear PDMS12-PEO42 and PBd33-PEO20 as a first step toward the long-term goal of
enabling broad, application-specific tailoring of polymersome membrane fluidity and permeability.
In selecting specific formulations of PBd-PEO and PDMS-PEO to be examined, we considered the
following details from the literature. First, the PBd-PEO copolymers utilized in prior vesicle studies
have generally been linear in form [9–17], and the PBd chains have primarily been 1–2 (as opposed to
1–4) in microstructure (Figure 1A). In contrast, previous studies on PDMS-PEO copolymer vesicles have
included both linear and comb-type PDMS-PEO [7,11,18–20,23–25,31] (Figure 1B). Given the standard
use of linear PBd-PEO [9–17], we opted to also utilize a linear form of the PDMS-PEO copolymer for
the current studies. This choice allowed more facile matching of the hydrophobic and hydrophilic
block lengths between the PBd-PEO and PDMS-PEO copolymers, improving the potential for stable
vesicle formation from PBd-PEO/PDMS-PEO mixtures.

The length of the hydrophobic segment of the linear PDMS-PEO copolymer was selected based
on literature indicating that PDMS-PEO copolymers with short PDMS chain lengths result in vesicles
membranes with high lateral diffusivity and high water permeability [20,32]. This is in contrast to
the relatively low lateral diffusivity and low water permeability generally presented by PBd-PEO
copolymer membranes [11,22]. Specifically, PEO15-PDMS15-PEO15 vesicle membranes have been
observed to present a minimal barrier to the diffusion of water [32], and PDMS22´31-PEO vesicle
membranes display lateral diffusivities ranging from 4.6–6.0 µm2/s [20]. Based on these data, the
linear PDMS-PEO copolymer formulation PDMS12-PEO46 was chosen for examination herein.

The linear, 1–2 addition PBd-PEO formulation was then selected to minimize the difference
in hydrophobic and hydrophilic block lengths between the selected PDMS-PEO formulation and
the PBd-PEO copolymer. In particular, a scaling relationship between membrane thickness and
the molecular weight of the hydrophobic block (Mh) developed for vesicles formed from linear
diblock PDMS-b-poly(2-methyloxazoline) indicates that a PDMS block length of 12 would result in
membranes with a hydrophobic layer thickness of«7.4 nm [20]. Similarly, PBd33-PEO20 copolymers are
estimated—based on experimentally validated scaling relationships for PBd-PEO vesicles—to produce
vesicles with a hydrophobic layer thickness of «8 nm [13]. This «8 nm thickness is similar to the
7.4 nm estimated for the selected linear PDMS12-PEO46 vesicles. In terms of the hydrophilic segments,
the root mean squared lengths for the hydrophilic blocks of PBd33-PEO20 and PDMS12-PEO46 are
estimated to be 2.7 nm and 4.1 nm, respectively [33]. Perhaps more importantly, the volume fraction
of the hydrophilic component ( fhydrophilic) of the PBd33-PEO20 copolymer is 0.33, within the range of
0.25 < fhydrophilic < 0.40 demonstrated for these and many other amphiphilic copolymers to be suitable
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for vesicle formation [8]. In addition, the PDMS12PEO46 copolymer displays a fhydrophilic of «0.67,
consistent with observations that linear PDMS-PEO copolymers with fhydrophilic > 50% can support
unilamellar vesicle formation [18,19].

Following selection of copolymer formulations, vesicles were prepared from PDMS12-PEO46,
PBd33-PEO20, and their mixtures—termed 0% PDMS, 10% PDMS, 25% PDMS, 50% PDMS, 75% PDMS,
95% PDMS or 100% PDMS based on the wt % of PDMS-PEO in the mixture—and analyzed by
microscopy and micropipette aspiration.

3.1. Vesicle Size and Shape

Each vesicle formulation displayed a relatively uniform spherical structure by optical microscopy
imaging, and resulting vesicles ranged in size from submicron to greater than 50 µm in diameter
(Figure 2A). Phase-contrast imaging indicated that the primary vesicle type formed was unilamellar,
although multilamellar vesicles were also observed (Figure 2A, Supplementary Figure S1). Vesicle
structure was further visualized by adding the hydrophobic, fluorescent dye Nile Red to the aqueous
solution utilized in copolymer film rehydration. Since Nile Red is not significantly water-soluble,
it preferentially partitions to hydrophobic regions of vesicle membranes [1,10]. As shown in the
confocal images in Figure 2B,C, pure PDMS12-PEO46 and pure PBd33-PEO20 appeared to produce
relatively spherical, unilamellar vesicles. In addition, both vesicle types formed relatively large contact
areas with the glass substrate utilized during imaging. These large contact areas indicated that the
prepared vesicles have a relatively low area expansion modulus [34], consistent with previous literature
for PBd-PEO [12] and comb-type PDMS-PEO vesicles [7,24].
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Figure 2. (A) A phase contrast image of pure PBd33-PEO20 vesicles; scale bar = 50 µm. This image
is representative of vesicle shape and size for all formulations; Representative confocal images of
(B) 0% PDMS (pure PBd33-PEO20); (C) 100% PDMS (pure PDMS12-PEO46); and (D) 25% PDMS vesicles
prepared in the presence of Nile Red; scale bars in (B–D) represent 10 µm.

PDMS12-PEO46/PBd33-PEO20 mixtures also produced vesicles with unilamellar membrane
structures in which the Nile Red dye appeared to be relatively uniformly distributed (Figure 2D). It is
important to note, however, that the apparent homogeneity in Nile Red staining within the hybrid
vesicle membranes cannot be definitively interpreted as membrane homogeneity. Indeed, it is likely
that at least some degree of phase separation exists within the hybrid membranes given that PDMS
and vinyl-containing hydrocarbons (such as PBd) tend to display limited miscibility [35].

3.2. Vesicle Area Expansion Modulus

Micropipette aspiration, a technique that has been used extensively in both lipid and copolymer
vesicle measurements [8,15,30,36–47], was undertaken to quantitatively evaluate the mechanical
properties of unilamellar PDMS12-PEO46/PBd33-PEO20 hybrid vesicles. Multilamellar vesicles—which
would be expected to display integer multiples of the area expansion modulus values observed for
corresponding unilamellar vesicles—were easily distinguished by microscopy imaging (Supplementary
Figure S1) and excluded from analysis. Resulting data are representative of at least eight unilamellar
vesicles of each PDMS12-PEO46/PBd33-PEO20 formulation.
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Figure 3A shows a PDMS12-PEO46 vesicle undergoing micropipette aspiration. Representative
tension-strain curves are displayed for a subset of vesicle formulations in Figure 3B. The area expansion
modulus (KA) of each vesicle type was determined by evaluating the initial slope of corresponding
tension-strain curves in the “high tension” regime. Specifically, the tension-strain curves can be

described by the following equation:
∆A
A

“
kBT
8πkc

ln p1` cτAq `
τ

KA
, where kB is the Boltzmann’s

constant, kc is the bending modulus, and c is a constant of magnitude «0.1 [30]. In the “low tension”
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In prior vesicle literature in which non-linearity has been observed [13], the area expansion
modulus has been defined as the slope of the initial linear segment of each tension-strain curve in

the “high tension” regime. As a result, the slope of each tension-strain plot from 0.01 <
∆A
A

< 0.04
was taken as the KA in the present studies. PDMS12-PEO46 vesicles displayed an average KA value
of 145 ˘ 16 mN/m, approximately 1.6-fold greater than the average KA value of 89 ˘ 20 mN/m
measured for pure PBd33-PEO20 vesicles (p = 0.020; Figure 4A). The average KA values for the
various PDMS-PEO/PBd-PEO hybrid vesicles were intermediate between these extremes, with the

average KA showing a general decrease as PBd-PEO levels increased (Figure 4A). Beyond
∆A
A
« 0.04,

the tension-strain curves for PDMS-PEO containing vesicles transitioned at to a lower average slope
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(Figure 3B). Indeed, the average slope for each vesicle formulation over
∆A
A

> 0.04 measured between
85–100 mN/m (Figure 4B).

The KA values obtained herein for the pure PBd33-PEO20 vesicles (KA « 89 ˘ 20 mN/m)
are similar to the KA of 90–107 mN/m previously measured for PBd46-PEO26´30 vesicles [9,12,14].
However, the higher KA associated with pure PDMS12-PEO46 vesicles relative to the PBd33-PEO20

vesicles was unexpected given the high flexibility generally associated with PDMS chains [11,18,19]
and given the KA of «92–95 mN/m previously determined for comb-type PDMS-PEO vesicles
of similar molecular weight [7,24]. We do not currently have an explanation for the higher than
expected KA for vesicles formed from linear PDMS12-PEO46 or for the non-linearity of the associated
tension-strain curves. That said, the measured KA values for the 100% PDMS and 0% PDMS vesicles are
reasonably consistent with the estimated interfacial energies for PDMS-PEO and PBd-PEO copolymers
with similar hydrophobic block lengths: «32–35 mN/m for PDMS10´14-PEO [18] and «27 mN/m
PBd46-PEO [9] block copolymers in water. In particular, the KA for a vesicle membrane is often
first approximated from the interfacial energy (γ) of the amphiphile in water according to KA « 4γ.
This approximation indicates that PDMS12-PEO46 vesicles should have KA values of «130–140 mN/m
and that PBd33-PEO20 vesicles should display KA values of «108 mN/m, in general agreement with
the present results.Sensors 2016, 16, 390 7 of 11 
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3.3. Vesicle Critical Tension, Critical Strain, and Cohesive Energy Density

Further examination of the tension-strain curves allowed estimation of the average critical tension
(τc) and critical strain (αc) which each vesicle type could withstand prior to rupture (Figure 5A). Vesicle
τc increased in an approximately linear manner from 9.4 ˘ 1.0 mN/m to 22.0 ˘ 2.2 mN/m as the
wt% of PDMS12-PEO46 in the copolymer mixture increased from 0% to 100% (p < 0.001). Notably,
the τc of «22.0 mN/m measured for the linear PDMS12-PEO46 vesicles was substantially greater
than the τc of «7.5 mN/m measured for vesicles formed from comb-type PDMS-PEO of similar
molecular weight [24]. This difference in τc may be due to the difference in structure between linear
and comb-type PDMS-PEO. Importantly, however, the τc for linear PDMS12-PEO46 vesicles agreed well
with the «20 mN/m ultimate tension previously reported for a separate, “tough” copolymer vesicle
system—PEO-poly(ethylethylene) (PEO40-PEE37) [8]. Similarly, previous studies of PBd46-PEO26´30

vesicles [14,48] and of PBd125-PEO80 vesicles [13] have found τc values of «16–20 mN/m and
«33 mN/m, respectively. Given the observed decrease in τc with decreasing PBd length, a τc value
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of «13 mN/m would be estimated for PBd33-PBD20 vesicles, in reasonable agreement with the τc of
«9.5 mN/m observed herein.

In contrast to τc, no statistically significant differences in αc were observed across the examined
vesicle formulations (p = 0.33, Figure 5A). In brief, pure PDMS12-PEO46 vesicles displayed an αc of
0.19 ˘ 0.02, and pure PBd33-PEO20 vesicles demonstrated an average αc of 0.20 ˘ 0.03. Although
αc values for the hybrid PDMS-PEO/PBd-PEO vesicles appeared to vary from «0.15 to «0.21, these
apparent differences fell below statistical significance (p = 0.33; Figure 5A). Thus, further study
would be required to determine if true differences exist among vesicle formulations in terms of their
critical strains. In comparing current results to existing literature, the present αc value obtained for
pure PBd33-PEO20 vesicles was similar to the 0.21 ˘ 0.02 previously measured for PBd46-PEO26´30

copolymer vesicles [9,14]. Notably, the αc of «0.19 measured herein for linear PDMS12-PEO46 vesicles
is markedly higher than the αc of «0.075 previously found for vesicles formed from comb-type
PDMS-PEO of similar molecular weight [24]. As with the difference in τc, this difference in αc may be
due to the difference in structure between linear and comb-type PDMS-PEO. Importantly, the αc for
all the vesicles examined herein significantly exceeded the αc ď 0.05 generally associated with lipid
vesicles [49].

Sensors 2016, 16, 390 8 of 11 

 

levels beyond 50%. In comparing the present results to previous literature, all measured Ec values 
exceeded the upper Ec value of 0.5 mJ/m2 generally associated with phospholipid membranes [50]. In 
addition, the 100% and 75% PDMS vesicles met or exceeded the Ec value of 2.2 mJ/m2 associated with 
PEO40-PEE37 membranes [8], which are considered to be tough and durable. These results are also 
consistent with a previous study evaluating the resistance of PBd-PEO vesicles and comb-type 
PDMS-PEO vesicles to burst failure due to osmotic stress [11]. In short, PBd-PEO vesicles generally 
failed following initial membrane rupture, whereas PDMS-PEO vesicles were observed to burst, then 
reseal and swell again. Carlsen et al. hypothesized that the ability of PDMS-PEO vesicles to repeatedly 
reseal following membrane disruption may be due to the greater flexibility generally associated with 
PDMS-PEO chains [11]. Thus, the greater Ec values associated with higher PDMS-content vesicles 
may result from the ability of flexible PDMS chains to partially “cover” or “seal” small defects in 
membrane structure introduced by applied tensile stress. This capacity to “seal” defects would be 
expected to be diminished with increasing PBd-PEO content.  

 
Figure 5. Comparison of vesicle critical tension, critical strain, and cohesive energy density. (A) 
Critical tension (τc, black circles) and critical strain (αc, open squares); and (B) cohesive energy density 
(Ec) across vesicle formulations. The critical tension increased in an approximately linear manner (r2 
= 0.95) from 0% PDMS to 100% PDMS vesicles (p < 0.001). In contrast, no statistically significant 
differences in critical strain were noted across formulations. The cohesive energy density curve in (B) 
is fit by a quadratic function (r2 = 0.74). Data are shown as mean ± standard error of the mean. At least 
8 vesicles were evaluated for each vesicle formulation in assessing each property. 

Hybrid vesicles based on mixtures of two or more copolymers have not been extensively 
examined in previous literature. However, hybrid vesicles formed from copolymer-lipid mixtures 
have been the focus of several recent studies [3,7,25,48]. Notably, Chen et al. [7] investigated the 
membrane mechanics of vesicles formed from mixtures of comb-type PDMS-PEO copolymer and the 
lipid DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine). These hybrid vesicles displayed similar 
KA values as pure comb-type PDMS-PEO vesicles, but showed a reduced tendency to rupture relative 
to pure DPPC vesicles. In addition, hybrid vesicles have been formed from mixtures of PBd-PEO and 
the phospholipid, hydrogenated soy phosphatidylcholine (HSPC) [25]. Resulting hybrid vesicles 
displayed a substantially increased area expansion modulus relative to pure PBd-PEO vesicles, 
although membrane tension and strain at rupture were not assessed. Similarly, Nam et al. examined 
vesicles formed from graded mixtures of the lipid POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphatidylcholine) and PBd46-PEO30 copolymer and found that membrane KA, critical tension, and 
critical strain were each modulated by increasing POPC levels [48]. The present data are consistent 
with these previous lipid-copolymer hybrid vesicle results in that the examined hybrid copolymer 
vesicles displayed mechanical properties intermediate between that of each pure copolymer vesicle 
type. 

Limitations of this current work include that the degree of inhomogeneity in the membrane 
composition and organization of the hybrid vesicles was not assessed. This is significant as 
inhomogeneity in membrane composition, both between and within specific hybrid vesicle 
membranes, has the potential to substantially impact vesicle properties [32,51]. However, good 
reproducibility was generally observed between the aspiration tension-strain plots for separate 
vesicles formed from the same PDMS-PEO/PBd-PEO mixture. Specifically, the degree of variation in 

Figure 5. Comparison of vesicle critical tension, critical strain, and cohesive energy density. (A) Critical
tension (τc, black circles) and critical strain (αc, open squares); and (B) cohesive energy density (Ec)
across vesicle formulations. The critical tension increased in an approximately linear manner (r2 = 0.95)
from 0% PDMS to 100% PDMS vesicles (p < 0.001). In contrast, no statistically significant differences
in critical strain were noted across formulations. The cohesive energy density curve in (B) is fit by a
quadratic function (r2 = 0.74). Data are shown as mean ˘ standard error of the mean. At least 8 vesicles
were evaluated for each vesicle formulation in assessing each property.

In addition to αc and τc, cohesive energy density (Ec) is another measure of membrane toughness.
For vesicles with fluid membranes, Ec can be estimated as the integral of the tension with respect
to areal strain to the point of failure. For the vesicles in the present study, Ec increased over
3-fold (from «0.79 mJ/m2 to «2.75 mJ/m2) as PDMS12-PEO46 levels increased from 0% to 100%
(p = 0.003, Figure 5B). This increase appeared to be non-linear in nature, increasingly modestly with
increasing PDMS12-PEO46 for the 0%, 25%, and 50% PDMS formulations, but increasing more rapidly
for PDMS12-PEO46 levels beyond 50%. In comparing the present results to previous literature, all
measured Ec values exceeded the upper Ec value of 0.5 mJ/m2 generally associated with phospholipid
membranes [50]. In addition, the 100% and 75% PDMS vesicles met or exceeded the Ec value of
2.2 mJ/m2 associated with PEO40-PEE37 membranes [8], which are considered to be tough and
durable. These results are also consistent with a previous study evaluating the resistance of PBd-PEO
vesicles and comb-type PDMS-PEO vesicles to burst failure due to osmotic stress [11]. In short,
PBd-PEO vesicles generally failed following initial membrane rupture, whereas PDMS-PEO vesicles
were observed to burst, then reseal and swell again. Carlsen et al. hypothesized that the ability of
PDMS-PEO vesicles to repeatedly reseal following membrane disruption may be due to the greater
flexibility generally associated with PDMS-PEO chains [11]. Thus, the greater Ec values associated with
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higher PDMS-content vesicles may result from the ability of flexible PDMS chains to partially “cover”
or “seal” small defects in membrane structure introduced by applied tensile stress. This capacity to
“seal” defects would be expected to be diminished with increasing PBd-PEO content.

Hybrid vesicles based on mixtures of two or more copolymers have not been extensively
examined in previous literature. However, hybrid vesicles formed from copolymer-lipid mixtures
have been the focus of several recent studies [3,7,25,48]. Notably, Chen et al. [7] investigated the
membrane mechanics of vesicles formed from mixtures of comb-type PDMS-PEO copolymer and
the lipid DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine). These hybrid vesicles displayed
similar KA values as pure comb-type PDMS-PEO vesicles, but showed a reduced tendency to
rupture relative to pure DPPC vesicles. In addition, hybrid vesicles have been formed from
mixtures of PBd-PEO and the phospholipid, hydrogenated soy phosphatidylcholine (HSPC) [25].
Resulting hybrid vesicles displayed a substantially increased area expansion modulus relative
to pure PBd-PEO vesicles, although membrane tension and strain at rupture were not assessed.
Similarly, Nam et al. examined vesicles formed from graded mixtures of the lipid POPC
(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine) and PBd46-PEO30 copolymer and found that
membrane KA, critical tension, and critical strain were each modulated by increasing POPC levels [48].
The present data are consistent with these previous lipid-copolymer hybrid vesicle results in that the
examined hybrid copolymer vesicles displayed mechanical properties intermediate between that of
each pure copolymer vesicle type.

Limitations of this current work include that the degree of inhomogeneity in the membrane
composition and organization of the hybrid vesicles was not assessed. This is significant as
inhomogeneity in membrane composition, both between and within specific hybrid vesicle membranes,
has the potential to substantially impact vesicle properties [32,51]. However, good reproducibility
was generally observed between the aspiration tension-strain plots for separate vesicles formed from
the same PDMS-PEO/PBd-PEO mixture. Specifically, the degree of variation in the tension-strain
responses of each hybrid vesicle was similar to that observed for the pure vesicle controls, as
evidenced by comparison of the standard errors associated with their respective KA, τc, and αc

values. These observations indicate that the individual vesicles within a specific PDMS-PEO/PBd-PEO
vesicle population have similar overall compositions. Furthermore, these observations suggest
that the length-scale of potential inhomogeneity within the vesicle membranes formed from
PDMS-PEO/PBd-PEO mixtures may be less than the tip diameter of the selected microaspiration
pipettes («10 µm). An additional limitation of the present work is that the membrane thickness of each
vesicle type was not confirmed—rather, previous literature was relied on to estimate membrane
thickness. Furthermore, future work must be conducted to assess the structural basis of the
non-linear mechanical response, the high KA, and other remarkable aspects of linear PDMS12-PEO46

vesicle behavior.

4. Conclusions

In the present work, we fabricated hybrid vesicles from mixtures of linear PDMS-PEO and linear
PBd-PEO with the long-term goal of enabling broad, application-specific tuning of vesicle membrane
fluidity and permeability for nano/micro- sensor, reactor, and drug carrier applications. However,
given that importance of membrane expansion modulus, strength, and toughness in each of these
applications, the mechanical properties of the resulting hybrid vesicles had to first be confirmed.
Toward this end, we characterized the mechanical behavior of vesicles formed from graded mixtures
of linear PDMS12-PEO46 and linear PBd33-PEO20 in the high tension regime. PDMS12-PEO46 vesicles
displayed higher KA values than PBd33-PEO20 vesicles, while also showing an increased capacity
to absorb stress and energy prior to failure. However, the strain to failure was similar for both of
these vesicle formulations. PDMS12-PEO46/PBd33-PEO20 hybrid vesicles generally displayed graded
responses in between that of pure PDMS12-PEO46 and pure PBd33-PEO20 vesicles. Thus, the hybrid
vesicles retained or exceeded the strength and toughness characteristic of PBd-PEO vesicles, indicating
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that future assessment of PDMS-PEO/PBd-PEO vesicle membrane permeability and fluidity may
be warranted.
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