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Abstract: A high-accuracy space smart payload integrated with attitude and position (SSPIAP)
is a new type of optical remote sensor that can autonomously complete image positioning.
Inner orientation parameters (IOPs) are a prerequisite for image position determination of an SSPIAP.
The calibration of IOPs significantly influences the precision of image position determination of
SSPIAPs. IOPs can be precisely measured and calibrated in a laboratory. However, they may drift
to a significant degree because of vibrations during complicated launches and on-orbit functioning.
Therefore, laboratory calibration methods are not suitable for on-orbit functioning. We propose
an on-orbit self-calibration method for SSPIAPs. Our method is based on an auto-collimating dichroic
filter combined with a micro-electro-mechanical system (MEMS) point-source focal plane. A MEMS
procedure is used to manufacture a light transceiver focal plane, which integrates with point light
sources and a complementary metal oxide semiconductor (CMOS) sensor. A dichroic filter is used
to fabricate an auto-collimation light reflection element. The dichroic filter and the MEMS point
light sources focal plane are integrated into an SSPIAP so it can perform integrated self-calibration.
Experiments show that our method can achieve micrometer-level precision, which is good enough to
complete real-time calibration without temporal or spatial limitations.

Keywords: optical orbiting payload; self-calibration; position determination

1. Introduction

High-resolution Earth observation applications have become essential in many fields, such
as mapping, environmental monitoring, and exploration for resources. High-resolution images
and high-accuracy image positioning determinations play an important role in Earth observation
applications [1,2]. High-accuracy and high-resolution optical imaging payloads have strong requirements
on their attitude control precision, orientation, and attitude transfer matrix [3,4]. However, traditional
satellite payloads struggle to meet these requirements because traditional satellites mainly use the
separation model of platforms and payloads. Platform precisions cannot fulfill the requirements of
high-precision imaging payloads. Recently, a high-accuracy space smart payload system integrated
with attitude and position (SSPIAP) was developed to meet the requirements for high-resolution and
high-accuracy applications [5–9]. The SSPIAP integrates a high-resolution remote camera and miniature
attitude-sensitive and position-sensitive devices, such as a star tracker, a micro-electro-mechanical
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system (MEMS) gyroscope, and a global positioning system (GPS) into a new smart payload system.
The SSPIAP can autonomously achieve lightweight and high-performance attitude and position
determination with a combination of celestial navigation, inertial navigation, and satellite navigation.
Using high-accuracy attitude and position information, the SSPIAP can complete real-time imaging
strategy adjustments, imaging, optimal high-resolution remote imaging, high-accuracy image position
determination, and so on. Image position determination is one of the most significant functions of
an SSPIAP when it is working on satellites. The inner orientation parameters (IOPs) of the SSPIAP,
such as principal distance and principal point, strongly influence the accuracy of image position
determination. Therefore, calibrations of the IOPs of the SSPIAP are necessary.

On the ground, many approaches to calibrate the IOPs of space optical cameras exist [10–14].
In [15], Yilmazturk used color targets to calibrate color digital cameras. In [16], Ricolfe-Viala et al. used
a set of optimal conditions to improve calibration accuracy. In [17], Simon et al. used crossed-phase
diffractive optical elements (DOEs) to generate equally spaced dots for wide-angle geometric camera
calibration. The DOEs can generate multiple two dimensional (2D) diffraction grids which can
be used to calibrate cameras for photogrammetry. In [18], the IOPs were calculated based on the
three dimensional (3D) coordinates of several given points and image points. They adopt a four step
method using multiple views to solve all the intrinsic parameters. This method can calibrate intrinsic
parameters, distortion, and image deformation. The IOPs can be precisely calibrated in a laboratory.
However, they may drift to a great degree because of vibration during complicated launches and
on-orbit working conditions. The laboratory calibration approaches generally need a calibrated
reference object. Thus, these methods are unsuitable for the on-orbit calibration of an SSPIAP.

Recently, several self-calibration methods, that do not require a calibrated reference object, have
been developed to calculate IOPs [19,20]. These methods use constraints among the system parameters
to calibrate cameras. Self-calibration methods can make it possible to use unknown scenes and
motions to calibrate a camera [21]. In [22], Song proposed an active-vision-based self-calibration
method. In [23], Caprile et al. performed self-calibration based on vanishing points or lines. In [24],
Gonzalez-Aguilera used an iterative, and robust, least squares method to calculate internal calibration
parameters combined with a geo-reference, terrestrial laser scanner (TLS) dataset. However, these
self-calibration methods have computational complexity, heavy computation, and nontrivial solutions
of equations. Meanwhile, calibration accuracy cannot be guaranteed and its robustness is very
low. A self-calibrating bundle adjustment is ideal for camera calibrations, for a number of reasons
summarized in [25]. In [26], Lichti et al. compared three geometric self-calibration methods for range
cameras. The self-calibration bundle adjustment was found to be slightly superior. However, the
self-calibrating bundle adjustment method suffers from long computation times [27]. Owing to the
limited on-board computer of the SSPIAP platform, these methods are not suitable for high-accuracy
calibration of remote sensing SSPIAP applications.

For on-orbit calibration of remote sensing cameras, traditional methods basically use ground
control point (GCP) methods [28]. In [29], Fourest et al. adopted stars as control points (CPs) to complete
calibration. This method performs calibration during on-orbit commissioning, with numerous measurements
made on different stars as seen right around the World. This method adopts a wide base of star CPs.
However, the availability and access to GCPs or star CPs is not always easy. Further, the accuracy of
each GCP or star CP must be consistent with the requirements of the location system performance.

Recently, 180-degree satellite maneuvers have been used to calibrate on-orbit IOPs [30]. This method
needs a standard ground calibration field. In [31], Delvit et al. proposed an auto-reverse method
during the commissioning phase. Although this method is efficient and does not require external
reference data, its operational implementation is highly constraining because the acquisition of the
same site image pair wastes a long orbit portion to complete the alignment to the ground projection of
the scan-line on the ground velocity. Therefore, existing on-ground methods and on-orbit methods
both possess common characteristics with the aid of external targets. These methods are limited by
space and time.
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In this paper, we propose an on-orbit, auto-collimating self-calibration method for SSPIAPs.
Our method includes four steps. In the first and second steps, a dichroic filter and a MEMS point light
sources focal plane are integrated into an SSPIAP to perform the calibration of the IOPs. In the third
step, an integration mathematical calibration model is built based on geometric imaging relationships
between the first two steps. In the fourth step, a centroid extraction algorithm processes images to
extract the star point position. Finally, the principal distance and the principal point can be calculated
based on the mathematical calibration model. The SSPIAP can perform integrated self-calibration
without temporal and spatial limitations. The rest of this paper is organized as follows: the principle
of the proposed method is introduced in Section 2, while, Section 3 describes the experimental results.

2. Proposed Method for On-Orbit, Integrated Self-Calibration

2.1. Principles

Position determination (positioning) without using ground control points (GCPs) is one of the
recent key technical problems for remote sensing photogrammetry. The IKonos-2 satellite can reach
positioning accuracy of 15 m without GCPs [32]. The WorldView-2 satellite can reach positioning
accuracy of 6.5 m without GCPs [33]. The Geoeye satellite can provide positioning accuracy of
4 m without GCPs [5]. An SSPIAP also adopts a positioning method without GCPs and requires
a positioning accuracy of 5 m [6]. An SSPIAP uses forward-looking and back-looking images
to complete the digital mapping. This method requires an SSPIAP to have accurate geometrical
performance. In order to extract highly accurate topographical information from two overlapping
strip images, an SSPIAP must provide highly accurate IOPs. After an adjustment of the optical camera,
the IOPs deviate from the ideal values specified by the design, manufacture, assembly, etc. [34–36].
Therefore, accurate calibrations of IOPs are necessary for an SSPIAP. For an SSPIAP, positioning
accuracy (without GCPs) mainly depends on the accuracy of satellite station positioning, attitude
measurement accuracy, image points’ measurement accuracy, IOP measurement accuracy, etc. In order
for an SSPIAP to reach a positioning accuracy of 5 m, the distribution of primary errors of the SSPIAP
should be as follows: (1) the attitude determination accuracy is within 10” (angular seconds); (2) the
precision orbit determination is within 0.2 m; (3) the angle calibration accuracy between the star
tracker and the optical camera is within 5”; (4) camera lens distortion calibration accuracy is within
5 µm; (5) the principal distance calibration accuracy is within 50 µm; (6) the principal point calibration
accuracy is within a third of a pixel. After the adjustment of our SSPIAP, we calibrate all of the
above parameters. In this SSPIAP, its optical camera uses a design that integrates with the installation
structure of the Pico Star Tracker. They have a common benchmark. The Pico Star Tracker is a new
type of self-developed, attitude measurement device with 7” accuracy, which can obtain high accuracy
outside the azimuth elements of our SSPIAP and meet the 10” accuracy requirements. This SSPIAP
can, in real-time, attain the benchmarks for the unified, on-orbit, inside-azimuth elements and the
angle between the camera optical axis and the star sensor. The optical system of the Pico Star Tracker
adopts a transmission structure. Its optical axis is not easily changed. Therefore, the optical axis
of the Pico Star Tracker can be replaced by an external mechanical benchmark. In the SSPIAP, the
mechanical benchmark of the Pico Star Tracker is similar to the installation structure of the optical
camera. Therefore, the angle between the camera optical axis and the star sensor benchmark can also
be calibrated by the proposed method. This can ensure that the angle calibration accuracy satisfies
the 5” requirements needed when the SSPIAP is working on a satellite. Usually, the angle variation
between the optical axis of the camera and the star sensor benchmark is relatively small.

In this paper, we mainly discuss the on-orbit method of monitoring the principal distance and
the principal point when the SSPIAP is working on a satellite. We introduce the calibration of IOPs,
including the principal distance and the principal point. We propose an integrated self-calibration
method which can be used on-ground and on-orbit.
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An auto-collimation dichroic filter and MEMS point sources are integrated into the SSPIAP to
perform the calibration of the IOPs. The principle of the proposed, auto-collimating calibration of the
IOPs for the SSPIAP is shown in Figure 1. The optical camera system of the SSPIAP includes a primary
mirror, a secondary mirror, an aspheric corrector, and a focal plane. The auto-collimation dichroic
filter is plated on the plane of the aspheric corrector. This is done to fabricate an auto-collimation light
reflection element. The point sources and the image sensor are integrated into the focal plane assembly.
The auto-collimating light path includes point sources, a camera lens, an auto-collimation dichroic
filter, and an image detector. According to the optical path of the camera, the MEMS point light sources
are auto-collimating lights when they pass through the secondary mirror, primary mirror, and the
aspheric corrector of camera lenses. The auto-collimating lights are reflected by the auto-collimation
dichroic filter and then return into the camera lens. Lights going out of the camera are incident on the
focal-plane detector.
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Figure 1. Principle of auto-collimating calibration method.

In the proposed method, lighting elements and a detection module are introduced into the optical
system of the camera between two interleaving focal-plane assemblies. A dichroic filter is also integrated
into the optical system of the camera. The proposed method can be summarized in four steps.

In the first step, an auto-collimation dichroic filter is used to complete the integrated imaging
and calibration. The dichroic filter can selectively pass light in a small range of bands while reflecting
light in other bands. Figure 2 shows the reflection and transmission ratios of the dichroic filter for the
visible optical camera.

Sensors 2016, 16, 1176 4 of 20 

 

mirror, a secondary mirror, an aspheric corrector, and a focal plane. The auto-collimation dichroic 
filter is plated on the plane of the aspheric corrector. This is done to fabricate an auto-collimation 
light reflection element. The point sources and the image sensor are integrated into the focal plane 
assembly. The auto-collimating light path includes point sources, a camera lens, an auto-collimation 
dichroic filter, and an image detector. According to the optical path of the camera, the MEMS point 
light sources are auto-collimating lights when they pass through the secondary mirror, primary 
mirror, and the aspheric corrector of camera lenses. The auto-collimating lights are reflected by the 
auto-collimation dichroic filter and then return into the camera lens. Lights going out of the camera 
are incident on the focal-plane detector. 

 

Figure 1. Principle of auto-collimating calibration method. 

In the proposed method, lighting elements and a detection module are introduced into the 
optical system of the camera between two interleaving focal-plane assemblies. A dichroic filter is also 
integrated into the optical system of the camera. The proposed method can be summarized in four 
steps. 

In the first step, an auto-collimation dichroic filter is used to complete the integrated imaging 
and calibration. The dichroic filter can selectively pass light in a small range of bands while reflecting 
light in other bands. Figure 2 shows the reflection and transmission ratios of the dichroic filter for the 
visible optical camera.  

750700650600 950900850800 1050 1150

10

0

20

30

40

50

60

70

80

90

100

Wavelength (nm)

R
at

io
(%

)

Average Polarization

S-Polarization

P-Polarization

Transmission Reflection

Reflection Transmission

 
Figure 2. Filtering performance of dichroic filter. 

Figure 2. Filtering performance of dichroic filter.



Sensors 2016, 16, 1176 5 of 20

The dichroic filter allows visible light to pass through while reflecting longer wavelength bands.
According to the details of the dichroic filter, the bands of MEMS point sources can be determined.
When an SSPIAP is working on a satellite, light reflected from and radiated off a target passes through
the dichroic filter to complete on-orbit imaging. The lights of the MEMS point sources are reflected by
the dichroic filter to complete on-orbit calibration.

In the second step, we fabricate a MEMS point source focal plane and then integrate it into the
optical focal plane of the SSPIAP. The MEMS point sources are installed on the focal plane, which means
that the monitoring optical path is auto-collimating. Thus, the principal distance and the principal point
can be monitored when they are needed. To ensure a sufficiently small size and low power consumption,
we used MEMS procedures to fabricate a point-source focal plane in this study. The point-source focal
plane is mainly composed of the mask that is fabricated by utilizing the MEMS process, a housing, and
an electrical system. The assembly of the point-source focal plane is shown in Figure 3.
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The fabrication process of the mask is as follows: (1) chromium, gold and tantalum materials
are plated on a specified glass substrate; and (2) the photoetching process is performed on the
metal layers to obtain several small apertures. The mask includes a glass substrate, a mask layer,
and an anti-reflective layer, etc., and the mask thickness is 1.6 mm. The etched apertures in the
mask can pass through light, while other parts cannot because they are covered by metal layers.
Optical anti-radiation quartz glass is used as the substrate because it can block free space, background
cosmic radiation. First, a layer of chromium is plated on the glass substrate. The layer of chromium
can completely attenuate the light with its thickness of 75 nm, which depends on the transmissivity of
the optical system; Second, the gold membrane is plated on the chromium layer. The gold membrane
is a mask layer and its thickness is 200 nm; Third, the tantalum membrane is plated on the gold layer,
which is a radiation protection layer, and its thickness is 60 nm; Fourth, the photoresist is poured
onto the plated substrate by spin coating. A polymethyl methacrylate (PMMA) material is used as
the photoresist in the fabrication process; Fifth, proximity lithography is performed to expose the
photoresist through a photomask; Sixth, some developer is applied to remove the exposed photoresist
to form the pattern on the plated substrate; Seventh, a laser is used to cut the plated substrate in
order to complete the integrated packaging with a complementary metal oxide semiconductor (CMOS)
sensor; Eighth, a second chromium layer is plated on the cut substrate, this layer is used as the
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secondary reflection prevention layer and its thickness is 75 nm; Ninth, LEDs are installed under the
mask. Light can pass through the etched apertures. Given that other parts are covered by a chromium
layer, they stop the incident light; Finally, the LEDs, the image sensor, and the mask are packaged into
a point-source focal plane. In the MEMS focal plane, the wavelength of the MEMS point sources is
determined by the dichroic filter. The MEMS point sources can be controlled by the SSPIAP controller
in real-time. In the SSPIAP’s imaging mode, the LEDs can be switched off and have no effect on
imaging. The MEMS light sources are installed around image sensors. Accurate positions of the MEMS
light sources are calculated based on the relationships between the image sensors and the optical
system. For the optical remote sensor, several image sensors are butted together into one greater image
sensor [37,38]. The MEMS light sources are generally placed on the butting area.

For the third step, we built a mathematical calibration model. According to the geometrical
relationships between point-light source positions and their images, the mathematical calibration
equation was repeatedly solved to calculate the IOPs of the SSPIAP.

In the fourth step, a controller of the SSPIAP controls the MEMS light sources. The CMOS senses
the MEMS light sources images. A centroid extraction algorithm processes input images to extract the
star point position. Finally, the principal distance and the principal point can be calculated using the
mathematical calibration model.

2.2. On-Orbit Mathematical Calibration Model

In [39], a coordinate transform method was used to build the relationships between ground
object targets and image positions. This coordinate transform method can obtain the instantaneous
imaging geometrical relationships of optical remote sensing sensors. In this study, we adopt this
coordinate transform to build a mathematical model of point sources and their image positions to
calculate the instantaneous principal distance and principal point. According to Figure 1, several
coordinate systems from the MEMS point sources to the dichroic filter plane were defined as follows:
dichroic filter plane coordinate system F(xF,yF,zF), camera coordinate system C(xC,yC,zC), image plane
coordinate system I(xI,yI,zI), source plane coordinate system S(xS,yS,zS), and detector plane coordinate
system D(xD,yD,zD). The coordinate relationships of equivalent optical paths between point sources
and the image positions are shown in Figure 4.
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where dx and dy are the sizes of, respectively, the x-axis and y-axis detectors, and (usx0,vsy0) is the
coordinate position of the center of the MEMS point sources in the D coordinate system. (usx0,vsy0) can
be obtained from the design value of the focal plane of the SSPIAP. At the adjustment stage, optical
collimation and precise angle measurements are used to calibrate the SSPIAP to remove preparation
and adjustment error. In our calibration process, a large-scale collimator and photoelectric theodolite
are used to complete calibration of the center of the CMOS and (usx0,vsy0). From Equation (1), the unit
vector of the principal ray emitted by the point source S1 in the C coordinate system can be expressed
as follows:
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Light emitted by the point source with position S1 passes through the camera optical system to
become parallel light. The emitted parallel light from the camera’s optical system is reflected by the
dichroic filter and then returned into the camera’s optical system. In the C coordinate system, the
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expressed as follows:

Ñ
n 2 “ r xs1

1
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From Equation (4), the unit vector
á
u
1

1 in the C coordinate system can be expressed as follows:

Ñ
u
1

1 “
”
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“

”

xt
s1

1
dx ´ dxut

0 yt
s1

1
dy ´ dyvt

0 f t
0

ıT

c

´

xt
s1

1
dx ´ dxut

0

¯2
`

´

yt
s1

1
dy ´ dyvt

0

¯2
`
`

f t
0
˘2

(6)

From the law of optical reflection, the relationship among the unit vector of the principal rays can
be expressed as follows:

á
u 1 ˆ

Ñ
n “ ´

á
u
1

1 ˆ
Ñ
n

á
u 1¨

Ñ
n “

á
u
1

1¨
Ñ
n

(7)

The preceding equations are expanded to a set of scalar equations as follows:
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$

’

’

&

’

’

%

u1ynd f
cz ´ u1znd f

cy “ u11znd f
cy ´ u11ynd f

cz

u1xnd f
cz ´ u1znd f

cx “ u11znd f
cx ´ u11xnd f

cz

u1xnd f
cx ` u1ynd f

cy ` u1znd f
cz “ u11xnd f

cx ` u11ynd f
cy ` u11znd f

cz

(8)

Equations (7) and (8) represent the mathematical, spatial relationship equations between a point
source and its image point. The mathematical modeling of the principal distance and the principal
point can be established based on Equations (7) and (8). In our method, several conjugate pairs of
MEMS point sources are symmetrically placed around the principal point.

In an actual optical system, MEMS point sources need to be installed around the image sensor.
The imaging relationship of the equivalent optical path of self-calibration is shown in Figure 5. Let p1

and p2 be two installed point sources around the image sensor. To avoid influencing the imaging, p1

and p2 are installed on the same side of the image sensor. Let the position of point sources p1 and p2 be
`

xs1 , ys1

˘

and pxs2 , ys2q in the S coordinate system, respectively. Let their respective images p11 and p12 in
the D coordinate system be located at

`

xp1 , yp1

˘

and
`

xp2 , yp2

˘

, respectively. At the initial time, let the
angles between the principal ray emitted from p1 and p2 and the optical axis be α1 and α2, respectively.
Our system is designed with equal angles between the optical axis and principal rays emitted from p1

and p2. When the optical system is ideal and not maladjusted at the I position in Figure 6, α1 is equal
to α2 (α1 = α2). The optical system is not ideal if it is affected by the manufacture and adjustment of the
optical system. In an actual optical system or when maladjustment occurs (at the I’ and I” positions in
Figure 6) α1 is not equal to α2 (α1 ‰ α2).
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For the remote sensing optical camera, the focal length is relatively long [40,41]. The focal length
generally ranges from several meters to tens meters. Variations of the principal point generally
occur at the micrometer level in on-orbit working conditions. Therefore, as the specifications are
expressed as follows:

ˇ

ˇut
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ˇ

ˇ !

!

f t
0, f0, f t`1

0

)

and
ˇ

ˇvt
0 ´ v0

ˇ
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)

. The approximation of
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the angles between the principal rays emitted from p1 and p2 and the optical axis can be expressed as
αt`1

1 « αt
1 « α1, αt`1

2 « αt
2 « α2. For the optical system of the SSPIAP, the angles between the principal

rays of the MEMS point sources and the optical axis are approximately equal to the designed value.
From Equations (9) and (10), the following equation can be obtained:

«

a11 a12

a21 a22

ff«

ut
0

vt
0

ff

“

«

s1

s2

ff

(11)

where a11 “ 2dxxt
s1 ` 2usx0 dx

2
´ 2dx

2xt
p1, a12 “ 2dyyt

s1 ` 2vsx0 dy
2
´ 2dy

2yt
p1, a21 “ 2dxxt

s2 ` 2usx0 dx
2
´

2dx
2xt
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2
´ 2dy

2yt
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`

xt
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˘2
`
`
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˘2
´

´

xt
p2dx

¯2
´

´

yt
p2dy

¯2
, s2 “

`

xt
s2 ` usx0 dx

˘2
`
`

yt
s2 ` vsy0 dy

˘2
´

´

xt
p2dx

¯2
´

´

yt
p2dy

¯2
.

From Equation (11), the position of the principal point can be expressed as follows:

ut
0 “

s1a22 ´ s2a12

a11a22 ´ a21a12
, vt

0 “
s1a21 ´ s2a11

a12a21 ´ a11a12
(12)

From Equations (10) and (12), the principal distance can be expressed as follows:

f t
0 “

g

f

f

f

e

N
ř

i“1

´

xt
pi

dx ´ dx
s1a22´s2a12

a11a22´a21a12

¯2
`

N
ř

i“1

´

yt
pi

dy ´ dy
s1a21´s2a11

a12a21´a11a12

¯2

tan2pα1q ` tan2pα2q
(13)

where N is the number of MEMS point sources. We used N equal to 2. In this case, the variation of the

principal distance and point can be obtained as B f t
0
Bt “ f t`1

0 ´ f t
0, But

0
Bt “ ut`1

0 ´ ut
0, and Bvt

0
Bt “ vt`1

0 ´ vt
0.

α1, α2 and the positions of two point sources can be accurately calibrated at the adjustment stage of
the SSPIAP. The positions of two point source images can be calculated by the centroid extraction
algorithm. Therefore, the variations of the principal distance and point can be determined.

3. Experiment and Analysis

3.1. Simulation and Analysis

To verify the effectiveness of the proposed method, we used an optical design program, ZEMAX
(Zemax, LLC, Bellevue, WA, USA), to simulate calibration experiments. In ZEMAX, our input optical
system model parameters were as follows: the focal length was 2032 mm and the aperture diameter
was 203.2 mm. The Cassegrain optical system was adopted. The optical system was composed of
a primary mirror and a secondary mirror. Based on the optical system, a monitoring optical path of the
principal distance and the principal point was designed. A tertiary mirror was used in addition to the
secondary mirror. The optical rays are reflected from the mirror, go through the optical system again,
and are then concentrated on the CMOS detector. The designed optical path is shown in Figure 6.
In this figure, ZSm1 is a mirror that simulates the dichroic filter, ZSm2 and ZSm3 are the primary mirror
and secondary mirrors, respectively, and ZSm4 is a focal plane that simulates the MEMS sources.

The simulation experiment includes two steps. In the first step, the IOPs are calibrated without
maladjustment in the optical system. In the second step, different maladjustments are deliberately used
to calibrate the IOPs. In each step, the reference values of the principal distance and the principal point
are first calculated under different maladjustments. For a maladjusted optical system, the coordinate
positions from rays with different view fields to the image plane can be traced accurately. We used
the on-ground calibration method based on measuring angles to calibrate the reference value of the
principal distance and the principal point. The laboratory measuring angle method is widely used in the
calibration of IOPs of remote sensing cameras [42–44]. In this method, an uncalibrated optical camera is
placed on a precision turntable to capture the parallel lights of star points emitted by a collimator.
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where f is the principal distance, px/y is the position of the principal point in the x direction or the y 
direction, i is the number of measurement points, Wi is the measurement angle of the ith measurement 
point, and Li is the measurement height of the ith measurement point. 
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At different rotation angles of the turntable, the camera can obtain multiple positions of the star
points and their images from different field of views (FOVs). The recorded rotation angle and image
point positions are used to build an imaging geometrical equation between each star point and its
image. From the principle of camera distortion, an optical camera has its minimum distortion at its
principal point location [44,45]. A least squares method is used to solve the imaging geometrical
equation to calculate the principal distance and the principal point. This method is simple and has
high calibration accuracy. The calibration accuracy can reach the micrometer level [45,46]. As with the
ground calibration method of the principal distance and the principal point, we used a least squares,
multiple regression analysis to calculate the principal distance and the principal point of each test,
maladjusted system [46,47]. The principal distance and the principal point can be expressed as follows:
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where f is the principal distance, px/y is the position of the principal point in the x direction or the y
direction, i is the number of measurement points, Wi is the measurement angle of the ith measurement
point, and Li is the measurement height of the ith measurement point.

In the first step, we used two different methods to calculate the principal distance when the
optical system had no maladjustment (see the optical system in Figure 7). In our simulation, we used
ten reference points at different FOV positions to estimate the principal distances and points for the
on-ground method. The calculated results of the principal distance and the principal point in the
simulation condition when the optical system had no maladjustments are shown in Table 1. This table
presents the initial values of the principal distance and the principal point based on the two methods.
For the ground method, the calculated error was 0.000853 µm. This error was produced by least
squares estimation. This error can be accepted in our system. The initial values of the two methods
can be considered approximately equal.
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Table 1. Simulation calculation results without maladjustments.

Elements Ground Method Our Method Misadjustment (mm)

f (mm) 2031.999999 2032.000 0
∆f (mm) 8.527259 ˆ 10´7 0 0

U0x (mm) 0 0 0
U0y (mm) 0 0 0

∆U0x (mm) 0 0 0
∆U0y (mm) 0 0 0

In on-orbit working conditions, the optical system may possess a variety of maladjustments.
We set different maladjustments for the ZSm2. Using the same approach, we set ten reference points
in a valid FOV. In the second step, we simulated three main maladjustment situations. First, we set
maladjustments in the z-direction. We set twelve maladjustments of ZSm2 along the z-direction to
test the proposed method. The deviations of the ZSm2 mirror from its original position were from
0.010 mm to 0.06 mm. For different maladjustment values, Figure 7 shows the calculation results
using different methods. As shown in Figure 7, the principal point has not changed, but the principal
distance has changed. This phenomenon is caused by the translation of the ZSm2 mirror along the
optical axis direction. This case can be equivalent to a defocus phenomenon. In on-orbit working
conditions, the defocus phenomenon often occurs. This case simulates the most common disorder
situation. The variation of the principal distance can be accurately monitored, as shown in Figure 7.
The difference between the two methods was less than 0.008 µm and this is acceptable.
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vibration of principal point; and (d) calibration error of two methods.

Second, we set maladjustments in the y-direction and around the x-axis. In the y-direction, we set
nine maladjustments of ZSm2 to test the proposed method. The deviations of the ZSm2 mirror from
its original position were from 0.010 mm to 0.05 mm. Around x-axis, we set seven maladjustments of
ZSm2 to test the proposed method. The deviations of the ZSm2 mirror from its original position were
from 0.0001 degrees to 0.0012 degrees. Figures 8 and 9 show the calculation results using different
methods. Figures 8 and 9 indicate that the principal distance has not changed and the principal point
has changed.
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These results are due to the translation of the ZSm2 mirror away from the optical axis direction
and also the inclination toward the optical axis direction. These cases can be equivalent to a mismatch
between the primary mirror and secondary mirror in on-orbit working conditions. These phenomena
happen during on-orbit dynamic imaging. As shown in Figures 8 and 9, the error is less than 1 µm
under the different maladjustments, this is acceptable. Table 1 and Figures 7–9 show that our method
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can accurately calibrate the variation of the principal distance of the principal point. In Figures 7–9, the
calibration error is the difference between the two methods. In Figure 9, the calibration error shows
a linear growth because the larger maladjustments make larger deformations of the optical system and
the images. Compared with the error in the on-ground method, the error in our method is less than 1 µm.

3.2. Experiments

We set up an experimental system for integrated calibration with imaging to verify the proposed
method. Figure 10 shows the experimental calibration system.
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Figure 10. Experimental system.

The system included an optical camera, an auto-collimating filter, a processing circuit, a collimator,
an optical theodolite, and a high-accuracy turntable. The optical system was a co-axial Schmidt–Cassegrain
optical system (Celestron, Torrance, CA, USA). The designed value of the aperture diameter was
203.2 mm, and that for the focal length was 2032 mm, and the F/ratio of the optical system was 10.
The image sensor was a CMOS detector, and the image resolution was 1280 ˆ 1024 pixels. The MEMS
point sources and image sensor were installed on the focal plane. A collimator provided an infinite
target for the test system.

Firstly, we calibrated the reference value of the principal distance and principal point. The camera
controller set the imaging mode. The three-axis turntable was adjusted evenly using the level. The collimator
was also adjusted evenly. By adjusting the support tooling of the camera, and using the benchmark
prisms of the camera’s optical axis, the camera’s visual axis and collimator were moved to share
a common shaft. Star points of the collimator were imaged on the target CMOS sensor. The turntable
was revolved, and the rotation angle was recorded. The captured image was also recorded.
The processing circuit output star coordinates in real-time. Figure 11 shows the captured images.
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off. The MEMS point sources were lit when the camera controller executed the turn-on command. 
Figure 13 shows the captured images when two point sources were lit. Using the spot centroid 

Figure 11. Image at different angles. (a) is 0 degree; (b) is ´0.0225 degrees; (c) is ´0.04 degrees; (d) is
+0.04 degrees.

To avoid startup and pause vibration errors, the turntable was rotated at the same period. Images and
rotation angles were recorded in real-time. Figure 12 shows the centroid positions in a period.
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(c) is the image points 17–24; (d) is image points 25–30.

Based on the measured centroid position and rotation angle, least squares, two-multiplication
regression analysis was used to obtain the optimal estimation values of the IOPs. Table 2 shows the
calculation results.

Table 2. Calculation results of principal distance and principal point using ground methods.

Number Elements Reference Value

1 f (mm) 2032.1161
2 U0x (mm) –0.5856
3 U0y (mm) –0.9643

Secondly, we calibrated the principal distance and the principal point using our method. In the
SSPIAP, the camera controller set the calibration mode and switched the MEMS point sources on or off.
The MEMS point sources were lit when the camera controller executed the turn-on command. Figure 13
shows the captured images when two point sources were lit. Using the spot centroid algorithm, the
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position of images can be determined. The principal distance and the principal point were calculated
according to Equations (12) and (13).
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Table 3 shows the calculation results. The principal distance calibrated by our method was
2032.0818 mm and the standard deviation was 0.0343 mm. The deviation is a constant error. The error
was mainly be produced by the on-ground method error, calibration errors of positions (xs1,ys1) and
(xs2,ys2), centroid extraction error, and error in the installation of the focal plane. For the on-ground
method, the calibration accuracy was better than 5 µm [44,45]. The position accuracy of the spot image
is mainly determined by the centroid extraction algorithm. For the centroid extraction algorithm, the
measurement accuracy can reach 0.05 pixels. The pixel size of the image sensor is 5.3 µm in the SSPIAP
system. Thus, the extraction accuracy can reach 0.265 µm. The total standard deviation of the principal
distance and the principal point can be expressed as follows:
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where N is the number of point sources, and σxp and σyp are the measurement accuracies of the centroid
extraction algorithm in the x and y directions. That is, σxp = σyp = 0.265 µm. Based on Equations (16) and
(18), the total standard deviation of the principal distance and the principal point is less than 0.02 µm.
Therefore, the centroid extraction error was relatively small and can be neglected. The calibration
errors of positions (xs1,ys1) and (xs2,ys2) and the installation errors of the focal plane were controlled to
be less than 30 µm. However, these errors do not affect the monitoring of the relative variation of the
principal distance and the principal point.

Thirdly, we adjusted the motion of the secondary mirror to simulate on-orbit maladjustments of
the optical system. From analyzing the maladjustments of different elements of the optical system,
we know that the secondary mirror and primary mirror maladjustments have an effect on the focal
plane of the optical system. Given that the primary mirror is installed in the primary mirror room,
it has almost no maladjustment. Figure 14 shows the principal distance variation under different
maladjustments. In addition, we used the ground calibration method based on a least squares, multiple
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regression analysis as reference. The calibration deviation was less than 0.015 mm. The deviation
stems from the self-method error between methods under the maladjusted condition.

Table 3. Calculation results of principal distance and principal point using our method.

Number Elements Calibration Value

1 f (mm) 2032.0818
2 U0x (mm) –0.5387
3 U0y (mm) –0.9580
4 ∆f (mm) 0.0342
5 ∆U0x (mm) 0.0469
6 ∆U0y (mm) 0.0063
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Figure 14. Calibration testing under maladjusted condition.

In the experimental setup, the monitoring accuracy of the variation of the principal distance
and the principal point were mainly affected by turntable vibrations, environmental vibrations,
temperature, and airflows.

When the SSPIAP is working in a space environment, the centroid extraction and platform flutter
temperature are the primary error sources. In the SSPIAP system, we designed a special thermal
control system to maintain minimal changes in the temperature field of the optical system. Further, we
use a manganin material in a structure designed for vibration attenuation in the SSPIAP. The vibration
attenuation structure can significantly reduce the influence of flutter on the optical system. The centroid
extraction error mainly depends on the centroid extraction algorithm. The extraction accuracy of
our method is less than 0.05 pixels. In our SSPIAP system, the pixel size of the image sensor is at
the micrometer level. Thus, the extraction accuracy is less than 1 µm, and the error is acceptable
for the requirement of errors less than 50 µm. To test the monitoring accuracy of our method in
an approximation to the on-orbit environment, our experiment was performed in a laboratory with
constant temperature. Furthermore, the experimental turntable used a gas-floating vibration isolation
platform to avoid vibration disturbance. We used our method to monitor the variation of the principal
distance and the principal point in the static case. We processed tens of thousands of images to calculate
the monitoring accuracy. The variation of the principal distance in 2000 real-time seconds is shown in
Figure 15, while the corresponding variation of the principal point position is presented in Figure 16.
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Based on the statistical data in Figures 15 and 16, the mean square error formula is used to
calculate the monitoring accuracy. The monitoring accuracy of the principal distance can reach 2.4 µm.
The monitoring accuracy of the principal point can reach 2.6 µm and 3.9 µm in the x and y directions,
respectively. The SSPIAP has 5 m image positioning accuracy. It requires less than 50 µm calibration
accuracy of the principal distance and the principal point. The monitoring accuracy can reach the
micrometer level and meet the SSPIAP mapping requirements.

4. Conclusions

In this paper, we discussed a high-accuracy on-orbit calibration method or the IOPs of
an SSPIAP. We adopted an integrated method to build an auto-collimation self-calibration system.
An auto-collimation dichroic filter and MEMS point sources were integrated into the SSPIAP. First,
the point sources were installed on the focal plane, and we used the MEMS method to fabricate point
sources and package them with the image sensor; Second, we integrated the auto-collimation dichroic
filter into the optical systems of the SSPIAP; Third, a mathematical model of IOPs was built based on
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a geometrical imaging model; Fourth, the centroid extraction algorithm was used to process images to
extract the star point position to calculate the IOPs; Finally, we used ZEMAX to simulate the proposed
method and set up an experiment to verify the feasibility of our method. The monitoring accuracy
can reach micrometer levels. The proposed method can complete self-calibration without space and
time limitations in real-time. In addition, our method can be applied to other calibration methods to
improve their performance.
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