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Abstract: Ballistocardiographs (BCGs), which record the mechanical activity of the heart, have
been a subject of interest for several years because of their advantages in providing unobtrusive
physiological measurements. BCGs could also be useful for monitoring the biological signals of
infants without the need for physical confinement. In this study, we describe a physiological signal
monitoring bed based on load cells and assess an algorithm to extract the heart rate and breathing
rate from the measured load-cell signals. Four infants participated in a total of 13 experiments. As a
reference signal, electrocardiogram and respiration signals were simultaneously measured using a
commercial device. The proposed automatic algorithm then selected the optimal sensor from which
to estimate the heartbeat and respiration information. The results from the load-cell sensor signals
were compared with those of the reference signals, and the heartbeat and respiration information
were found to have average performance errors of 2.55% and 2.66%, respectively. The experimental
results verify the positive feasibility of BCG-based measurements in infants.

Keywords: ballistocardiographs; physiological signal monitoring; infants; load-cell sensor; automatic
optimal sensor selection algorithm

1. Introduction

Healthcare technology continues to evolve toward the objective of constructing a routine health
management system. An essential requirement of such a system is continuous physiological signal
monitoring [1]. In the past, conventional methods of physiological measurement often caused
discomfort by keeping subjects immovable or attaching various pieces of equipment to their bodies.
However, these methods have been improved with the development of electronic technologies.
Now, unobtrusive measurement technologies provide the possibility of managing subjects’ health
status as they go about their day-to-day lives [2].

Researchers have been actively developing technologies to detect biological information from
individuals without confining them or causing any discomfort. The most commonly studied methods
for unobtrusive sensing include capacitive, photoplethysmographic, ballistocardiographic, and
seismocardiographic approaches. These could become pervasive in our daily life without causing any
discomfort through the use of wearable device (clothes and accessories) or commonly used objects
(furniture and tools) [3,4]. These novel methods, which unobtrusively monitor the biological activity
of subjects during their everyday life, can be used to set up a continuous examination system for long
periods. They can also be used effectively for subjects who are difficult to confine physically, such as
the elderly, infirm, and infants. In particular, it is expected that unobtrusive biomonitoring for infants
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could play an important role in managing breathing and cardiovascular problems, which are the main
causes of death [5–7].

Conventional methods of physiological signal monitoring over long periods have limitations
when applied to infants. For example, electrocardiography (ECG) using adhesive electrodes can cause
skin allergies or inflammation. In some cases, the skin can be seriously damaged when detaching
the electrodes from the body [6,8,9]. In addition, respiratory measurements can cause discomfort
and irritation, as the equipment must be fastened firmly to the body [7]. Unobtrusive methods such
as attaching a sensor to the nose [10] or foot (in the form of a sock) [11] have been used to measure
biological information from infants. However, these methods still require the direct attachment
of sensor devices to the body, which can be uncomfortable. Other indirect measuring methods
include infrared thermography [7], piezoelectric force sensors [9], and Doppler radar [12]. Further
investigations related to the clinical verification of these approaches is ongoing.

Ballistocardiographs (BCGs) represent a possible solution for monitoring infants’ physiological
signals. BCGs are non-invasive instruments that measure the reactional motion of the body produced
by cardiac contraction. Unlike ECGs, which require electrodes to be attached directly to the
patient’s body to detect electric signals, BCGs generally use sensors for force, pressure, vibration,
and displacement. These sensors do not require direct attachments, and therefore, they allow the
measurement of physiological signals for long periods of time without perturbing the subject [4,13].
However, most studies investigating the application of these methods have focused on adults, and few
cases have been focused on infants. More studies are necessary to verify the usefulness of BCG-based
physiological measurement in infants.

Therefore, this study proposes a non-confining system for monitoring the biological information
of infants using BCG technology. In a previous study, we developed a load-cell installed bed to
measure the cardiac activity, respiration, and movement of adults [14,15]. The basic concepts of the
present system, including the load-cell’s arrangement and the circuit design, are based on the former
system. However, the detailed hardware specifications differ to account for relatively lightweight
infant subjects. Because it is more difficult to obtain complete BCG signals from their immature
hearts, which have smaller cardiac output than adults [16]. In addition, an algorithm that includes
an automatic sensor selection with a signal quality check function has been developed to analyze the
heart rate (HR) and breathing rate (BR) sagaciously from the four measured load-cell signals. The final
objective is to validate and evaluate the feasibility of the infant biological information monitoring
system. In experiments on infant subjects, the designed bed was used to acquire biological data, and
the biological information from the proposed algorithm was compared with the reference information
obtained simultaneously.

2. Materials and Methods

2.1. Proposed System

Figure 1a illustrates the design of the physiological signal monitoring bed for infants proposed in
this study. The size of the bed is 60 cm ˆ 90 cm, and four load cells (CBCL-6L, Curiosity Technology,
Paju-si, Gyeonggi-do, Korea) are installed below the plane of the bed. The load cells, which comprise
four strain gauges in a Wheatstone bridge configuration, create an electrical signal in accordance with
the force changes caused by cardiac activity and respiratory movements.
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Figure 1. (a) Design of physiological signal monitoring bed for infants; (b) Experimental setup of signal
acquisition system. (SPC: signal processing circuit)

2.1.1. Specifications of the Load-Cell Sensor

The technical specifications of the load-cell sensor are provided in Table 1. A single point load-cell,
a type of resistive load-cell, is generally used in the industry, and it features superior off-center loading
compensation. The gage factor is defined as the ratio of the fractional change in the electrical resistance
to the given strain, and it is typically around 2 for metallic strain gages. Most manufacturers express
the output of load-cell in units of mV/V, which is called the rated output. It is dependent on the gage
factor and the operating stress of the load-cell structure, and it may range from 1 to 4 mV/V (a value
of 2 mV/V is most common). For example, a load-cell with a rated output of 2 mV/V produces an
output of 24 mV when supplied with excitation voltage of 12 V.

Table 1. Technical specifications of load-cell sensor.

Single Point Load-Cell
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The sensitivity should be calculated based on the output and capacity of the load-cell as follows.

Sensitivity of load´ cell pmV{kgq “
output

capacity
“

excitation voltage pVq ˆ rated output pmV{Vq
capacity pkgq

(1)

In this study, each load-cell (CBCL-6L) with rated output of 2 mV/V and excitation voltage of
12 V shows sensitivity of 4 mV/kg.

2.1.2. Signal Processing Circuit

Figure 2a illustrates the schematic diagram of the signal processing circuit for conditioning the
load-cell output. Although the signals from load-cell sensors were amplified by the excitation voltage,
the output caused by the cardiac activity and respiratory movements are not large enough to be
displayed meaningfully. Thus, they were passed through an additional signal processing circuit.
A precision instrumentation amplifier (AD8221, Analog Devices Inc., Norwood, MA, USA) with
a gain setting of 100 was used in the circuit. This amplifier was associated with an alternating
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current (AC)-coupled circuit using an active integrator-based feedback network from the output to the
reference terminal. This AC-coupled circuit improves the resolution of small AC signals by lowering
the noise floor. Furthermore, OP1177, which forces the output of the AD8221 to 0 V at low frequencies,
acts as a high-pass filter with a cut-off frequency of 0.1 Hz (please refer to the AD8221 datasheet).
The signal output from the AD8221 was then passed through a low-pass filter to amplify the signal to
the cardiorespiratory frequency range and suppress noise signals. This low-pass filter was composed
of a Sallen–Key 8th-order Butterworth filter with a cut-off frequency of 20 Hz and a gain setting of 30.
As a result, the overall circuit had a gain of 3000 and filtering bandwidth of 0.1–20 Hz. The simulation
results of the frequency response of the signal processing circuit are shown in Figure 2b. Most of the
signal acquisition methods described above follow the procedures described in the literature [17,18].
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Figure 2. (a) Schematic diagram of signal processing circuit for the load-cell sensor; (b) Simulation
results of frequency response of signal processing circuit.

2.2. Subjects and Experimental Method

According to the Infant Care Act of Korea, preschool children under the age of six are considered
infants. Four infants aged between 5 and 42 months (at the time of first participation) participated in
the experiment after informed consent was received from their parents. Table 2 presents the physical
characteristics of the four infants (labeled A through D) and experimental time. Because each subject
participated more than once on different dates, a total of 13 experiments were conducted. The different
dates for the same subject are indicated as, for example, B-1, B-2, and B-3. The experimental time shows
somewhat irregular lengths. This was unavoidable because our experiments have some limitations
related to the time constraints in accordance with the experimental conditions faced in home visits.
Moreover, the subjects sometimes awoke easily when they were not in their own familiar bed. We have
done our best to collect data for as long as possible.

During each experiment, the infant was laid down and allowed to fall asleep on the monitoring
bed. As references to validate the performance of the developed bed and algorithm for analyzing
the HR and BR, the signals from an electrocardiogram electrode and a breathing sensor (BN-RSPEC,
BIOPAC Systems, Inc., Goleta, CA, USA) were recorded. ECG and breathing signals were transmitted
wirelessly to the data acquisition system (MP150, BIOPAC Systems, Inc., Goleta, CA, USA) by using a
receiver, and the four output signals of the developed system were also recorded simultaneously by
the same data acquisition system (MP150 with UIM100C module). The MP150 system internally has a
single ground connection and a microprocessor to control the data acquisition and communication
with the computer. The wireless system has a separate ground for each transmitter. All data were
collected at a sampling rate of 1000 Hz (Figure 1b).
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Table 2. Physical information about the participating subjects and experimental time.

Records Gender Age
(Months) Height (cm) Weight (kg) Experimental

Time (min)
Data Length
* (Sample)

A-1

Female

42 97.5 14.5 12 720,000
A-2 43 97.8 15.0 20 1,200,000
A-3 44 98.0 15.2 25 1,500,000
A-4 46 98.5 15.5 30 1,800,000
A-5 48 99.2 15.9 30 1,800,000

B-1
Male

13 78.0 13.0 10 600,000
B-2 14 78.5 13.3 20 1,200,000
B-3 19 80.1 14.8 90 5,400,000

C-1

Male

09 71.0 9.20 11.9 714,000
C-2 09 71.0 9.20 178.8 10,728,000
C-3 10 72.0 9.40 30 1,800,000
C-4 13 77.0 10.0 72 4,320,000

D-1 Male 05 67.0 9.20 33 1,980,000

*: Data were collected at a sampling rate of 1000 Hz.

Figure 3 shows a partial example of the monitored signals measured from a 19-month-old
male subject, which is labeled as B-3. The output signals of the reference equipment (BN-RSPEC)
are presented in (a)–(b), and the simultaneously acquired raw data from four load-cell sensors are
presented in (c)–(f). Although the properties of the load-cell sensor outputs vary depending on
a subject’s lying position, most sensors can record both ballistic cardiac activities (localized rapid
fluctuations) and respiratory movements (slow oscillations in sensors 2 and 3). A detailed analysis
is presented below in the discussion section. Figure 3g shows a typical BCG waveform from the
literature and also shows some of the characteristic peaks in comparison with the ECG signal. Most
named waveform features in the BCG signal are clearly shown in the magnified view of our example
of monitored signals (Figure 3h).
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Figure 3. Simultaneous recordings of (a) ECG, (b) respiration signal, and (d)–(f) raw signals from four
load-cell sensors, (g) typical BCG waveform (redrawn from literature [19]), and (h) waveform features
of the BCG signal in our study.
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2.3. Development of Algorithm for Automatically Analyzing HR and BR

We designed an algorithm that performs automatic sensor selection with a signal quality check
function to automatically analyze HR and BR. This algorithm consists of three stages: pre-processing,
signal quality check and sensor selection, and peak finding and calculation. The basic concept of the proposed
method is to iteratively shift a short analysis window across the signal. Although the overall flow
applies equally to both heartbeat and respiration signal analysis, some details concerning the window
length, pre-processing method, and criterion for artifact determination differ depending on the analysis
objective. Figure 4 shows a flowchart outlining the algorithm used to estimate the HR and BR and its
partial example captured when the HR analysis is being processed. The algorithm was independently
operated for heartbeat and respiration signals (i.e., there are two separate algorithms).
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example of HR analysis.

2.3.1. Pre-Processing the Data

Consider the original signals obtained from the proposed system, xk rns (k “ 1, ¨ ¨ ¨ , 4, the number
of load-cell sensors), where n is the length of the analysis window. For the HR and BR analysis,
we set n to 5 s and 30 s, respectively. Considering a sampling rate of 1000 Hz, 5000 samples were
included in each HR analysis window, and 30,000 samples were included in each BR analysis window.
In the general case, the signal xk rns includes components of cardiac activity (usually called BCG) and
respiratory movement. The pre-processing stage applies an infinite impulse response (IIR) digital filter
to extract the appropriate physiological rhythm, and it employs other signal processing techniques to
enhance the peak component and suppress noise. To avoid any time delay or phase shift, zero-phase
digital filtering (offered by the “filtfilt” function in the MATLAB software) was applied in all the
following filtering processes. Zero-phase digital filtering, which was conducted by processing the



Sensors 2016, 16, 409 7 of 19

input data in both the forward and the reverse directions, reduces noise in the signal and preserves the
peak at the same time at which it occurs in the original.

Pre-Processing for the HR Analysis

The signal is first separated using a fifth-order band-pass Butterworth filter (IIR) with a range of
1–20 Hz to extract clear heartbeat derived signals (Figure 5b), denoted as fHR pxk rnsq. Subsequently,
first-order differentiation is applied to the signals fHR pxk rnsq to extract information about the slope
and accentuate the main peak component (Figure 5c), denoted as dBCGk rns). The dBCGk rns signals
are implemented as

dBCGk rns “ fHR pxk rn` 1sq ´ fHR pxk rnsq (2)Sensors 2016, 16, 409 7 of 18 
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The differentiated signal (dBCGk rns) is passed through a nonlinear transformation to obtain
positive peaks regardless of the polarity of the main peak components (Figure 5d), denoted as
seBCGk rns). The main objective of this transformation is to enhance the main peak components
and use a single-sided threshold mechanism. The nonlinear transformation giving the Shannon
entropy value is applied as follows:

seBCGk rns “ ´ |dBCGk rns| ˆ log p|dBCGk rns|q (3)

Finally, a moving average filter is applied to smooth out the spikes and noise bursts (Figure 5e),
denoted as yk rns). The signal quality check and sensor selection stage then determine the optimum
signal, and the corresponding yk rns signal is passed to the peak finding and calculation stages.

In Figure 5, for example, according to the seven successive RR intervals (intervals between the
R-peaks from the ECG signal), the average RR interval (RRI) from the ECG signal is 0.5874 ˘ 0.0169 s.
In contrast, the average YY interval (YYI) from the yk rns signal is 0.5851 ˘ 0.0226 s. Additionally, the
average difference between RRI and YYI (|RRI-YYI|) is 0.0103 ˘ 0.0069 s. Heartbeat information can
be extracted quite well by applying the above data processing stage. This preconditioning is useful for
handling BCG signals with less-dominant peak components caused by small heartbeat amplitudes.
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Pre-Processing for the BR Analysis

For the BR analysis, the raw signals xk rns are first discerned using a fifth-order 0.5-Hz low-pass
Butterworth filter (IIR) to extract the main respiratory rhythm (Figure 6, denoted as fBR pxk rnsq).
Although the original signals obtained from the developed system (xk rns) have already passed
through the electronic high-pass filter (AC-coupled circuit, fc = 0.1 Hz), some remaining low-frequency
components can cause the baseline to wander. To suppress unwanted residual baseline drift, a
de-trending technique based on empirical mode decomposition (EMD) is used to preprocess the signal
fBR pxk rnsq [20].Sensors 2016, 16, 409 8 of 18 
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Hereafter, the de-trended fBR pxk rnsq signal is denoted as zk rns. As in the HR analysis, the
peak finding and calculation stage are conducted according to the zk rns signal corresponding to
the optimum signals selected by the signal quality check and sensor selection stages. In Figure 6,
for example, according to the 13 successive breathing intervals (BRI), the average breathing interval
from the respiratory signal is 2.0945 ˘ 0.1354 s. In contrast, the average ZZI from the zk rns signal is
2.1015 ˘ 0.0945 s. The average difference between BRI and ZZI (|BRI-ZZI|) is 0.0545 ˘ 0.0349 s.

2.3.2. Signal Quality Check and Sensor Selection

The most important aspect of the signal analysis obtained from unobtrusive sensors is the signal
quality. In particular, the signals obtained from the developed load-cell-based system are much weaker
than other types of body signals. Therefore, it is important to separate that portion of the signal that
includes useful biological information from the artifact component.

If the obtained signal is clearly recorded without artifacts, it can be assumed to exhibit special
periodicity according to the heartbeat or respiratory cycles. Thus, the main objective of this stage is
to determine whether the signal contains periodicity in the expected frequency region. The expected
frequency region is set differently for HR and BR analysis. Let fl and fh represent the lower and higher
frequencies of the expected frequency region. For HR analysis, these parameters were set to 0.8 and
2 Hz, respectively, whereas for the BR analysis, they were set to 0.2 and 0.8 Hz, respectively.

In addition, we developed signal quality indicators (THV-Sk) by using the calculated
threshold parameters based on the autocorrelation (THV-Ak) and power spectral densities (THV-Pk).
The indicators were used for estimating the level of artifacts in the following signal quality check
and sensor selection processes. The following details of signal quality calculations for optimal sensor
selection are illustrated in Figure 7 (HR) and Figure 8 (BR).
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Autocorrelation-Based Threshold

The autocorrelation function (ACF) measures the correlation between bt and bt`i, where
i “ 0, ¨ ¨ ¨ , j. The autocorrelation formula (rj) for lag j is

rj “ cj{c0 (4)

where cj “
1

T´ 1

T´j
ř

t“1

`

bt ´ b
˘ `

bt`j ´ b
˘

, c0 is the sample variance of the time series, and T is the total

number of samples in the window for the ACF calculation. The lag j is determined using the lower
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expected frequency region explained above. For the HR and BR analysis, j was set to 1.25 s (=0.8 Hz)
and 5 s (=0.2 Hz), respectively.

If the signal is clean and contains the periodicity of the heartbeat and respiratory cycles, peaks
appear in the ACF graph (when the first derivative of ACF goes from positive to negative). In the case
of multiple peaks, only the first is considered to represent the periodicity. When the position of the
peak in the ACF is in the predetermined range of 0.5–1.25 s lag for HR and 1.25–5 s lag for BR, the
algorithm regards the position to be normal. The ACF value at that peak is recorded as THV-Ak. If
there is no peak in the range, THV-Ak is set to 0. Such signals are often determined as being artifacts in
the following signal quality check stage.

Power Spectral Density (PSD)-Based Threshold

The PSDs of data within a short analysis window are calculated by a fast Fourier transform (FFT)
method. We use a periodogram containing 20,000 discrete Fourier transform (DFT) points, which gives
a spectral resolution of 0.05 Hz. The PSD-based threshold THV-Pk is defined as the concentration ratio
of the power summation. First, the maximum PSD in the expected frequency region, between fl and fh,
is detected. If the frequency with the maximum power is denoted as fmax, then THV-Pk is computed as

THV-Pk “

fmax`0.1
ÿ

f“fmax´0.1

Pf{

fh
ÿ

f“0.1

Pf (5)

Signal Quality Check and Selection of Optimum Sensor Channel

The signal quality check is conducted based on THV-Sk (THV-Sk = THV-Ak + THV-Pk). If THV-Sk
is larger than the predetermined values of THVHR and THVBR, the signal included in the current short
window (of length 5 or 30 s for HR or BR, respectively) is considered to be clean. In this study, THVHR

and THVBR were empirically set to 0.65 and 1.25, respectively.
If all THV-Sk values are lower than the predetermined threshold, the signal in the current short

window is considered to be an artifact. The short analysis window then slides along for 1 s until a clean
signal is detected (i.e., start point of window changes from a1 to a1 + 1 s). If more than one THV-Sk
value from the four load-cell sensors is higher than the predetermined threshold value, the sensor with
the maximum THV-Sk value is selected as the most suitable sensor for measuring the cardiac activity
or respiratory movement. Then, the peak included in the current short window of the most suitable
sensor is detected, and the intervals between peaks are calculated. The short analysis window then
jumps to the next start point. To prevent the case in which the peak may be located at the edge of the
window, the next start point was set by considering the location of the last peak in the current window
(for example, location of last peak + 0.2 s, as also shown in Figure 4c).

2.3.3. Performance Evaluation

To evaluate the performance of the developed algorithm, the peak information from both
the ECG and the respiratory signals (from the chest belt sensors) were labeled by researchers.
An internally developed MATLAB-based software tool featuring automatic peak detection, manual
peak marking, and correction was used in this peak annotation process. Information about the peak
locations and derived intervals between peaks were used as a standard reference in the following
performance evaluation.

First, the reliability of the proposed algorithm with respect to the beat locations was assessed
using the following quantitative indexes. For the heartbeat location, we defined the beat location
evaluation area that ranges from R peak location ´0.15 s to R peak location +0.35 s. The beat location
evaluation area considered the different peak timings derived from a dissimilar signal source, ECG
(electrical signal), and BCG (mechanical signal). If the closest load-cell-derived heartbeat was within
this beat location evaluation area, it was denoted as a true positive (TP), i.e., it was correctly detected
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by the proposed algorithm. Other unassigned load-cell-derived heartbeats were counted as false
positives (FPs). When no heartbeats were within the beat location evaluation area corresponding to an
R peak in the ECG, it was counted as a false negative (FN). This process was similarly applied to the
load-cell-derived respiratory signals. However, the beat location evaluation area for BR analysis was
set to range from respiratory peak location ´0.45 s to respiratory peak location +1.05 s.

Figure 9 shows a comparison between the manually annotated peak locations and the automatic
peak detection results of the load-cell sensor signal given by the developed algorithm. The detection
rate (Dr) and positive predictive value (PPV) were calculated as follows:

Dr “
TPpfrom load´cell signalq

Total number of beatpECG or Chest beltq
ˆ 100 p%q (6)

PPV “
TP

TP` FP
ˆ 100 p%q (7)
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Figure 9. Manually annotated peak locations and automatic peak detection results of the load-cell
sensor signal obtained by the developed algorithm in (a) HR analysis and (b) BR analysis (definitions
of TP, FP, and FN are illustrated).

Second, the adequacy of the proposed algorithm with respect to regular HR or BR monitoring
was evaluated. Our proposed algorithm uses a short analysis window of 5-s and 30-s lengths for HR
and BR, respectively. For each non-overlapping 5-s (30-s) window, the difference and error between
the mean HR (BR) derived from the load-cell sensor signal during that window and that derived from
the ECG (respiratory signal from chest belt sensor) was computed. These differences and errors were
then aggregated during each experiment. Finally, for each experiment, the mean absolute difference
and mean absolute error were reported.

The coverage denotes the percentage of the signal that is automatically classified as clean.
As mentioned above, to obtain reliable HR and BR signals from load-cell sensors, periods with
poor signal quality are discarded during the signal quality check and optimum sensor selection step.
The coverage was calculated as follows:

coverage p%q “
periods with clean signal psq

Total periods of the experiment psq
“

Total periods of experiment psq ´ periods with artifact signal psq
Total periods of the experiment psq

(8)

3. Results

We analyzed 13 records from four infant participants. The signals collected from the load-cell
sensors include the components caused by cardiac activity and respiratory movement. To analyze
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the biological information, we also developed a MATLAB-based automatic algorithm that has been
validated experimentally.

Tables 3 and 4 show the results of the developed algorithm with respect to the beat locations
for each experiment (see Section 2.3.3). The algorithm achieved an average detection rate of 76.16%
(Table 3, HR) and 89.35% (Table 4, BR) and an average positive predictive value of 99.07% (Table 3, HR)
and 96.22% (Table 4, BR).

Table 3. Performance evaluation results with respect to the beat locations in HR analysis.

Records Time
(min)

Total Beat
(ECG)

Total Beat
(Load-Cell) TP FP FN FN *

(Inevitable)
Detection

Rate PPV

A-1 12 995 677 666 11 329 141 66.93 98.38
A-2 20 1785 1754 1748 6 37 3 97.93 99.66
A-3 25 2298 1754 1730 24 568 288 75.28 98.63
A-4 30 2868 1368 1327 41 1541 1027 46.27 97.00
A-5 30 2270 2122 2120 2 150 107 93.39 99.91
B-1 10 1114 444 435 9 679 307 39.05 97.97
B-2 20 1968 1034 1009 25 959 453 51.27 97.58
B-3 90 8651 7624 7566 58 1085 546 87.46 99.24
C-1 11.9 1153 1063 1053 10 100 18 91.33 99.06
C-2 178.8 18,481 15,399 15,244 155 3237 1402 82.48 98.99
C-3 30 3235 2884 2867 17 368 114 88.62 99.41
C-4 72 7874 5549 5516 33 2358 1101 70.05 99.41
D-1 33 3598 1603 1592 11 2006 1962 44.25 99.31

Total 562.7 56,290 43275 42,873 402 13,417 7469 76.16 99.07

*: FN (inevitable) represents the number of FN results that inevitably occur in an area determined to be
an artifact.

Table 4. Performance evaluation results with respect to the beat locations in BR analysis.

Records Time
(min)

Total Beat
(Chest Belt)

Total Beat
(Load-Cell) TP FP FN FN *

(Inevitable)
Detection

Rate PPV

A-1 12 Respiration was not recorded in these experiments

A-2 20 396 379 377 2 19 0 95.20 99.47
A-3 25 509 452 445 7 64 0 87.43 98.45
A-4 30 344 262 230 32 114 0 66.86 87.79
A-5 30 504 490 472 18 32 0 93.65 96.33

B-1 10 Respiration was not recorded in these experiments

B-2 20 284 275 248 27 36 0 87.32 90.18
B-3 90 1598 1575 1480 95 118 0 92.62 93.97
C-1 11.9 301 273 271 2 30 0 90.03 99.27
C-2 178.8 2699 2521 2409 112 290 0 89.26 95.56
C-3 30 865 789 779 10 86 0 90.06 98.73
C-4 72 1779 1580 1551 29 228 0 87.18 98.16
D-1 33 824 786 765 21 59 0 92.84 97.33

Total 540.7 10,103 9382 9027 355 1076 0 89.35 96.22

*: FN (inevitable) results did not occur in BR analysis. Because the chest belt also consists of a force transducer,
the reference signal is simultaneously interfered by a motion artifact. (We could not label the respiratory peak
in both reference signals and load-cell signals.)

As in the case of many unobtrusive monitoring, the signals acquired by our load-cell system
are prone to high-grade noise. The main artifacts are related to movement, which is an inevitable
consequence of physiological monitoring. Thus, the most important aspect of signal analysis using
unobtrusive sensors is to classify the good-quality signals. In our results, FN is defined as the failure
to detect an existing ECG or respiratory peak. It is assumed that most FNs were the result of our
algorithm automatically determining an analysis window to be a noise signal and discarding all peaks
included in the window. We additionally investigate how FN results inevitably occur in the artifact
area and are denoted as FN (inevitable).
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However, the number of FPs and FNs gives a limited indication of the accuracy of the estimated
HR and BR. We estimate that FN and FP directly affect the lengths of their neighboring beat-to-beat
intervals. Therefore, the overall quality of the estimated HR and BR monitoring was assessed by the
mean difference and error in computing the intervals extracted from the load-cell sensors and the
corresponding intervals given by the reference equipment.

Tables 5 and 6 show the adequacy of the proposed algorithm with respect to regular HR or BR
monitoring. On average, 73.79% and 84.25% of each signal was identified as being artifact-free and
usable for HR or BR estimation, respectively. The results indicate that the mean errors of the estimated
HR averaged over 5 s and the estimated BR averaged over 30 s were 2.55% and 2.66%, respectively.

Table 5. Comparison of HRs calculated from commercial device and proposed device.

Records Time
(min)

Window
(Number) **

Coverage
(%)

Mean HR from
ECG (bpm)

Mean HR from
Load-Cell (bpm)

Mean Difference
* (bpm)

Mean Absolute
Error * (%)

A-1 12 102 67.02 83.33 83.92 2.25 2.66
A-2 20 250 98.39 89.29 89.46 1.07 1.18
A-3 25 250 78.99 90.70 89.45 2.35 3.14
A-4 30 202 52.61 89.65 86.64 3.96 5.24
A-5 30 328 89.19 83.45 83.36 0.68 0.83
B-1 10 52 41.91 110.31 106.15 5.19 5.82
B-2 20 137 54.29 96.44 95.44 2.67 3.05
B-3 90 1026 89.71 95.17 94.66 1.47 1.69
C-1 11.9 137 92.18 96.84 97.14 1.38 1.43
C-2 178.8 1928 85.82 101.66 100.53 2.24 2.58
C-3 30 339 90.02 106.90 106.90 0.90 0.87
C-4 72 655 72.54 107.17 106.53 1.95 1.94
D-1 33 193 46.61 106.47 105.13 2.52 2.66

Average 43.28 430.69 73.79 96.72 95.79 2.20 2.55

*: Between HRs from ECG and BCG from load-cell data; **: Total number of short analysis windows that were
used for HR analysis.

Table 6. Comparison of BRs calculated from commercial device and proposed device.

Records Time
(min)

Window
(Number) **

Coverage
(%)

Mean BR from
Chest Belt (bpm)

Mean BR from
Load- Cell (bpm)

Mean Difference
* (bpm)

Mean Absolute
Error * (%)

A-1 12 Respiration was not recorded in these experiments

A-2 20 40 97.53 19.81 19.80 0.19 0.96
A-3 25 46 88.75 20.32 20.31 0.32 1.58
A-4 30 29 46.77 17.57 18.41 0.95 4.75
A-5 30 54 85.87 18.57 18.80 0.33 1.74

B-1 10 Respiration was not recorded in these experiments

B-2 *** 20 27 78.31 19.48 20.88 1.65 7.82
B-3 90 163 87.95 19.17 19.75 0.63 3.08
C-1 11.9 22 92.94 25.23 25.22 0.06 0.24

C-2 *** 178.8 200 82.36 25.80 25.68 0.60 2.42
C-3 30 56 91.04 29.28 28.91 0.71 3.07
C-4 72 128 85.76 25.22 25.28 0.31 1.21
D-1 33 61 89.49 26.17 26.27 0.62 2.37

Average 49.15 75.09 84.25 22.42 22.66 0.58 2.66

*: Between BRs from chest belt and respiratory signal from load-cell data; **: Total number of short analysis
windows that were used for BR analysis; ***: There was slight signal loss in the reference breathing signal. These
sections were excluded in the analysis.

Some other related results cited in the literature are summarized in Table 7. However, it is
impossible to make an objective comparison between our results and those in Table 7, which were
obtained under different experimental circumstances. In particular, most of the results (Records 02–07)
were obtained from adult subjects. The differences in subject details, recording times, and sensors used
in the study are represented in this table.
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Table 7. Performance summary of other related works.

Record Subjects and Detail Sensor
Average

Recording
Time (min)

HR or BR Mean Coverage
(%)

Mean
Difference

(bpm)

Mean Absolute
Error (%) Reference

01 1822 ˘ 20 g of 5 premature infants (M = 1, F = 4) PVDF 10
HR - - 4.41

[9]BR - - 8.24

02 26.5 ˘ 0.7 year of 2 adults (M = 1, F = 1) PVDF, EMFi 10 HR - 1.75 ˘ 1.09 - [21]

03 29 ˘ 5 year of 16 adults (M = 9, F = 7) Strain gauges 26.6 HR 95.94 ˘ 1.28 - 1.79 ˘ 0.86 [22]

04 23–40 year of 13 adults (M = 13) Air cell 5
HR - 0.68 ˘ 0.77 0.98 ˘ 0.49

[23]BR - 0.50 ˘ 0.63 2.85 ˘ 1.15

05 49–68 year of 28 adults (M = 15, F = 13) PVDF 540 HR 92.7 - 1.06 [24]

06
32.8 ˘ 13.4 year of 8 healthy adults (M = 1, F = 7)

EMFi
420 HR 84.53 ˘ 5.14 - 0.61 ˘ 0.21

[25]
47.0 ˘ 13.1 year of 25 insomnia patients (M = 13, F = 12) 393 HR 68.90 ˘ 15.33 - 0.83 ˘ 0.37

07 25.69 ˘ 7.13 year of 13 adults (M = 13) PVDF 10
HR - 0.61 ˘ 0.36 0.99 ˘ 0.56

[5]BR - 0.48 ˘ 0.35 3.65 ˘ 2.89

This study Load-cell
43.3 HR 73.79 ˘ 19.37 2.20 ˘ 1.26 2.55 ˘ 1.54
49.2 BR 84.25 ˘ 13.45 0.58 ˘ 0.44 2.66 ˘ 2.11
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4. Discussion and Conclusions

After the basic concept of BCG was introduced in 1877, unobtrusive physiological measurement
using BCG technology has become an interesting topic that has attracted much research attention.
Recently, a review of numerous studies on BCG has been presented in [4]. However, it is rare to
find studies that have focused on monitoring the biological signals of infants. As mentioned in the
introduction section, BCG technology could play a more important role when applied to infants who
are difficult to confine physically. We believe that the proposed device and algorithm presented herein
are essential for realizing the unobtrusive monitoring of infants.

In this study, we developed a load-cell installed bed to measure the cardiac activity, respiration,
and movement of infants, as illustrated in Figure 1. The basic concepts of the present system, including
the load-cell’s arrangement and the circuit design, are based on our former system [14,15]. However,
the detailed hardware specifications differ to account for the relatively low weight of the infant subjects.
At the beginning of our study, we attempt to revamp an existing monitoring system. This system was
built with four load-cell sensors (MNC-100L, CAS, Yangju-si, Gyeonggi-do, Korea) installed under the
legs of the bed. The capacity of the load-cell was 100 kg, and its rated output is 2 mV/V. Although it
was well suited for detecting the subtle body vibrations of adults, we could not discern any useful
signal for applying the same system to infants. We suppose that the high capacity of the load-cell for
covering the entire weight, including that of the bed, leads to lower sensitivity, which is not appropriate
for measuring the subtle body vibrations of infants. Considering the few characteristics that affect the
load-cell sensitivity (see Section 2.1), it is relatively easy to reduce the capacity of the load-cell. We
designed a simple load-cell system (capacity of 6 kg) while retaining the essential functions, thus we
expect a theoretical system capacity of only 24 kg for realizing an improvement in the sensitivity. In the
commercialization stage, we plan to incorporate our developed device into the body of a commercial
infant’s bed.

We could finally measure cardiac and respiratory signals by using load-cell sensors. Figure 3
shows a partial example of the monitored signals measured from a 19-month-old male subject.
According to the observational record, the subject lay down in bed in a somewhat diagonal direction.
His head was located near sensor 1, the region of the right shoulder and heart was located near sensor
2, the region of the hip and right leg was located near sensor 3, and the left leg was located near the
middle of sensors 3 and 4 (please refer to the sensor locations in Figure 1a). Because the chest and
stomach are biased to the region of sensors 2 and 3, the respiratory signals are observed as relatively
distinct shapes in the corresponding channels. Furthermore, there are phase differences in the recorded
respiratory signals between sensors 2 and 3. As already discussed in several literatures, the respiration
signals could have phase differences caused by the different movement directions depending on the
longitudinal arrangement of sensors [26]. As mentioned above, sensors 2 and 3 are located near the
chest and stomach, respectively. Thus, different timings of expansion and contraction of the stomach
and thorax are reflected in the signal [27].

The amplitudes of the BCG signals vary depending on their location, and the BCG waveform
recorded from sensor 2 shows maximum IJ amplitude (Figure 3h). Because sensor 2 is the nearest
to the heart, it can be assumed that the distance between the vibration source and the sensor affects
the signal attenuation. Clean BCG waveforms are observed in the signal from sensor 1, and these
are particularly less interfered by respiratory movements. In the experiment, the subject’s head was
located near sensor 1; we assume that this posture feature is related to the phenomena. We assume that
the location of the head affects the interference of the respiratory movement. The relative dominance
of cardiac fluctuations in the area near the head is often found from our past experiences, even
research approaches for embedding force transducers in pillows to monitor cardiac cycles have been
reported [28].

The biggest challenge in monitoring the heart rate using BCG technology is finding features.
Because it is generally known that the J peak has the largest amplitude, algorithms for estimating the
heart rate by detecting the J peak have been developed. However, unlike an ECG signal having one
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special fiducial point, that is, QRS complex, the several waveform peaks of the BCG signal (labeled H
through N) have similar size and shape. Furthermore, because the BCG signal waveform varies a lot
depending on the sensor used and the position at which it was measured, it is not easy to develop
a robust algorithm that considers all these characteristics. Brüser et al. developed and verified a
new algorithm that can measure the beat-to-beat interval that corresponds to a heartbeat, unlike the
conventional method for finding the location of the J peak [25]. It is difficult to expect the J peak to
be dominant for an infant BCG signal processed in this study because of the nature of a premature
heart. We also thought that it was more important to find the corresponding interval to obtain the
correct average heartbeat rate instead of finding the exact location of the J peak. Thus, we developed a
modified algorithm based on Brüser’s method.

In this study, the sensor selection process that detects valid signals from multiple sensors
was considered important, unlike in previous studies. By combining the advantages of existing
methods [5,29], we developed an automatic sensor selection method using an indicator that can
estimate the artifact level using the auto correlation coefficient value and area rate of PSD. We assessed
the coverage and mean relative error of experiments by varying the threshold value of the indicator
that decides the artifact level. There is a trade-off: if the threshold value is set high, the error as well
as the coverage decrease because of the increased number of dropped signals. The threshold value
from our empirical experience based on the result of this study is 0.65 for HR analysis and 1.25 for
BR analysis.

The performance of our algorithm was evaluated using experimental results, and it is summarized
in Tables 3–6. Tables 3 and 4 show the result of evaluating how precisely the algorithm can detect the
peak location in terms of TP, FP, and FN. The peak was detected at 76.16% and 89.35% in contrast to the
reference signal (ECG for heartbeat and chest-belt for respiration, respectively). The increased number
of FNs in HR analysis is inevitable because of the nature of the algorithm, which automatically runs the
entire process of checking the quality and selecting the optimum sensor. In fact, the inevitable number
of FNs that occurred in the area determined to be an artifact area was around 55% (=7469/13,417) of
the total number of FNs in the HR analysis. This serves as contrasting evidence that only a clear signal
was analyzed using a strict standard that is underpinned by high PPV values. Apart from traditional
methods for finding the location of the J peak, the detected beat-to-beat intervals that correspond
to the heartbeat and respiratory cycle were evaluated by averaging the error of the preset window.
The averaged relative differences and errors are summarized in Tables 5 and 6 respectively.

We also summarized several related studies in Table 7. The application of BCGs to infants is very
rare, and it is difficult to directly compare our method with other BCG-based techniques applied to a
similar group of subjects. Erkinjuntti et al. reported the feasibility of the static charge sensitive bed
method for the monitoring of around 40 neonates [16]. However, they showed just a partial example
of the simultaneous recording of signals and did not present algorithms for HR and BR analysis. Wang
et al. investigated a piezoelectric film (PVDF) sensor system; however, their experiments only lasted
10 min on average, and their method showed only mean peak detection errors including FP and FN.
Thus, we could estimate the accuracy of the estimated HR and BR signals to have mean errors of 8.24%
and 4.41%, respectively [9]. For adults, BCG-derived HR and BR measurements have achieved lower
errors than in our study. Other sensors such as a static charge sensor, piezoelectric sensor (PVDF and
EMFi), acceleration sensor, and optical sensor have been used for detecting BCG signals when lying
down in bed. A direct comparison is difficult because each method has its own advantages. However,
because the load-cell sensor used in this study has the stability in terms of long-term monitoring with
high accuracy as well as can simultaneously detect static/dynamic changes, we decided that it was
suitable for monitoring the biological signals of infants for a long period of time when they were lying
in bed. Studies for comparing the features of various sensors processed with standardized conditions
in a controlled situation are needed.

We designed a load-cell-based physiological signal monitoring bed for infants and investigated
whether BCGs and respiratory signals could be obtained accurately. By analyzing the data derived from
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13 experiments with four infants, we verified that the proposed BCG-based technology could estimate
both HR and BR information with average errors of 2.55% and 2.66%, respectively, compared with
reference equipment. Although our results demonstrate that the proposed method shows acceptable
performance, there are two main limitations in our study—insufficient recording time and too few
measurements. Future research projects should increase the number of subjects in the experiment and
extend the age distribution. The recording times should be increased to cover various occurrences
of all possible types and combinations of movements during sleep and wakefulness. However,
despite these limitations, the preliminary results provide a positive feasibility for future studies of
BCG-based measurements in infants. We believe that the proposed device and algorithm presented
here are essential steps toward substantiating the unobtrusive physiological measurement for infants.
The proposed technology could be used for the continuous observation of infants, especially to detect
respiratory distress and cardiac abnormalities. Also we expect extensive applications in the field of
sleep research for analyzing sleep efficiency and structures of infants.
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