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Abstract: A novel multi-class classification method for bacteria detection termed quantum-behaved
particle swarm optimization-based kernel extreme learning machine (QPSO-KELM) based on an
electronic nose (E-nose) technology is proposed in this paper. Time and frequency domain features
are extracted from E-nose signals used for detecting four different classes of wounds (uninfected
and infected with Staphylococcu aureus, Escherichia coli and Pseudomonas aeruginosa) in this experiment.
In addition, KELM is compared with five existing classification methods: Linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA), extreme learning machine (ELM), k-nearest neighbor
(KNN) and support vector machine (SVM). Meanwhile, three traditional optimization methods
including particle swarm optimization algorithm (PSO), genetic algorithm (GA) and grid search
algorithm (GS) and four kernel functions (Gaussian kernel, linear kernel, polynomial kernel and
wavelet kernel) for KELM are discussed in this experiment. Finally, the QPSO-KELM model is
also used to deal with another two experimental E-nose datasets in the previous experiments.
The experimental results demonstrate the superiority of QPSO-KELM in various E-nose applications.

Keywords: electronic nose; feature extraction; kernel extreme learning machine; quantum-behaved
particle swarm optimization

1. Introduction

An electronic nose (E-nose), combined with artificial intelligence algorithms, is designed for
mimicking the mammalian olfactory system to recognize gases and odors. The gas sensor array in an
E-nose comprises several non-specific sensors and will generate characteristic patterns when exposed
to odorant materials. Patterns of known odorants can be used to construct a database and train a
pattern recognition model through quite a few pattern recognition algorithms. In this way, something
unknown which can be discriminated by its odor is classified well [1–3]. During the past decades,
much work has been done to investigate the E-nose technology which has been widely used in a
multitude of fields, such as food quality control [4–7], disease diagnosis [8–11], environment quality
assessment [12,13] and agriculture [14–16].

Previous work has proved the effectiveness of detecting bacteria by investigating volatile
organic compounds (VOCs) emitted from cultures and swabs taken from patients with infected
wounds [17–19]. In the pattern recognition, firstly, training data are employed to train the classifier.
Then, the performance of this classifier is assessed by using the remaining independent testing
samples. The final accuracy can be computed by comparing predicted classes with their true classes.
So far, various kinds of classification models have been explored in E-nose applications, which can
generally be divided into two categories. One is the linear classifier, such as k-nearest neighbor
(KNN) [20–22], linear discriminant analysis (LDA) [23,24], partial least squares regression (PLSR) [25]
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and Bayes classifier [26,27], which is simple and relatively easy to construct but performs poor
when it deals with a host of nonlinear problems in E-nose data processing. Another is nonlinear
classification models such as the multilayer perceptron (MP) [28,29], radial basis function neural
network (RBFNN) [24,30] and decision tree (DT) [31]. The nonlinear classifiers can not only fully
approximate the nonlinear relationship of the data, but also show exceedingly strong robustness and
fault tolerance. However, they show slow convergence, require too much learning time and are liable
to get trapped in local optima.

Support vector machine (SVM) is a pretty promising machine learning method that has been
widely applied in classification of E-nose data, especially in some complex odor discriminations. It has
better results than many classifiers, not only in qualitative and quantitative analysis of E-nose results
but also in other applications [32–34]. Extreme learning machine (ELM), a fast learning algorithm for
single hidden layer feedforward neural networks (SLFNs), first proposed by Huang et al. [35], randomly
generates the hidden node parameters and then analytically determines the output weights instead
of iterative tuning. Therefore, ELM runs fast, is easy to implement and shows superiority over other
classifiers [36]. Nowadays, ELM has been widely used in a range of fields, such as sales forecasting [37],
mental tasks [38], face recognition [39] and food quality tracing [40]. However, the classification
performance is obviously affected by the algorithm parameters. Meanwhile, the randomly generated
input weights and hidden layer biases of ELM can make the algorithm unstable [41].

Kernel Extreme Learning Machine (KELM) is constructed based on ELM combined with kernel
functions in this paper considering the above limiting factors. It not only has a good deal of the
advantages of ELM, but also can nonlinearly map nonlinear inseparable patterns to a separable
high-dimensional feature space, which further improves the accuracy of discriminations. However,
due to the existence of kernel functions, KELM is sensitive to the kernel parameters settings. Thus,
the quantum-behaved particle swarm optimization (QPSO) is used to optimize the parameters of
KELM and in this paper and the QPSO-KELM method is applied to improving the classification
accuracy of wound infection detection. The results demonstrate that the proposed method can obtain
excellent classification performance in E-nose applications.

2. Materials and Experiments

The datasets used in the paper were obtained by a home-made E-nose, which details can be found
in our previous publication [42]. However, to make the paper self-contained, the system structure and
experimental setup are briefly repeated here.

2.1. E-Nose System

The sensor array in the research is constructed due to the high sensitivity and quick response
of the sensors to the metabolites of three different bacteria. The E-nose system consists of 15 sensors:
Fourteen metal oxide gas sensors (TGS800, TGS813, TGS816, TGS822, TGS825, TGS826, TGS2600,
TGS2602, TGS2620, WSP2111, MQ135, MQ138, QS-01 and SP3S-AQ2) and one electrochemical sensor
(AQ sensor). A 14-bit data acquisition system (DAS) is used as interface between the sensor array and
a computer. The DAS converts analog signals from sensor array into digital signals which are stored in
the computer for further processing.

2.2. Experimental Setup

Figure 1 shows the schematic diagram of the experimental system. It can be observed that the
E-nose system is composed of an E-nose chamber, a data acquisition system (DAS), a pump, a rotor
flowmeter, a triple valve, a filter, a glass wild-mouth bottle and a computer. The filter is used to purify
the air. The pump is used to convey the VOCs and clean air over the sensor array. The rotor flowmeter
is used to control the flow rate during the experiments. The three-way valve is used for switch between
VOCs and clean air. The experimental setup has also been mentioned in [33]. The experimental
procedure in this paper can be summarized as follows.
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Figure 1. Schematic diagram of the experimental system.

Each mouse was put in a big glass bottle with a rubber stopper. Two holes were made in the
rubber stopper with two thin glass tubes inserted. One longer glass tube was used as an exit pipe
and hung above the wound as close as possible while the shorter one was used as an intake-tube,
inserted into the glass a little and was close to the bottleneck. The gases which contained the VOCs of
the wound on the mouse outflowed along the longer glass tube and flowed into the sensor chamber.
The air flowed into the glass along the shorter glass tube. Each test process comprises three stages:
the baseline stage, the response stage and the recovery stage. In the baseline stage, the three-way valve
switched on Port 1 and the clean air purified by the filter flowed through the sensor chamber for 3 min.
In the response stage, the three-way valve switched on Port 2 and the gases containing the VOCs of
the wound flowed through the sensor chamber for 5 min. In the recovery stage, the three-way valve
switched on Port 1 again and the clean air flowed through the sensor chamber for 15 min. During the
three stages of one test, the DAS always sampled the data and stored them in the computer. After one
test and before the next one, for eliminating the influence of the residual odors, the sensor chamber
was purged by the clean air for 5 min and in the purging process the DAS did not sample the data.

Four groups of mice were tested in the research, including one control group and three groups
infected by Staphylococcu aureus, Escherichia coli and Pseudomonas aeruginosa, respectively. Twenty tests
for each groups of mice in the same conditions were made, and finally 80 samples for all four groups of
mice were collected from the above procedures. Figure 2 illustrates the sensor responses process when
they are exposed to four different target wounds, where X-axis is the response time of the sensors and
Y-axis is the output voltage of the sensors.
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3. Methodology

3.1. KELM

ELM [36,41,43–45] is designed as a single hidden layer feed forward network and has been proved
that its learning speed is extremely fast. It provides efficient unified solutions to generalized SLFNs,
whose hidden nodes can be any piecewise nonlinear function. KELM generalizes ELM from explicit
activation to implicit mapping function and produce better generalization in most applications. A brief
introduction of KELM is as follows:

Suppose there are N training samples (xi,ti) where xi = [xi1,xi2, . . . ,xin]T P Rn denotes one sample
point in the n-dimensional space and ti = [ti1,ti2, . . . ,tin]T P Rm is the sample class label. The SLFNs
and activation function are defined as:

oi “
L
ř

j“1
βjgjpxiq “

L
ř

j“1
βjgpwj ¨ xi ` bjq

wj “ rwj1, wj2, ¨ ¨ ¨ , wjns
T , βj “ rβ j1, β j2, ¨ ¨ ¨ , β jms

T , i “ 1, ¨ ¨ ¨ , N
(1)

where xi is the i-th sample, L is the number of hidden nodes, wj and βj denote the input weights to
the hidden layer and the output weight linking the j-th hidden node to the output layer respectively.
Meanwhile, bj is bias of the j-th hidden node and oi is the output vector of the input sample xi.

Then, this SLFN can approximate those N samples with zero error, which means that:

L
ÿ

i“1

||oi ´ ti|| “ 0 (2)

where ti is the sample class label vector of the input sample xi. That is to say, there exist βj, wj and bj
such that:

L
ÿ

j“1

βjgpwj ¨ xi ` bjq “ti (3)

This can be written as:
¨

˚

˝

gpw1 ¨ x1 ` b1q ¨ ¨ ¨ gpwL ¨ x1 ` bLq
...

. . .
...

gpw1 ¨ xN ` b1q ¨ ¨ ¨ gpwL ¨ xN ` bLq

˛

‹

‚

NˆL

¨

˚

˝

βT
1
...

βT
L

˛

‹

‚

Lˆm

“

¨

˚

˝

tT
1
...

tT
L

˛

‹

‚

Nˆm

(4)

Then, Equation (4) can be also written as matrix form:

Hβ “ T (5)

where H “

»

—

–

hpx1q
...

hpxNq

fi

ffi

fl

“

¨

˚

˝

gpw1 ¨ x1 ` b1q ¨ ¨ ¨ gpwL ¨ x1 ` bLq
...

. . .
...

gpw1 ¨ xN ` b1q ¨ ¨ ¨ gpwL ¨ xN ` bLq

˛

‹

‚

is hidden layer output matrix.

Then, training such an SLFN is equivalent to finding a least-square solution as follows:

β' “ H`T (6)

where H+ is the Moore-Penrose generalized inverse of the hidden layer output matrix H.
Huang et al. suggested adding a positive value 1/C (C is regularization coefficient) to calculate

the output weights as follows according to the ridge regression theory:

β “ HTp
1
C
`HHTq

´1
T (7)
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The output function for the SLFN is:

f pxiq “ hpxiqβ (8)

where h(xi) is the output of the hidden nodes and actually maps the data from input space to the
hidden layer feature space H.

Thus, substitute Equation (7) into Equation (8), the output function can be defined as follows:

f pxiq “

»

—

—

–

hpxiqhpx1q
T

...
hpxiqhpxNq

T

fi

ffi

ffi

fl

p
1
C
`HHTq

´1
T (9)

We define a kernel function k as:

klk “ kpxl , xkq “ hpxlqhpxkq
T (10)

and then a KELM can be constructed using the kernel function exclusively, without having to consider
the mapping explicitly.

We express this kernel function by Equation (11) for given classes p and q:

pklkqpq “ hpxp
l qhpx

q
kq

T
(11)

Let K be a N ˆ N matrix and K = (Kpq)p = 1,2, . . . ,S, q = 1,2, . . . ,S where Kpq, is a matrix composed of
inner the product in the feature space:

K “ pKpqq p “ 1, 2, . . . , S
q “ 1, 2, . . . , S

, Kpq “ pklkq l “ 1, 2, . . . , Np

k “ 1, 2, . . . , Nq

(12)

where S is the number of the total classes, Np and Nq are the number of the samples in p-th and q-th
classes respectively, Kpq is a (Np ˆ Nq) matrix and K is a symmetrical matrix such that KT

pq “ Kpq.
We can define the kernel matrix K = HHT from Equation (10) and the output function of KELM

can be written as:

f pxiq “

¨

˚

˝

Kpxi, x1q
...

Kpxi, xNq

˛

‹

‚

T

p
1
C
`Kq

´1
T (13)

Some common kernel functions including linear kernel function, polynomial kernel function,
Gaussian kernel function, wavelet kernel function are applied. Kernel parameters of the kernel
functions, together with regularization coefficient C in Equation (13) will be optimized by QPSO.
In this way, the index of the output node with the highest output value is considered as the label of the
input data [44].

3.2. QPSO-KELM Model

It is well known that the parameters in algorithms will affect the performances. Therefore,
QPSO [46] is used to optimize the value of C in Equation (10) and parameters of the kernel function.
The dimension of searching space is corresponding to the number of parameters of KELM with different
kernel functions, and the position of each particle represents the parameter values of kernel functions.
Because the best generalization performance of KELM can be optimized by QPSO, the testing accuracy
can be used as the fitness function of QPSO. The specific steps of QPSO-KELM are described as follows.
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Step 1: Normalize all the dataset extracted from the E-nose signals into the range [0,1] and the
number of iterations and the population size are set as 30 and 400.

Step 2: Initialize the position and local optimal position of each candidate particle, as well as global
best position of the swarm.

Step 3: Calculate each particle’s fitness value according to the fitness function. Update the local
optimal positions and global best position.

Step 4: Update the position of each candidate particle in each iteration, which can be calculated by
Equation (13).

Step 5: Check the termination criterion. If the maximum number of iterations is not yet reached,
return to Step 3 or else go to the Step 6.

Step 6: The best combination of parameters of the kernel function can be acquired, which result in
the maximal fitness value.

The flowchart of this procedure is illustrated in Figure 3.
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4. Results and Discussion

Different features which are able to effectively represent the response of sensors are extracted
from the time domain and frequency domain in order to evaluate the effectiveness of the proposed
model. The peak value, the integral in the response stage, coefficients of Fourier coefficients (the DC
component and first order harmonic component), and approximation coefficients of db1 wavelet of
sensor response curve are chosen to be on behalf of the characteristics of E-nose signals from two
transform domains [47–50]. Then, leave-one-out cross validation (LOO-CV) method is employed to
evaluate the performances of different methods in this experiment for making full use of the data set.
Another five classification models, namely ELM, SVM, KNN, LDA and quadratic discriminant analysis
(QDA), are applied for comparison with KELM. ELM is an algorithm for single-hidden layer feed
forward networks training that leads to fast networking requiring low human supervision. The main
idea in ELM is that the network hidden layer parameters need not to be learned, but can be randomly
assigned. The only parameter is the number of hidden nodes in the hidden layer of SLFN, which is
normally obtained by a trial and error method. Thus, the input weights are within (´1, 1) and the
hidden layer biases are within (0, 1). 100 experiments were carried out according to the number of
hidden nodes in the hidden layer from 1 to 100. Because the input weights and the hidden layer biases
were chosen randomly, this experiment was repeated for 100 times. The best performance of all results
will be regarded as the final classification results of ELM. For SVM, LIBSVM is employed in this paper,
which is devolved by Chang and Lin [51].
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KNN requires two parameters to tune: The number of neighbor k and the distance metric. In this
work, the values of k vary from 1 to 20, and several distance metrics which are used are Euclidean
distance, cityblock distance, cosine distance and correlation distance. The best classification accuracy
of different values of k and distance metrics will be regarded as the final results of the KNN.

Tables 1–4 list the classification results of the four feature extraction techniques and five
classification models. The kernel function of KELM is set to Gaussian kernel. The bold type numbers
in diagonal indicate the number of samples classified correctly, while others indicate the number of
samples misclassified.

It can be observed from the above four tables that the classification accuracy of the four wounds
is influenced both by different features and classification models. In general, features extracted from
frequency domain can achieve better results, while features extracted from time domain do worse.
It can be also seen that the classification effect of wavelet coefficients feature works best no matter
what kinds of classifier are used, while peak value feature is just performs worst. QPSO-KELM
always performs better than other four classifiers regardless of what kinds of features are used. SVM
is invariably performs better than rest three classifiers as well. For wounds uninfected, the best
performance is achieved when the wavelet feature is put into the QPSO-KELM model, where there is
no sample misclassified; for wounds infected with Staphylococcu aureus, QPSO-KELM performs best
when the peak value is used as the feature, in which there is only one sample misclassified; for wounds
infected with Escherichia coli, the highest classification accuracy is achieved by QDA with the feature
of Fourier coefficients; for wounds infected with Pseudomonas aeruginosa, QPSO-KELM achieves best
when features are integral value and wavelet coefficients.

Figures 4 and 5 show the variation of the classification rate with the number of hidden nodes in
the hidden layer of ELM and the k value of KNN for the priority to classification of wavelet coefficients
feature. Figure 4 shows only the classification results of one of the 100 repeated experiments to display
the change process with the number of hidden nodes in the hidden layer varying from 1 to 100. It can
be clearly seen that the classification rate gradually improves with the number of hidden nodes from
1 to 34 and from 79 to 96 from the Figure 4, while the classification rate gradually declines with the
number of hidden nodes from 55 to 79. Moreover, ELM can achieve the best classification accuracy of
85% when is the number of hidden nodes are 45, 51 and 55.

Figure 5 manifests that the classification rate gradually declines as the k value increases on the
whole. For different distance metrics, the cityblock distance performs worst except k = 8, 10, 20.
Meanwhile, the cosine distance can achieve the best classification accuracy of 86.25% at the start stage
and performs best as well at the last stage.

Another three traditional optimization methods are also investigated and used to devaluate the
effectiveness of the proposed model when wavelet coefficients are used as features. PSO [52], Genetic
algorithm (GA) [53,54] and Grid search algorithm (GS) are employed to optimize parameters of KELM.
For GA and PSO, the maximum number of iterations and the population size are also 400 and 30,
respectively, which is the same as those of QPSO. For GS, the ranges of the model parameters are set
according to [44].

The range of the cost parameter C and the kernel parameter of the Gaussian kernel function are
both [2–25,225], and the step length is set as 20.5. Their classification performances are shown in Table 5.
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Table 1. Classification results of peak value.

Class

Predicted as *

KELM ELM SVM LDA KNN QDA

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 17 3 0 0 16 3 0 1 16 4 0 0 14 6 0 0 16 4 0 0 15 3 0 2
2 1 19 0 0 4 14 2 0 5 15 0 0 9 11 0 0 2 17 1 0 3 16 1 0
3 1 1 16 2 0 0 14 6 0 0 17 3 1 0 16 3 0 3 15 2 0 4 13 3
4 1 0 2 17 0 1 2 17 0 0 4 16 0 0 5 15 1 1 2 16 2 0 3 15

Total 86.25% 76.25% 80.00% 70.00% 80.00% 73.75%

* 1, No-infection; 2, Staphylococcu aureus; 3, Escherichia coli; 4, Pseudomonas aeruginosa, similarly hereinafter.

Table 2. Classification results of integral value.

Class

Predicted as *

KELM ELM SVM LDA KNN QDA

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 17 3 0 0 15 4 1 0 15 5 0 0 13 7 0 0 17 3 0 0 16 3 1 0
2 3 17 0 0 6 13 1 0 4 16 0 0 8 12 0 0 2 18 0 0 2 14 4 0
3 1 0 18 1 0 1 17 2 0 0 17 3 1 0 17 2 0 3 15 2 0 0 17 3
4 0 0 0 20 0 0 3 17 0 0 2 18 0 0 4 16 0 1 6 13 0 0 4 16

Total 90.00% 77.50% 82.50% 72.50% 78.75% 78.75%
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Table 3. Classification results of Fourier coefficients.

Class

Predicted as *

KELM ELM SVM LDA KNN QDA

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 19 1 0 0 17 3 0 0 17 3 0 0 16 4 0 0 17 3 0 0 18 2 0 0
2 2 18 0 0 2 18 0 0 2 18 0 0 3 17 0 0 1 19 0 0 0 15 5 0
3 0 0 18 2 0 2 16 2 1 1 16 2 0 0 16 4 0 1 18 1 0 0 19 1
4 0 0 2 18 0 0 4 16 0 0 1 19 0 0 4 16 1 1 1 17 0 0 5 15

Total 91.25% 83.75% 87.50% 81.25% 88.75% 83.75%

Table 4. Classification results of wavelet coefficients.

Class

Predicted as *

KELM ELM SVM LDA KNN QDA

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 20 0 0 0 15 4 1 0 17 3 0 0 17 3 0 0 17 3 0 0 20 0 0 0
2 2 18 0 0 2 18 0 0 3 17 0 0 5 15 0 0 3 17 0 0 1 17 2 0
3 1 0 18 1 0 0 18 2 0 0 18 2 1 0 18 1 0 0 18 2 0 0 17 3
4 0 0 0 20 0 1 2 17 0 0 1 19 0 0 2 18 0 0 3 17 0 0 6 14

Total 95.00% 85.00% 88.75% 85.00% 86.25% 85.00%
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Table 5. Comparison with different optimization methods for KELM.

Class

Predicted as *

QPSO PSO GA GS

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 20 0 0 0 18 2 0 0 18 2 0 0 17 1 0 2
2 2 18 0 0 3 17 0 0 3 17 0 0 2 18 0 0
3 1 0 18 1 0 0 19 1 0 0 19 1 1 0 17 2
4 0 0 0 20 0 0 3 17 0 0 4 16 1 0 2 17

Total 95.00% 88.75% 87.50% 86.25%

It is obviously that the QPSO-KELM model obtains 95% classification rate, while other traditional
methods perform worse than the proposed model from Table 5, especially that it is all predicted
correctly for wounds uninfected and wounds infected with Pseudomonas aeruginosa. QPSO-KELM,
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PSO-KELM, GA-KELM and GS-KELM can only achieve 88.75%, 87.5% and 86.25% classification
rates, respectively.

It is well known that the choice of kernel function plays a crucial role in recognition and
generalization capability. Thus, in order to further explore the effects of different kernel functions
on the QPSO-KELM model, the effects of four kinds of common kernel functions combined with
wavelet features are investigated in this experiment. Their classification performances of different
kernel functions are shown in Table 6.

Table 6. Classification results of four kernel functions used in the QPSO-KELM model.

Class

Predicted as *

Gaussian Linear Polynomial Wavelet

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 20 0 0 0 18 2 0 0 18 2 0 0 19 1 0 0
2 2 18 0 0 2 18 0 0 2 18 0 0 2 18 0 0
3 1 0 18 1 0 0 17 3 1 0 18 1 1 0 18 1
4 0 0 0 20 0 0 5 15 0 0 1 19 0 0 1 19

Total 95.00% 85.00% 91.25% 92.50%

It can be clearly concluded that the QPSO-KELM model with Gaussian kernel function performs
best from Table 6, while the linear kernel function achieves the worst accuracy. Meanwhile,
the performance of the polynomial kernel function is close to that of wavelet kernel function,
which achieves 91.25% and 92.50% respectively. It means that the proposed model performs best in all
of the above methods.

We also use the proposed model to deal with another two experimental E-nose datasets: (1) dataset
of an E-nose which recognizes seven bacteria: Pseudomonas aeruginosa, Escherichia coli, Acinetobacter
baumannii, Staphylococcu aureus, Staphylococcus epidermidis, Klebsiella pneumoniae and Streptococcus
pyogenes. The classification results of various classification models based on steady-state signals of
sensors are shown in Table 7. More details concerning the experiment can be found in [55]; (2) dataset
of an E-nose which detects six indoor air contaminants including formaldehyde (HCHO), benzene
(C6H6), toluene (C7H8), carbon monoxide (CO), ammonia (NH3) and nitrogen dioxide (NO2) and
classification results are also shown in Table 8. More details include dataset generation regarding the
experiment can be found in [56].

Table 7. Accuracy results of various feature extraction techniques and classification models for
datasets in [55].

Class
Accuracy Rate (%)

KELM SVM ELM KNN LDA QDA

Pseudomonas aeruginosa 100.00 100.00 80.00 100.00 100.00 100.00
Escherichia coli 100.00 100.00 100.00 100.00 100.00 90.00

Acinetobacter baumannii 100.00 100.00 90.00 90.00 90.00 100.00
Staphylococcu aureus 100.00 90.00 90.00 80.00 90.00 90.00

Staphylococcus epidermidis 100.00 100.00 100.00 100.00 100.00 100.00
Klebsiella pneumoniae 100.00 90.00 100.00 80.00 80.00 70.00
Streptococcus pyogenes 100.00 80.00 90.00 60.00 60.00 60.00

Average 100.00 94.29 92.86 87.14 88.57 87.14
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Table 8. Accuracy results of various feature extraction techniques and classification models for
datasets in [56].

Class
Accuracy Rate (%)

KELM SVM ELM KNN LDA QDA

HCHO 94.23 94.23 92.31 90.38 94.23 63.46
C6H6 90.91 87.88 72.73 75.76 57.58 87.88
C7H8 100.00 100.00 100.00 100.00 100.00 100.00
CO 100.00 91.67 100.00 91.67 83.33 100.00

NH3 70.00 60.00 70.00 70.00 80.00 80.00
NO2 100.00 100.00 66.67 66.67 83.33 83.33

Average 92.52 88.96 83.62 82.41 83.08 85.78

It can be clearly concluded that the proposed QPSO-KELM model achieves the best classification
accuracy among all of the above classification models for different datasets. The KELM achieves the best
recognition performance of 100% for the dataset in [55] and can also obtain the best recognition accuracy
except the recognition rate 70% of NH3 for the dataset [56]. It demonstrates that the QPSO-KELM
approach has outstanding generalized performance with other datasets, which efficacy does not
depend on a particular dataset.

5. Conclusions

In this paper, a new methodology based on the QPSO-KELM model has been presented to enhance
the performance of an E-nose for wound infection detection. Four kinds of features extracted from the
time and frequency domains have been developed to demonstrate the effectiveness of this classification
model for four different classes of wounds. It first introduces the kernel method based on extreme
learning machine into the E-nose application of this paper, which provides a new idea for signal
processing of E-nose data. Moreover, this paper also provides a good solution for the optimization
of kernel function parameters by QPSO, which is a contraction mapping algorithm that outperforms
ordinary optimization algorithms in the rate of convergence and convergence ability. Experimental
tests have been carried out to verify that the proposed QPSO-KELM model can lead to a higher
accuracy rate and manifest that the QPSO-KELM model can obviously enhance E-nose performance
in various applications. The model in this study also provides an efficient approach in applications
related to classification or prediction, not only in E-nose applications, but also in other uses.
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