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Abstract: Because the existing extremum ratio method for projectile attitude measurement is
vulnerable to random disturbance, a novel integral ratio method is proposed to calculate the
projectile attitude. First, the non-orthogonal measurement theory of the magnetic sensors is analyzed.
It is found that the projectile rotating velocity is constant in one spinning circle and the attitude
error is actually the pitch error. Next, by investigating the model of the extremum ratio method,
an integral ratio mathematical model is established to improve the anti-disturbance performance.
Finally, by combining the preprocessed magnetic sensor data based on the least-square method and
the rotating extremum features in one cycle, the analytical expression of the proposed integral ratio
algorithm is derived with respect to the pitch angle. The simulation results show that the proposed
integral ratio method gives more accurate attitude calculations than does the extremum ratio method,
and that the attitude error variance can decrease by more than 90%. Compared to the extremum ratio
method (which collects only a single data point in one rotation cycle), the proposed integral ratio
method can utilize all of the data collected in the high spin environment, which is a clearly superior
calculation approach, and can be applied to the actual projectile environment disturbance.

Keywords: extremum ratio method; integral ratio method; least square; magnetic sensor;
projectile attitude

1. Introduction

The geomagnetic field is the earth’s natural resource, which can provide a natural coordinate
system for aeronautics, astronautics and marine applications. The vehicle’s attitude information can
be achieved by using magnetic detection technology to measure the components of the geomagnetic
field. A projectile body rotates about its longitudinal axis at very high speed. Due to the limitation
of the measuring range of the triaxial gyroscope, it is difficult to use the gyroscope in an actual
high-speed, high-spin projectile environment. In contrast, a magnetic sensor has advantages such
as a rapid response speed, small size, high resistance to overload, and being cumulatively error
free [1–3]. A magnetic sensor is applicable to the high-speed, high-spin general projectile attitude
measurement [4,5]. Projectile attitude information includes heading angle, pitch angle and rolling
angle, and its characteristic is an approximately constant heading angle. Therefore, the projectile
attitude information can be estimated using roll angle and pitch angle.

There are several methods for measuring the projectile attitude by unitizing magnetic sensors,
including the two-axis non-orthogonal magnetic sensor, three-axis orthogonal magnetic sensor [6,7],
and four-axis magnetic sensor. The non-orthogonal magnetic sensors [8] utilize two mounted
non-orthogonal magnetic sensors to collect geomagnetic field data during one projectile spin cycle.
Because the heading angle and pitch angle are nearly invariable when a projectile rotates one cycle,
the roll angle of the projectile can be calculated directly. There are two non-orthogonal magnetic sensor
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methods for calculating the pitch angle of spinning projectiles: the zero crossing method [9,10] and the
extremum ratio method [11]. Both methods utilize the relationship between the eigenvalue ratios of the
sensor output and the pitch angle to calculate the projectile attitude. Both of these methods can obtain
the estimated value of projectile attitude at a special point. The difference between these methods is as
follows: the zero crossing method utilizes phase information from two sensors to calculate the projectile
attitude [12], whereas the extremum ratio method utilizes extremum value information from two
sensors to calculate the projectile attitude. However, because those two methods use the special point
of the sampled magnetic data to calculate the attitude value as the projectile rotates one cycle, the two
methods are vulnerable to random disturbance. As the error of sampling value becomes smaller,
the error of the estimated projectile attitude becomes smaller, and vice versa [13]. The twin-channel
tracking differentiator [14] method utilizes a differential filter to process data from the triaxial magnetic
sensors, thereby reducing the random disturbance encountered by the projectile attitude.

To reduce the random disturbance that exists in the extremum ratio method, an integral ratio
method is proposed in this paper. This method can reduce the random disturbance by establishing
the integral model and can thus achieve greater attitude calculation accuracy than the extremum
ratio method.

The remainder of this paper is organized as follows. In Section 2, the projectile attitude
measurement principle of magnetic sensor is introduced. In Section 3, the mathematical model
of integral ratio method is established. The analytical expression of integral ratio method is derived in
Section 4. In Section 5, the simulation results demonstrate that the accuracy of the proposed algorithm
is significantly higher than that of the extremum ratio method. Conclusions are drawn in Section 6.

2. Attitude Measurement Principle of the Magnetic Sensors

The geographical coordinate is Oxnynzn, the xn axis points to the magnetic north, the yn axis points
to the sky, and the Zn axis points to the magnetic east. As shown in Figure 1, vector Hn represents the
magnitude and direction of the magnetic field in the geographical coordinate, Ψ is the heading angle,
θ is the pitch angle, and γ is the roll angle.
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Figure 1. Coordinate transformation schematic diagram.

The intersection angle between vector Hn and its projection in horizontal plane Pxnzn is
geomagnetic inclination I. The carrier coordinate Oxcyczc can be achieved by rotating geographical
coordinate Oxnynzn I degrees around the zn axis. The xc axis in Oxcyczc coincides with the magnetic
field vector Hc, and Hc represents the geomagnetic magnitude and direction of Oxcyczc.

The instantaneous centroid of projectile is chosen as the origin of the projectile coordinate Oxbybzb.
The Oxb axis coincides with the lengthwise axis of projectile, pointing to the head, which is positive.
Oyb is perpendicular to Oxb, and upward is positive. Ozb is perpendicular to Oxbyb, and the direction
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is determined by using the right hand rule. Vector Hb represents the magnitude and direction of the
magnetic field in the projectile coordinate Oxbybzb.

The coordinates Hbx, Hby, Hbz of vector Hb in the projectile coordinate Oxbybzb can be represented as
the transformation from carrier coordinates to projectile coordinates Oxcyczc ñ Oxnynzn ñ Oxbybzb .

Hb “ Lpγ, ψ, θqLp0, 0, IqT Hc

“ Lpγ, ψ, θ ´ IqHc

“ Lpγ, ψ, θmqHc

(1)

where θm is the pitch angle, which includes magnetic dip, θm “ θ ´ I; Lpγ, ψ, θq is the relationship that
can be described by the direction cosine matrix.

Lpγ, ψ, θq “

»

—

–

cosθcosψ cosψsinθ ´sinψ

sinγsinψcosθ ´ cosγsinθ sinγsinθsinψ` cosγcosθ sinγcosψ

cosγsinψcosθ ` sinγsinθ cosγsinθsinψ´ sinγcosθ cosγcosψ

fi

ffi

fl

(2)

Vector Hc in carrier coordinates Oxcyczc is

Hc “
”

h 0 0
ıT

(3)

where h is the magnitude of the vector Hc.
The coordinates Hbx, Hby, Hbz of vector Hb in the projectile coordinates Oxbybzb can be

represented as [11]
»

—

–

Hbx
Hby
Hbz

fi

ffi

fl

“

»

—

–

hcosθmcosψ

hpsinγsinψcosθm ´ cosγsinθmq

hpcosγsinψcosθm ` sinγsinθmq

fi

ffi

fl

(4)

Two non-orthogonal single-axis magnetic sensors, S1 and S2, are assembled separately on A and B
along with axis Oxb of the projectile. As shown in Figure 2, the axis Oxb coincides with the longitudinal
axis of the projectile. Two sensitive axes are in the plane Oxbyb. The sensitive axis of S1 is assembled
along with axis Ozb, and the sensitive axis of S2 is assembled in the angle of λ with axis Oxb.
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According to Equation (4), the measured data of magnetic sensor S1 form Hbz, and the measured
data of magnetic sensor S2 are the combination of Hbx and Hbz As a result, the measured data Hs1 and
Hs2, of two magnetic sensors, can be expressed by θm, γ and h:

HS1 “ hpcosγsinψcosθm ` sinγsinθmq (5)

HS2 “ hpcosθmcosψcosλ` cosγsinψcosθmsinλ` sinγsinθmsinλq (6)
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The projectile rotates at nearly constant speed during one spinning circle, and the heading angle
Ψ and pitch angle θ are nearly invariable. The roll angles during one spinning cycle can be calculated
by obtaining one roll angle at a particular time. Assuming that the particular time is the zero point
time of Hs1 and Hs2, the unknown magnetic field intensity scalar h in Equations (5) and (6) can be
eliminated when the measured data of Hs1 or Hs2 are zero. The effects of environmental disturbance
can thus be reduced.

If the measured data Hs1 = 0, then Equation (5) can be rewritten as

cosγsinψcosθm ` sinγsinθm “ 0 (7)

Furthermore, we can obtain

γ “ arctan2pp´1qj`1sinψcosθm, p´1qjsinθmq (8)

where j = 1,2. The two components of Equation (8) cannot be zero simultaneously.
If the measured data Hs2 = 0, then Equation (6) can be rewritten as

cosθmcosψcosλ` cosγsinψcosθmsinλ` sinγsinθmsinλ “ 0 (9)

If
$

’

&

’

%

a “ cosθmcosψcosλ

b “ sinψcosθmsinλ

c “ sinθmsinλ

(10)

then
a` bcosγ` csinγ “ 0 (11)

When sinθm ‰ 0, because sinλ ‰ 0, then c ‰ 0. Thus, Equation (11) can be described as

sinγ “
´bcosγ´ a

c
(12)

Substituting Equation (12) into sin2γ` cos2γ “ 1 gives

pb2 ` c2qcos2γ` 2abcosγ` a2 ´ c2 “ 0 (13)

When |sinλ| ě |cosθmcosψ|, p2abq2 ´ 4pb2 ` c2qpa2 ´ c2q ě 0, Equation (13) has real solution cosγ

cosγ “
´a1b1 ˘

a

c1
2pb1

2 ` c1
2 ´ a1

2q

b1
2 ` c1

2 (14)

where a1 “ cosθmcosψcosλ, b1 “ sinψcosθmsinλ, and c1 “ sinθmsinλ.
When |sinλ| ą |cosθmcosψ|, Hs2 has two zero points.
When |sinλ| “ |cosθmcosψ|, Hs2 has one zero point.
When |sinλ| ă |cosθmcosψ|, Hs2 does not have a zero point.
From the above, we can see that the value of roll angle γ can be calculated from Equations (8) and

(14) when the outputs of two magnetic sensors, S1 and S2, are equal to zero. There are four zero-crossing
points that can be used individually to calculate the corresponding roll angle γ. Consequently, the roll
angles at any time during one cycle can be calculated. Assuming that the heading angle Ψ does not
change [15], when the included angle λ between magnetic sensor S2 and axis Oxb is given, the value
of γ is related to the pitch angle θm. As a result, to further ensure the value of the roll angle γ, it is
important to utilize the magnetic data obtained as the projectile rotates one cycle to calculate θm. Thus,
assuming that the rotation speed remains constant, the calculation error of rolling angle is determined
by the calculation error of the pitch angle as the projectile rotates one cycle.
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3. Mathematical Model

3.1. Mathematical Model of the Extremum Ratio Method

Assume that the heading angle and the pitch angle are invariable in one cycle. The extremum
ratio method utilizes the characteristics that there exist one maximum value and one minimum value
in every cycle. The pitch angle θm after the projectile rotates one cycle can be calculated. During one
projectile rotation cycle, the roll angle changes between 0 and 2π. When the output curves Hs1 and Hs2

are at their extremum values, Equations (5) and (6) should meet the following conditions [6]:

dHS1

dγ
“ hp´sinγsinψcosθm ` cosγsinθmq “ 0 (15)

dHS2

dγ
“ hp´sinγsinψcosθm ` cosγsinθmq “ 0 (16)

The mathematic model of the integral ratio method can be described as

gpθmq “
HS2m
HS1m

“ sinλ˘
cosθmcosψcosλ

b

sin2θm ` sin2ψcos2θm

(17)

where Hs1m and Hs2m are the maximum or minimum values achieved by Hs1 and Hs2, respectively.
gpθmq represents the ratio of Hs1m and Hs2m. If the heading angle Ψ and the included angle λ between
S2 and axis Oxb are known, then the estimated pitch angle θm can be calculated by Equation (17).

3.2. Mathematical Model of the Integral Ratio Method

The mathematical model gpθmq of the extremum ratio method utilizes the ratio between two
particular points on magnetic sensor curves to calculate the pitch angle θm. Its computational accuracy
depends on the numerical precision of the sampling values Hs1 and Hs2 at the extreme point. Under
practical conditions, due to various types of disturbance, some sampling values may have high error
rates. In particular, if impulsive interference exists at any non-extreme point, a rather large sampling
value will be generated. As a result, that value will be treated as the largest sampling value to calculate,
thereby generating large errors.

A novel integral model is derived in this paper. During the rotation process, all of the samples
of Hs1 and Hs2 are used to perform the integral calculation; subsequently, the ratio calculation is
performed. The integral model is described as:

f pθmq “

ş2π
0 H2

S2pγqdγ
ş2π

0 H2
S1pγqdγ

“
f2pθmq

f1pθmq
(18)

The estimated value f̂ pθmq of f pθmq can be expressed as

f̂ pθmq “

2π
N

N
ř

n“1
Ĥ2

S2pnq

2π
N

N
ř

n“1
Ĥ2

S1pnq
“

f̂2pθmq

f̂1pθmq
(19)

where N is the total sampling number during one projectile rotation cycle and n is the sampling point.
ĤS1pnq “ HS1pnq ` v1pnq, ĤS2pnq “ HS2pnq ` v2pnq, HS1pnq and HS2pnq are true value of magnetic
sensors S1 and S2, respectively. ĤS1pnq and ĤS2pnq are sampled value of S1 and S2, respectively. v1pnq
and v2pnq are both Gaussian white noise with a mean of zero and a variance of σ2. In Equation (19),
one value f̂ pθmq can be calculated in every cycle using the quadratic sum and mean calculation with
the sampling values from two magnetic sensors.
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The mathematical expectation of Ĥ2
S1pnq can be described as

E
”

Ĥ2
S1pnq

ı

“ H2
S1pnq ` E

”

v1pnq
2
ı

(20)

where v1 „ Np0, σ2q; according to the properties of normal distribution, we can get

ˆ

v1pnq
σ

˙2
„ χ2p1q (21)

Therefore, E
„

´

v1pnq
σ

¯2


“ 1, and

E
”

pv1pnqq
2
ı

“ σ2 (22)

Substituting Equation (22) into Equation (20) gives

E
”

Ĥ2
S1pnq

ı

“ H2
S1pnq ` σ2 (23)

D
”

Ĥ2
S1pnq

ı

“ E
”

Ĥ4
S1pnq

ı

´ E
”

Ĥ2
S1pnq

ı2
“ 4H2

S1pnqσ
2 (24)

The mathematical expectation of f̂1pθmq can be given by

E
”

f̂1pθmq
ı

“
2π

N

N
ÿ

n“1

´

H2
S1pnq ` σ2

¯

“
2π

N

N
ÿ

n“1

H2
S1pnq ` 2πσ2 (25)

Similarly, the mathematical expectation of f̂2pθmq can be given by

E
”

f̂2pθmq
ı

“
2π

N

N
ÿ

n“1

´

H2
S2pnq ` σ2

¯

“
2π

N

N
ÿ

n“1

H2
S2pnq ` 2πσ2 (26)

Therefore, f̂1pθmq and f̂2pθmq are not unbiased estimators. Compared the mathematical expectation
with unbiased estimation of f̂1pθmq and f̂2pθmq, the magnitude of single sampling error variance is
amplified 2π times. So the effect on parameter estimation is small and acceptable. f̂1pθmq and f̂2pθmq

can be regarded as powers of two magnetic sensors’ sampled signal, and the power of the magnetic
sensor signal is actually sampled as a characteristic value in the integral model to calculate the
projectile attitude.

Thus, Equations (5) and (6) can be rewritten as

HS1 “ hpd2cosγ` e2sinγq (27)

HS2 “ hpa2 ` b2cosγ` c2sinγq (28)

where a2 “ cosθmcosψcosλ, b2 “ sinψcosθmsinλ, c2 “ sinθmsinλ, d2 “ sinψcosθm, and e2 “ sinθm.
The integral expression of HS1 can be described as

ş2π
0 H2

S1pγqdγ “
ş2π

0 phpd2cosγ` e2sinγqq2 dγ

“ h2ş2π
0 pd2

2cos2γ` e2
2sin2γ` 2d2e2sinγcosγqdγ

(29)

Applying integral calculation on each items in Equation (29) separately gives

ż 2π

0
cos2γdγ “ π (30)
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ż 2π

0
sin2γdγ “ π (31)

ż 2π

0
sinγcosγdγ “ 0 (32)

Substituting Equations (30)–(32) into Equation (29) gives

ż 2π

0
H2

S1pγqdγ “ h2
2pπd2

2 ` πe2
2q (33)

The integral expression of HS2 can be described as

ş2π
0 H2

S2pγqdγ “
ş2π

0 phpa2 ` b2cosγ` c2sinγqq2 dγ

“ h2ş2π
0 pa2

2 ` b2
2cos2γ` c2

2sin2γ` 2b2c2sinγcosγ` 2a2b2cosγ` 2a2c2sinγqdγ
(34)

Applying the integral calculation on each items in Equation (34) separately gives

ż 2π

0
cosγdγ “ 0 (35)

ż 2π

0
sinγdγ “ 0 (36)

Substituting Equations (30)–(32), (35) and (36) into Equation (34) gives

ż 2π

0
H2

S2pγqdγ “ h2p2πa2
2 ` πb2

2 ` πc2
2q (37)

Using Equations (33) and (37), the integral model f pθmq can be described as

f pθmq “

ş2π
0 H2

S2pγqdγ
ş2π

0 H2
S1pγqdγ

“
2cos2θmcos2ψcos2λ` sin2ψcos2θmsin2λ` sin2θmsin2λ

sin2ψcos2θm ` sin2θm
(38)

Substituting sin2θm “ 1´ cos2θm into Equation (38) gives

cos2θmp2cos2ψcos2λ` sin2ψsin2λ´ sin2λ´ f pθmqsin2ψ` f pθmqq “ f pθmq ´ sin2λ (39)

We define u “ 2cos2ψcos2λ` sin2ψsin2λ´ sin2λ´ f pθmqsin2ψ` f pθmq and v “ f pθmq ´ sin2λ.
Then, Equation (39) can be rewritten as

uv sin2θm “ upu´ vqcos2θm (40)

The pitch angle θm is therefore given by

θm “ arctan2
´

˘
a

|upu´ vq|,˘
a

|uv|
¯

(41)

In Equation (41), the two components cannot be zero simultaneously.
The period of pitch angle θm is 2π. The period of function f pθmq with respect to pitch angle θm is

π. As the projectile rotates one cycle, one f pθmq value and the corresponding four θm values can be
obtained. Assuming that h “ 1, Figure 3 gives the comparison between f pθmq and the two integral
outputs of f pθmq and f2pθmq. It can be seen that when the pitch angle of projectile takes any value,
feature values ( f1pθmq and f2pθmq) can be got from integral models and the estimated value of θm can
also be obtained throughout missile flight. However, one f pθmqmay correspond to two or four possible
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values of θm, and the value of the pitch angle θm can be chosen based on the quadrant in which the
pitch angle θm is located during the actual flight.
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4. Novel Integral Ratio Method

A novel integral ratio method is proposed in this paper, and the flow chart of this method is
shown in Figure 4. Because this method utilizes all of the data collected during the projectile rotation
process, it is convenient to preprocess those data.
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4.1. Data Preprocessing

Noise error exists in the measured data from the magnetic sensor. To reduce the noise disturbance,
the filtering algorithm is usually adopted to preprocess the data smoothly. A maximum least squares
filtering algorithm is used.

(1) When the samples number is less than the designated value p, the increasing memory filter is
successively used to perform the filtering. p is chosen as 10 in this paper.

r̂pkq “
2p1´ kq

pk` 1qpk` 2q

k
ÿ

i“0

rpk´ iq `
6

pk` 1qpk` 2q

k
ÿ

i“0

pk´ iqrpk´ iq (42)

(2) When the sample number is greater than p, the fixed memory filter can be used. p is the filter
order of moving average part.

r̂pkq “
2p1´ pq

pp` 1qpp` 2q

k
ÿ

i“k´p

rpk´ iq `
6

pp` 1qpp` 2q

k
ÿ

i“k´p

pk´ iqrpk´ iq (43)

where rpkq is the sampling value at time k and r̂pkq is the least squares filtering value at time k.
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4.2. The Principle of the Integral Ratio Method

Extreme ratio method only using a single extremum of sample data as characteristic value for
processing, which is susceptible to random interference. But the improved integration ratio method
utilizes the sum of all data squares of projectile spin as a characteristic value for processing, which can
reduce the random noise on the estimated values.

The implementation procedure of the proposed integral ratio method is given as follows:
Step 1: Preprocessing the data from the magnetic sensor using Equations (42) and (43).
The sampling values from the magnetic sensor are filtered by utilizing the maximum least squares

filtering algorithm. After filtering the noise error, the value can be input into the integral model to
calculate the model function f̂ pθmq.

Step 2: Calculating the integral value of HS1 and HS2.

1) Determine the integral expression 2π
N

N
ř

n“1
Ĥ2

S1pnq.

2) Determine the integral expression 2π
N

N
ř

n“1
Ĥ2

S2pnq.

Step 3: Calculating the integral ratio . f̂ pθmq.
One f̂ pθmq value can be calculated according to Equation (19) by using the quadratic sum and the

integral of the samples of two magnetic sensors.
Step 4: Calculating the pitch angle θm.
During one projectile rotation cycle, assuming that both the included angle λ and the heading

angle ψ are invariable, the pitch angle θm can be determined by Equation (41).
Step 5: Calculating the roll angle γ using Equations (8) and (14).

5. Simulation and Results

5.1. Comparison of the Algorithms

In this section, the noise restraining abilities of the extremum ratio method and the proposed
integral ratio method are compared to each other. Assuming that the projectile’s heading angle is
ψ “ π{6, the included angle between magnetic sensor S2 and axis Oxb is λ “ π{4, and the data range of
pitch angle is θm P p0, π{2q. The noise of the magnetic sensor is zero mean white noise. Figures 5 and 6
show a comparison of the pitch angle error ∆θm for different noise intensities (σ2 “ 0.001 and σ2 “ 0.01,
respectively) after applying the extremum ratio and the proposed integral ratio methods.

Figures 5 and 6 show that both algorithms have rather large errors around θm “ 0. The reason for
the error is that the numerical difference of the magnetic component is too small near the zero point
and the error of extremum is too large. The calculation error of the pitch angle also depends on the
noise intensity. The error during the variance 0.01 is one order of magnitude greater than the error
observed with a variance of 0.001. In the range of the pitch angle, the calculation error of the integral
ratio method is much smaller than that of the extremum ratio method.

Table 1 shows the mean and variance of the pitch angle errors, which were calculated by
applying the extremum ratio method and the integral ratio method, as well as the error comparison
between these methods under different noise intensities. When the noise variance is 0.001, the mean
and variance of the errors by applying integral ratio method can be reduced by 84.6% and 89.2%,
respectively, compared with that of the errors obtained by applying the extremum ratio method. When
the variance of noise is 0.01, the mean and variance of the errors by applying integral ratio method can
be reduced by 90.2% and 96.1%, respectively, compared with that of the errors obtained by applying
the extremum ratio method.
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Table 1. The comparison of the pitch angle error.

Method
Error Mean Error Variance

(unit: 0.001 rad) (unit: 0.001)

σ2 = 0.001 σ2 = 0.01 σ2 = 0.001 σ2 = 0.01

Extremum ratio method 0.45389 11.2 0.017722 0.87621
Integral ratio method 0.070004 1.1 0.0019182 0.034168

Error reduction 84.6% 90.2% 89.2% 96.1%

Table 1 indicates that the mean and variance of the errors obtained by applying the integral
ratio method are significantly smaller than those of the errors obtained by applying the extremum
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ratio method. In addition, as the random errors from the magnetic sensor become larger, the integral
ratio method becomes clearly superior in terms of calculation accuracy. Thus, the integral ratio
method is clearly superior when the magnetic sensor operates under an environment with a high level
of disturbance.

The extremum ratio method utilizes the extremum to calculate the pitch angle as the projectile
rotates one cycle. If the extremum encounters any disturbance, the calculation will produce errors.
However, the integral ratio method uses the result of the square of the magnetic sensor output to
perform the integral calculation. Because the integral calculation performs the function of a filter when
the data encounters any white noise, the integral ratio method has strong noise suppression ability.

From the above-mentioned information, we can see that the proposed integral ratio method is
clearly superior in both the mean value and the variance of the calculation error compared to the
extremum ratio method. When the variance of random noise is 0.01, the error of the integral ratio
method is only 10% of the error of the extremum ratio method.

5.2. Ballistic Simulation

The dynamic model of the projectile with magnetic sensor assembled is described as
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

dx
dt “ vx
dy
dt “ vy
dz
dt “ vz
dvx
dt “ ´cHτpyqGpvτqvx

dvy
dt “ ´cHτpyqGpvτqvy ´ g

dvz
dt “ ´cHτpyqGpvτqvz

(44)

where x, y and z are the position components and vx, vy and vz are the velocity components.
The ballistic coefficient c “ piD2{mq ˆ 103, D is the diameter of projectile, i is the elastic coefficient,

and m is the mass of projectile.
Hτpyq “ Hρpyq

a

τ{τon, τon is the standard virtual temperature. τ “ τon ´ 0.0065h f is
the virtual temperature, Hρpyq “ ρ{ρon is the function of air density, ρon “ 1.225 kg/m3,

ρ “ ρonexp
´

´gh f { p287.15τq
¯

, and h f is the flight height.

Gpvτq is the resistance function, and vτ “

c

´

v2
x ` v2

y ` v2
z

¯

pτon{τq.

g “ g0

´

1´ 2h f {
´

R0 ` h f

¯¯

is the gravitational acceleration, g0 “ 9.780 m/s2,
and R0 “ 6378160 m.

The equations of the projectile attitude is denoted as

$

’

’

&

’

’

%

ψ “ arctan vz
vx

θ “ arctan vy
vx

γ “ ´
ωg J

0.4LD3 exp
´

´0.4 LD3

J t
¯

(45)

The initial conditions of the flight trajectory are set as follows: D = 152 mm, L = 1300 mm,
m = 52.8 kg, ωg “ 40π rad/s, and J = 7.5 kg¨m2. The muzzle velocity is 550m/s, the initial heading
angle is ψ “ π{6, the pitch angle is θm “ π{4, and the rolling angle is γ “ 0. The included angle
between the pitch angle of magnetic sensor S2 and axis Oxb is λ “ π{4. The noise of the magnetic
sensor is white noise, with a mean of 0 and a variance of 0.01 or 0.001. Both the magnetic sensor
sampling period and the updating period of the projectile attitude are 1 ms.

Figure 7 shows the curves of the heading angle, pitch angle and rolling angle. The simulation
curve of the rolling angle runs only 1 s, from 50 s to 51 s.
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Figure 7. The curves of the attitude angle during projectile flight.

Figure 8 shows the curve of the projectile attitude obtained by utilizing the proposed integral
ratio method. The simulation curve of the rolling angle runs only 1 s. The result shows that the
proposed integral ratio method can produce an estimated value of the projectile attitude during the
whole trajectory. Figure 9 shows the error curve of the projectile attitude by utilizing the integral
ratio method.Sensors 2016, 16, 730 13 of 4 
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Figure 8. The attitude angle calculated by the integral ratio method.

Figure 10 indicates that the calculation error of the pitch angle obtained by utilizing the integral
ratio method is much smaller than that obtained by utilizing the extremum ratio method.



Sensors 2016, 16, 730 13 of 15

Sensors 2016, 16, 730 13 of 4 

 

 
Figure 8. The attitude angle calculated by the integral ratio method. 

 
Figure 9. Attitude angle calculating error of the integral ratio method. 

Figure 10 indicates that the calculation error of the pitch angle obtained by utilizing the 
integral ratio method is much smaller than that obtained by utilizing the extremum ratio method. 

Table 2 lists the variance of the calculation error of the pitch angle and the rolling angle 
obtained by utilizing two different methods. The data show that the variance of calculation error of 
pitch angle obtained by utilizing the integral ratio method is one order of magnitude smaller than 
that obtained by utilizing the extremum ratio method. The variance of the calculation error of the 
rolling angle obtained by utilizing the integral ratio method is only half that obtained by utilizing 
the extremum ratio method. 

10 20 30 40 50 60 70 80
-2

0

2

t/s

Ψ
/r

ad

10 20 30 40 50 60 70 80
-2

0

2

t/s

θ/
ra

d

50 50.1 50.2 50.3 50.4 50.5 50.6 50.7 50.8 50.9 51
0

5

10

t/s

γ/
ra

d
10 20 30 40 50 60 70 80

-0.5

0

0.5

t/s
E

rr
or

 ∆
Ψ

/r
ad

10 20 30 40 50 60 70 80
-0.2

0

0.2

t/s

E
rr

or
 ∆
θ/

ra
d

10 20 30 40 50 60 70 80
-0.5

0

0.5

t/s

E
rr

or
 ∆
γ/

ra
d

Figure 9. Attitude angle calculating error of the integral ratio method.Sensors 2016, 16, 730 14 of 4 

 

 
Figure 10. The pitch angle calculated by the extremum ratio method and the integral ratio method. 

Table 2. The error variance comparison between the extremum ratio method and the proposed 
integral ratio method. 

Method 
Pitch Angle Roll Angle
(unit: 0.001) (unit: 0.001)

Extremum ratio method 1.4526 0.20321 
Integral ratio method 0.18652 0.093807 

Error reduction 87.2% 53.8% 

6. Conclusions 

To solve the computational problem of a projectile’s pitch angle, the extremum ratio method 
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Figure 10. The pitch angle calculated by the extremum ratio method and the integral ratio method.

Table 2 lists the variance of the calculation error of the pitch angle and the rolling angle obtained
by utilizing two different methods. The data show that the variance of calculation error of pitch angle
obtained by utilizing the integral ratio method is one order of magnitude smaller than that obtained
by utilizing the extremum ratio method. The variance of the calculation error of the rolling angle
obtained by utilizing the integral ratio method is only half that obtained by utilizing the extremum
ratio method.
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Table 2. The error variance comparison between the extremum ratio method and the proposed integral
ratio method.

Method
Pitch Angle Roll Angle

(unit: 0.001) (unit: 0.001)

Extremum ratio method 1.4526 0.20321
Integral ratio method 0.18652 0.093807

Error reduction 87.2% 53.8%

6. Conclusions

To solve the computational problem of a projectile’s pitch angle, the extremum ratio method can
be used to select the extreme point to perform the calculation. According to the problem relating
to the fact that the extremum ratio method will result in a large error under a noise disturbance,
a novel integral ratio method was proposed, and the corresponding mathematical model was derived.
In this paper, the computational expression of pitch angle was derived by utilizing the integral ratio
method. The simulation results provided comparison diagrams between the extreme ratio method
and the integral ratio method under different noise intensities. Compared to the extremum ratio
method, the integral ratio method has several advantages. When the variance of noise becomes larger,
the integral ratio method is clearly superior in terms of the calculation error. In addition, the extremum
ratio method only selects one data point in every spin cycle, whereas the integral ratio method selects
multi-group data in every spin cycle; as a result, multiple data processing algorithms can be performed
to get more accurate attitude estimation. Furthermore, the integral model allows for digital processing.
An existing digital device can be utilized to perform high-speed, high-precision AD (analog digital
conversion) sampling.
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