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Abstract: A hybrid approach composed by different types of fuzzy systems, such as the Type-1 Fuzzy
Logic System (T1FLS), Interval Type-2 Fuzzy Logic System (IT2FLS) and Generalized Type-2 Fuzzy
Logic System (GT2FLS) for the dynamic adaptation of the alpha and beta parameters of a Bee Colony
Optimization (BCO) algorithm is presented. The objective of the work is to focus on the BCO technique
to find the optimal distribution of the membership functions in the design of fuzzy controllers. We use
BCO specifically for tuning membership functions of the fuzzy controller for trajectory stability in
an autonomous mobile robot. We add two types of perturbations in the model for the Generalized
Type-2 Fuzzy Logic System to better analyze its behavior under uncertainty and this shows better
results when compared to the original BCO. We implemented various performance indices; ITAE,
IAE, ISE, ITSE, RMSE and MSE to measure the performance of the controller. The experimental
results show better performances using GT2FLS then by IT2FLS and T1FLS in the dynamic adaptation
the parameters for the BCO algorithm.

Keywords: bee colony optimization; fuzzy controller; fuzzy sets; uncertainty; dynamic adaptation;
membership functions; perturbation; autonomous mobile robot

1. Introduction

In 1965 Zadeh first proposed the concept of a fuzzy set (FS) [1]. His vision was set on giving more
control over decision making, and with his fuzzy logic an immeasurable amount of decision- making
situations could be easily modeled whereas hard logic, true or false, could not. This opened a new
era in decision making with FSs that have been evolving since its initial days, first starting out with
Type-1 Fuzzy Logic Systems (T1FLS), then coming into Interval Type-2 Fuzzy Logic Systems (IT2FLS)
and finally arriving to the current state of advanced form of FS, Generalized Type-2 Fuzzy Logic
Systems (GT2FLS).

In recent years, many works on control system stabilization have been published [2–4]. However,
all these control design methods require the exact mathematical models of the physical systems, which
may not be available in practice. On the other hand, fuzzy control has been successfully applied for
solving many nonlinear control problems. Some works related in automatic control are [5–10]. Fuzzy
logic or multi-valued logic is based on fuzzy set theory proposed in [1,11], which helps us in modeling
knowledge, through the use of if-then rules. In Interval Type-2 fuzzy systems, the membership
functions can now return a range of values, which vary depending on the uncertainty involved
in not only the inputs, but also in the same membership functions [12,13]. In Generalized Type-2
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fuzzy systems the uncertainty is depicted by a volume, and as such, being more capable of handling
uncertainty in the system. As GT2FS research is still fairly new, not much has been done as of yet,
some examples of advancements are shown in computing the centroid by means of the centroid-flow
algorithm [14], definition of the footprint of uncertainty [15], enhanced type-reduction [16], conversion
from IT2FS to GT2FS [3], computing with words for discrete GT2FS [17], and formation of GT2FS
based on information granule numerical evidence [18].

In 1975 Mamdani and Assilian were the first to develop fuzzy logic controllers (FLCs) which,
have been successfully applied in many real word applications [19], including cement kiln controllers,
water treatment systems, and automatic train operation control systems, industrial tools such as robot
arms, as well as in home appliances such as washing machines, vacuums, rice cookers, air conditioners,
microwaves, and refrigerators. There are two main advantages of FLC over other nonlinear controllers.
The first is the ability to incorporate the linguistic terms of input-output variables by using fuzzy
membership functions. Second, it can more effectively handle the uncertainties in the inputs and
state measurements [20,21]. Fuzzy controllers have the advantage that they can be adaptive when
disturbances in the model or the plant are present. Usually fuzzy controllers are used to test the
bio-inspired algorithms and observe their performance, for example; some works presented in this
regard can be found in [22–27].

Optimization is a science which finds the best values of the parameters of a problem that may take
under specified conditions. Optimization, in its most simple way, aims to obtain the relevant parameter
values, which enable an objective function to generate a minimum or a maximum value depending on
the problem. The objective function is the main component of an optimization problem [28].

The main idea of dynamic adjustment of parameters in algorithms or techniques involved with the
optimization is of key interest to some researchers; for example, in [29] a fuzzy parameter adaptation in
optimization of neural net training is presented, in [30] a fuzzy adaptive particle swarm optimization
is presented, in [31] a nonlinear inertia weight variation for dynamic adaptation in particle swarm
optimization is presented, in [32] an optimal design of fuzzy classification systems using PSO with
dynamic parameter adaptation through fuzzy logic is presented, in [33] a differential evolution with
dynamic adaptation of parameters of the optimization of fuzzy controller is presented. This is why
we consider as the main contribution of this research, the use of fuzzy sets as a powerful technique
to define the appropriate alpha and beta parameters in the BCO algorithm and thereby improve its
performance for the solution of complex problems.

The Bee Colony Optimization (BCO) metaheuristic has been successfully applied to various
engineering and management problems by Teodorović et al. [34–36]. It has been shown that the BCO
algorithm is a good technique in solving complex problems, and to mention some current research in
this regard; in [37] a bee colony optimization algorithm applied to job shop scheduling is presented by
Chong et al., another work can be found in [38] where an efficient bee colony optimization algorithm
for the traveling salesman problem using frequency-based pruning is presented by Wong et al., in [39] a
bee colony optimization based-fuzzy logic-PID control design of electrolyzer for microgrid stabilization
presented by Chaiyatham et al. and in [40] the design and development of an intelligent control by
using bee colony optimization technique is presented by Tiacharoen et al.

This paper considers several experiments in the simulation of control problems with a type-1
fuzzy logic controller (T1FLC) and BCO for minimizing the error in the simulation of the trajectory
controlling of an autonomous mobile robot. In this case, the fuzzy bee colony optimization shows
better results based on error minimization when the generalized type-2 fuzzy logic system is used
to adapt the alpha and beta parameters for BCO. We realized the comparison with the Original BCO
and the Fuzzy BCO algorithm, using the three type fuzzy sets, for observing the behavior and the
improvement that Fuzzy BCO provides when different levels of noise are applied in the model, in this
case GT2FLS can handle the uncertainty to get a better stabilization of the autonomous mobile robot.

The rest of the paper is organized as follows. Section 2 describes some basic concepts of fuzzy sets
and briefly describes generalized type-2 fuzzy logic systems. Section 3 shows fuzzy logic controllers.
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Section 4 outlines the problem statement that is used in the simulations. Section 5 describes the
traditional bee colony optimization (BCO) algorithm and fuzzy BCO. Section 6 shows the simulation
results with the dynamic adaptation in the parameters of BCO with different fuzzy systems. Section 7
shows the discussion of results. Finally, Section 8 offers some conclusions of this work.

2. Fuzzy Sets

2.1. Type-1 Fuzzy Logic System

A type-1 fuzzy set in the universe X is characterized by a membership function µA (x)
taking values on the interval [0, 1] and can be represented as a set of ordered pairs of an
element and the membership degree of an element to the set and are defined by the following
Equation (1) [1,4,20,21,41,42]:

A = {(x,µA (x)) | x ∈ X} (1)

where µA : X→ [0, 1] .
In this definition µA (x) represents the membership degree of the element x ∈ X to the set A.

In this work we are going the use the following notation: A (x) = µA (x) for all x ∈ X. Figure 1 shows
the Type-1 Fuzzy Logic System.
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2.2. Interval Type-2 Fuzzy Logic System

Based on Zadeh’s ideas, Mendel et al. presented the mathematical definition of a type-2 fuzzy set,
as follows [20,21].

An Interval Type-2 Fuzzy Set Ã, denoted by µÃ(x) and µÃ(x) is represented by the lower and
upper membership functions of µǍ (x). Where x ∈ X. In this case, Equation (2) shows the definition
of an IT2FS [43–49]:

Ã = {((x, u) , 1) | ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (2)

where X is the primary domain, Jx is the secondary domain. All secondary degrees
(
µÃ (x, u)

)
are

equal to 1. Figure 2 shows the representation of an Interval Type-2 Fuzzy Logic System.
The output processor includes a type-reducer and defuzzifier that generates a type-1 fuzzy set

output (from the type-reducer) or a crisp number (from the defuzzifier) [46,49]. An Interval type-2 FLS
is also characterized by IF-THEN rules, but their fuzzy sets are now of interval type-2 form. The Type-2
Fuzzy Set can be used when circumstances are too uncertain to determine exact membership degrees,
as is the case with the membership functions in a fuzzy controller that can take different values and
we want to find the distribution of membership functions that show better results in the stability of the
fuzzy controller [50,51].
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2.3. Generalized Type-2 Fuzzy Logic System

With GT2FLS the logic is generally the same as for T1FLS and IT2FLS, but their operations are
somewhat different, due to the nature of GT2FS [51,52]. Generalized Type-2 Fuzzy Sets are defined by
the following Equation (3):

˜̃A =
{(

(x, u) ,µÃ (x, u)
)
| ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]

}
(3)

where Jx ⊆ [0, 1], x is the partition of the primary membership function, and u is the partition of the
secondary membership function. In Figure 3 we can find a representation of a generalized type-2
membership function, and in Figure 4, the footprint of uncertainty (FOU) is illustrated, which is
associated with the third dimension and allows a better modeling of real world uncertainty.
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It must be noted that there is a small difference in notation when compared with Type-1 and
Interval Type-2, this is, T1FS and IT2FS use the notation µ (x) , but GT2FS uses fx (u), in the vertical
axis, and this is due to the complexity involved in GT2FLS in comparison with the others, as well
as how GT2FLS has been described in the literature [53]. Figure 5 shows the representation of a
Generalized Type-2 Fuzzy Logic System.
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2.3.1. Fuzzification

The fuzzifier maps crisp inputs into generalized type-2 fuzzy sets to process within the FLC.
In this paper, we will focus on the type-2 singleton fuzzifier as it is fast to compute and, thus, suitable
for the generalized type-2 FLC real-time operation. Singleton fuzzification maps the crisp input into a
fuzzy set, which has a single point of nonzero membership. Hence, the singleton fuzzifier maps the
crisp input x′p into a type-2 fuzzy singleton, whose MF is µÃp

(
xp
)
= 1/1 for xp = x′p and µÃp

(
xp
)
= 0

for all xp 6= x′p for all p = 1, 2, . . . , P, where P is the number of FLS inputs [54].

2.3.2. Inference

Once the input and output variables are defined, with their respective membership functions,
the inference process is performed in the system, and for this the following steps are needed:

Define the Fuzzy Rules: The structure of the rules in the generalized Type-2 FLS is the standard
Mamdani-type FLS rule structure used in the Type-1 FLS and an interval Type-2 FLS, but in this paper,
we assume that the antecedents and the consequents sets are represented by generalized Type-2 fuzzy
sets. So for a Type-2 FLS with p inputs x1 ε X1, . . . , xp ∈ XP and one output y ∈ Y, Multiple Input
Single Output (MISO), if we assume there are M rules, the kth rule in the generalized type-2 FLS can
be written as follows [52–54]:

Rk : IF x1 is F̃k
1 and . . . and xp is F̃k

p , THEN y is G̃k (4)



Sensors 2016, 16, 1458 6 of 27

The inference of a GT2FLS can be simplified into two main operations, meet and join, as shown in
Equations (5) and (6), respectively

µÃ(x, u) t µB̃(x, w)= {(v, fx(u)∗̃ fx(w)) | v ∈ u ∨ w, u ∈ Ju
x ⊆ [0, 1], w ∈ Jw

x ⊆ [0, 1]} (5)

µÃ(x, u) u µB̃(x, w)= {(v, fx(u)∗̃ fx(w)) | v ∈ u∧w, u ∈ Ju
x ⊆ [0, 1], w ∈ Jw

x ⊆ [0, 1]} (6)

2.3.3. α-Planes Representation

The α-plane for a generalized T2 FLS, in this case Ã, is denoted by Ãα, and it is the union of all
primary membership functions of Ã, which secondary membership degrees are higher or equal to
α (0 ≤ α≤ 1) [45,46]. The equation of an alpha plane is represented by Equation (7). In Figure 6 the
representation of an alpha plane is illustrated [55–57]:

Ãα = {(x, u) , µÃ (x, u) ≥ α|∀x ∈ X, ∀u ∈ JX ⊆ [0, 1]} (7)
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2.3.4. Type Reduction

Type reduction is performed by applying the type reductor of the Karnik and Mendel
algorithm [43,48], and this reduction is given by the following Equations (8) and (9):

yl
∝
(

x′
)
=

∑L
k = 1 Ωk

∝ (x′) yi
l + ∑M

j = L + 1 Ωj
∝ (x′) yj

l

∑L
k = 1 Ωk

∝ (x′) + ∑M
j = L + 1 Ωj

∝ (x′)
(8)

yr
∝
(

x′
)
=

∑R
k = 1 Ωk

∝ (x′) yk
r + ∑M

k = R + 1 Ωk
∝ (x′) yk

r

∑R
i = 1 Ωi

∝ (x′) + ∑M
i = R + 1 Ωi

∝ (x′)
(9)

The results of the alpha planes are integrated by the following Equations (10) and (11) [55,56]:

ŷl
j
(

x′
)
=

∑N
i = 1 ∝∝i

i yl
j (x′)

∑N
i = 1 ∝i

(10)

ŷr
j
(

x′
)
=

∑N
i = 1 ∝∝i

i yr
j (x′)

∑N
i = 1 ∝i

(11)
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2.3.5. Defuzzification

After realizing the type reduction and integrating the results of all the alpha planes,
the defuzzification is performed by using the average of yl and yr, to obtain the defuzzified output of
a generalized type-2 non-singleton FLS [58,59]:

ŷj
(

x′
)
=

ŷl
j (x′) + ŷr

j (x′)

2
(12)

3. Fuzzy Controllers

Early, a Fuzzy Logic Controller (FLC) was designed only using type-1 fuzzy sets in representing
the input-output uncertainties. However, these are uncertainties in the meaning of words in the
antecedents and consequents of the rules, the histogram values of the consequents extracted from a
group of experts, and the noisy data as well as measurements [2–4,33,41,42,59]. Type-1 fuzzy sets have
limited ability to handle such uncertainties because they apply crisp membership functions. In Figure 7
the generic representation of the FLC is illustrated.
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The robot model assumes that the motion of the free wheel can be ignored in its dynamics,
as shown in Equations (13) and (14):

M (q)
.
v + C

(
q,

.
q
)

v + Dv = τ + P (t) (13)

where:

q = (x, y, θ)T is the vector of the configuration coordinates,
υ = (v, w)T is the vector of velocities,
τ = (τ1, τ2) is the vector of torques applied to the wheels of the robot where τ1 and τ2 denote the
torques of the right and left wheel, respectively.
P ∈ R2 is the uniformly bounded disturbance vector,
M (q) ∈ R2×2 is the positive-definite inertia matrix,
C
(
q,

.
q
)

ϑ is the vector of centripetal and Coriolis forces, and
D ∈ R2×2 is a diagonal positive-definite damping matrix.

The kinematic system is represented by Equation (14):

.
q =

 cos θ

sin θ

0

0
0
1


︸ ︷︷ ︸

J(q)

[
v
w

]
︸ ︷︷ ︸

υ

(14)

where:

(x,y) is the position in the X − Y (world) reference frame,
θ is the angle between the heading direction and the x-axis,
v and w are the linear and angular velocities.

Furthermore, Equation (15) shows the non-holonomic constraint which this system has, which
corresponds to a no-slip wheel condition preventing the robot from moving sideways:

.
ycosθ − .

xsinθ = 0 (15)

The system fails to meet Brockett’s necessary condition for feedback stabilization, which implies
that no continuous static state-feedback controller exists that can stabilize the closed-loop system
around the equilibrium point.

4.2. Characteristics of the Fuzzy Controller

The main problem to study is controlling the stability of the trajectory in a mobile robot.
The Membership functions are for the two inputs to the fuzzy system: the first is called ev (angular
velocity), which has three membership functions with linguistic values of N (Negative), Z (Zero)
and P (Positive). The second input variable is called ew (linear velocity) with three membership
functions with the same linguistic values. The type-1 fuzzy logic controller has two outputs called T1
(Torque 1), and T2 (Torque 2), which are composed of three triangular membership functions with the
following linguistic values, respectively: N (Negative), Z (Zero), P (Positive), and in Figure 9 we show
the representation of the input and output variables.
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The knowledge about the problem provides us with nine fuzzy rules for control. The combination
of the rules is shown in Table 1 and Figure 10 shows the model of the Fuzzy Logic Controller.

Table 1. Fuzzy Rules used by the Fuzzy Controller.

# Rules
Input 1 Input 2 Output 1 Output 2

ev ew T1 T2

1 N N N N
2 N Z N Z
3 N P N P
4 Z N Z N
5 Z Z Z Z
6 Z P Z P
7 P N P N
8 P Z P Z
9 P P P P

Angular velocity (ev) and negative and linear velocity (ew).

The rules are selected based on the following references [3,4,59]. We choose the initial FIS with
the nine rules set out in Table 1. For example, the third rule; when the angular velocity (ev) is Negative
and linear velocity (ew) is Positive then the output Torque 1 (T1—Wheel right) is Negative (it indicates
no movement) and Torque 2 (T2—Wheel left) is Positive (it indicates movement). Each torque has
independent functions with a direct relationship that depending on the ev and ew values.
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5. Bee Colony Optimization

The Bee Colony Optimization algorithm has recently received many improvements and
applications. The BCO algorithm mimics the food foraging behavior of swarms of honey bees [35].
Honey bees use several mechanisms like the waggle dance to optimally locate a food source and search
for new ones. It is a very simple, robust and population based stochastic optimization algorithm [36].

5.1. Traditional Bee Colony Optimization Algorithm

The communication between individual insects in a colony of social insects has been well known.
The BCO is inspired by the bees´ behavior in nature. The basic idea behind the BCO is to create
the multi agent system (colony of artificial bees) capable to successfully solve difficult combinatorial
optimization problems. The artificial bee colony behaves partially alike, and partially differently from
bee colonies in nature [34–40,42]. The algorithm parameters, whose values need to be set prior the
algorithm execution are; B indicates the number of bees in the hive and NC indicates the number of
constructive moves during one forward pass. In the beginning of the search, all the bees are in the hive.

The basic steps of the BCO algorithm are shown in Table 2. The BCO algorithm is based on
Equations (16)–(19):

Pij,n =
[ρij,n]

α.[ 1
dij
]
β

∑
j ∈ Ai,n

[ρij,n]
α.[ 1

dij
]
β

(16)

Di = K.
P fi

P fcolony
(17)

P fi =
1
LI

, Li = Tour Length (18)

P fcolony =
1

NBee

NBee

∑
i = 1

P fi (19)

Table 2. Basic Steps of the BCO Algorithm.

Pseudocode of BCO

1. Initialization: an empty solution is assigned to every bee;
2. For every bee: //the forward pass

(a) Set k = 1; //counter for constructive moves in the forward pass;
(b) Evaluate all possible constructive moves;
(c) According to evaluation, choose on move using the roulette wheel;
(d) k = k + 1; if k ≤ NC goto step b.

3. All bees are back to the hive; //backward pass starts.
4. Evaluate (partial) objective function value for each bee;
5. Every bee decide randomly whether to continue its own exploration and become a recruiter, or to

become a follower;
6. For every follower, choose a new solution from recruiters by the roulette wheel;
7. If solutions are not completed goto step 2;
8. Evaluate all solutions and find the best one;
9. If stopping condition is not met goto step 2;

10. Output the best solution found.

Equation (16) indicates the probability of a bee k located on a node i selects the next node denoted
by j, where, Nki is the set of feasible nodes (in a neighborhood) connected to node i with respect to bee
k, and ρij is the probability to visit the following node. Note that the β is inversely proportional to the
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distance of the node; dij represents the distance of node i until node j, for this algorithm indicate the
total the dance that a bee have in this moment. Finally, α is a binary variable that is used to find better
solutions in the algorithm. Equation (17) represents that a waggle dance will last for a certain duration,
determined by a linear function, where K denotes the waggle dance scaling factor, Pfi denotes the
profitability scores of bee i as defined in Equation (18) and Pfcolony denotes the bee colony’s average
profitability as in Equation (19) and is updated after each bee completes its tour. For this research the
waggle dance is represented by the mean square error (MSE), which it is the representation of the
fitness function in the fuzzy control analyzed, for each iteration in BCO algorithm a MSE is found, the
main objective is to find the smallest error can stabilize the trajectory of an autonomous mobile robot.
In the BCO algorithm, a bee represents the values of the distribution of the membership functions.
The design of the T1FLS for the mobile robot controller has trapezoidal and triangular membership
functions in the inputs and outputs (see Figure 9), giving a total of 40 values.

5.2. Fuzzy Bee Colony Optimization Algorithm

In the BCO algorithm the waggle dance represents the intensity with which a bee finds a possible
good solution. If the intensity of the waggle dance is large this means that the solution found by
the bee is the best of all the population [60]. For this work the waggle dance is represented by the
mean square error (MSE) that all models find once the simulation in the iteration of the algorithm is
done [41,42]. For measuring the iterations of the algorithm, it was decided to use the percentage of
iterations as a variable, i.e., when starting the algorithm the iterations will be considered “low”, and
when the iterations are completed it will be considered “high” or close to 100%. We represent this idea
using Equation (20) [32]:

Iteration =
Current Iteration

Maximum of Iterations
(20)

The diversity measure is defined by Equation (21), which measures the degree of dispersion of the
bees, i.e., when the bees are closer together; there is less diversity as well as when bees are separated
then the diversity is higher. As the reader will realize the equation of diversity can be considered as
the average of the Euclidean distances between each bee and the best bee. The main objective of using
diversity is to provide the BCO algorithm with the ability to avoid getting trapped in local minimum;
this is because the diversity represents the situation when the bees are not separated in the search
space. This behavior is controlled with the rules that were designed with the Generalized Type-2 Fuzzy
Logic System [32]:

Diversity(S(t)) =
1
ns

nx

∑
i = 1

√
Xij(t)− X j(t))2 (21)

where t indicates the current iteration, ns indicates the size of the population, i represents the bee,
nx indicates the number of solutions, j represents the next solution in the space search, Xij indicates
solution j of the bee i, finally, Xj represents solution j of the best bee in the space search.

The fitness function in the BCO algorithm is calculated with the Mean Square Error and is shown
in Equation (22). For each Follower Bee for N cycles, the Type-1 FLS design for the BCO algorithm is
evaluated and the objective is to minimize the error:

MSE =
1
n

n

∑
i = 1

(Yi −Yi)
2 (22)

The distribution of the membership functions in the inputs and outputs is realized in a symmetrical
way. The design of the input and output variables can be appreciated in Figures 11–13 for the Type-1
FLS, Interval Type-2 FLS and Generalized Type-2 FLS, respectively. The fuzzy rules are shown
in Table 3.
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Table 3. Rules for the Fuzzy BCO with dynamic adaptation of the beta and alpha parameter values.

# Rules
Input 1 Input 2 Output Output

Iteration Diversity Beta Alpha

1 Low Low High Low
2 Low Medium MediumHigh Medium
3 Low High MediumHigh MediumLow
4 Medium Low MediumHigh MediumLow
5 Medium Medium Medium Medium
6 Medium High MediumLow MediumHigh
7 High Low Medium High
8 High Medium MediumLow MediumHigh
9 High High Low High

Various experiments were previously realized in which the idea is to explore the behavior of the
BCO algorithm. The interesting factor that was found is that we need to start with high exploration
and thus, the proposed methodology is able to analyze better all the search space.

To start the BCO algorithm, the iteration is low and the diversity is low, this is because the
initialization of the position of the bees is set randomly in steps 1 of the BCO algorithm. This reasoning
that is used for realizing the Rule number 1 which is: “If Iterations is Low and Diversity is Low then Beta is
High and Alpha is Low”. The high value for beta represents that the bees should realize high exploration
and the value low of alpha represents that the bees should have little exploitation in BCO algorithm.
On the other hand, when the Iterations are high (last iterations of the BCO algorithm) the bees have a
high diversity (bees are separated) and the value of beta is low to obtain low exploration and the value
of alpha is high to obtain a better exploitation in the problem. This reasoning is used for realizing Rule
number 9, which is: “If Iterations is High and Diversity is High then Beta is Low and Alpha is High”.
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The proposed general flowchart of BCO is illustrated in Figure 14, where “ScoutBees” indicates
the size of population, “NC” represents the number of constructive moves during one forward pass
and “FollowerBees” represents each bee that explores the possible solutions.Sensors 2016, 16, 1458 16 of 28 
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6. Results

Experimentation was performed with various external perturbation scenarios. Two specific noise
generators are used: band-limited white noise and pulse generated noise. The height of the Power
Spectral Density of the band-limited white noise of power is set to (0.5, 1), sample time of (0.5, 1),
and delay of 1000; and the amplitude is set to (0.5, 1), period in seconds of 1, pulse width (%) is set to
(0.5, 1) and phase delay is set to 1000, respectively, for the pulse generated noise.

We use the problem of controlling a trajectory of an autonomous mobile robot, the test criteria is a
series of Performance Indices; where the Integral Square Error (ISE), Integral Absolute Error (IAE),
Integral Time Squared Error (ITSE), Integral Time Absolute Error (ITAE) and Root Mean Square Error
(RMSE) are used, respectively shown in Equations (23)–(27):

ISE =

∞∫
0

e2 (t) dt (23)

IAE =

∞∫
0

|e (t)| dt (24)



Sensors 2016, 16, 1458 16 of 27

ITSE =

∞∫
0

e2 (t) tdt (25)

ITAE =

∞∫
0

|e (t)| tdt (26)

ε =

√√√√ 1
N

N

∑
t = 1

(Xt − X̂t)

2

(27)

The BCO algorithm was configured with the parameters listed in Table 4.

Table 4. Configuration parameters of the BCO algorithm.

Parameter Values

Population 50
Employed Bee 30

Iterations 30
Alpha Dynamic
Beta Dynamic

The results of the simulations for the problem are presented in Table 5, which shows the errors
for each performance index of 30 experiments for the autonomous mobile robot controller using the
traditional BCO, and the alpha and beta values are set to 0.5 and 2.5, respectively. The results in Table 5
were ordered with respect to the minimization of the MSE.

Table 5. Simulation errors with the traditional BCO algorithm without a level of noise.

No.
Performance Index

ITAE ITSE IAE ISE MSE RMSE TIME (Minutes)

01 2000.504 800.392 40.048 16.051 0.002 0.841 5:08
02 1943.814 777.649 39.342 15.819 0.008 0.096 4:10
03 1934.216 773.967 39.258 15.758 0.019 1.866 6:44
04 1990.523 796.011 39.876 16.023 0.020 0.801 4:23
05 1950.637 780.445 39.574 15.893 0.030 0.369 5:56
06 1964.311 785.927 39.482 15.884 0.043 0.175 5:03
07 1966.415 786.696 39.695 15.932 0.049 0.420 5:27
08 1969.791 788.537 39.582 16.039 0.074 0.236 5:36
09 1996.253 798.623 39.893 16.002 0.111 0.138 12:20
10 1985.638 794.689 39.821 16.101 0.125 1.887 5:25
11 1985.033 794.243 39.813 16.008 0.170 2.437 4:42
12 1990.986 823.919 39.946 16.462 0.360 5.023 4:27
13 1910.116 764.161 39.012 15.650 0.452 0.452 4:14
14 2002.708 802.336 40.055 16.056 0.758 0.796 7:28
15 1982.331 802.564 39.941 16.168 0.764 4.370 4:45
16 1964.583 786.031 39.489 15.876 1.108 1.722 4:31
17 1933.323 773.438 39.277 15.784 2.412 14.823 6:07
18 1993.029 797.686 39.944 15.988 3.375 5.093 5:20
19 1942.634 777.156 39.332 15.791 3.538 3.765 5:46
20 1991.067 796.604 39.833 15.991 3.735 4.025 4:26
21 1921.713 768.716 39.246 15.724 4.688 5.050 5:20
22 1973.170 789.419 39.682 15.963 4.843 7.021 6:11
23 2000.093 800.126 40.012 16.054 7.117 15.322 5:30
24 1963.144 785.513 39.654 15.899 10.831 14.964 6:07
25 2025.914 834.576 40.595 16.735 13.326 23.153 5:22
26 1872.314 749.050 38.658 15.531 14.049 17.266 6:36
27 1989.600 796.013 39.747 15.977 15.535 18.916 7:10
28 1999.003 845.801 40.053 16.996 15.741 15.750 5:22
29 1935.925 776.054 39.231 15.813 21.458 21.458 6:52
30 1943.784 777.582 39.409 15.848 27.951 37.567 7:21

Average 1967.419 790.797 39.650 15.994 5.090 7.527
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In Table 5 can be noted that the best value for the MSE was of 0.002. The simulation results in
Table 5 are obtained with the traditional BCO. The main goal of the experiments is to observe the
values of alpha and beta in the algorithm to compare with the results of the proposed method, as well
as to observe the results with the traditional BCO algorithm with the considered problem. Figure 15
shows the behavior of the MSE when different levels of noise are applied in the traditional BCO.
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With the base FLS the distribution of membership functions detailed in Figure 9. The behavior
in the simulations is shown in Figure 16 with a perturbation in the model of pulse generated with
value of 1.

Sensors 2016, 16, 1458 18 of 28 

 

22 1973.170 789.419 39.682 15.963 4.843 7.021 6:11 
23 2000.093 800.126 40.012 16.054 7.117 15.322 5:30 
24 1963.144 785.513 39.654 15.899 10.831 14.964 6:07 
25 2025.914 834.576 40.595 16.735 13.326 23.153 5:22 
26 1872.314 749.050 38.658 15.531 14.049 17.266 6:36 
27 1989.600 796.013 39.747 15.977 15.535 18.916 7:10 
28 1999.003 845.801 40.053 16.996 15.741 15.750 5:22 
29 1935.925 776.054 39.231 15.813 21.458 21.458 6:52 
30 1943.784 777.582 39.409 15.848 27.951 37.567 7:21 

Average 1967.419 790.797 39.650 15.994 5.090 7.527  

 

Figure 15. Behavior of the traditional BCO with different perturbation in the model. 

With the base FLS the distribution of membership functions detailed in Figure 9. The behavior 
in the simulations is shown in Figure 16 with a perturbation in the model of pulse generated with 
value of 1. 

 

Figure 16. Trajectory in the autonomous mobile robot controller with base FLS with perturbation in 
the model. 
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the model.

Figure 17 shows similar simulation errors when the levels of noise are applied in the model,
the stabilization in the trajectory in autonomous mobile robot is shown in Figure 17 with the best MSE
using the two types of perturbations in the model with the value of 1 and the traditional BCO.
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Figure 17. Trajectory in the autonomous mobile robot controller, (a)Traditional BCO; (b) BCO algorithm
applied perturbation called band-limited with value of 1; (c) BCO algorithm applied perturbation
called pulse generator with value of 1.

Table 6 shows the average of 30 experiments, standard deviation (SD), the best and the worst of
the simulation errors for the four methods: Traditional BCO, Fuzzy BCO with Type-1 Fuzzy Logic
System (FLS), Fuzzy BCO with Interval Type-2 FLS and Fuzzy BCO with Generalized Type-2 FLS
without applying perturbation in the model. We used the MSE as the fitness function in the Bee Colony
Optimization algorithm.

Table 6 shows that using the traditional method the average MSE was of 5.090 and with
Generalized Type-2 FLS was 6.118 using the dynamic adjustment in alpha and beta, which tells us that
if we do not apply perturbation in the model the dynamic adjustment do not provide better results
compared to the traditional BCO for the stabilization of the autonomous mobile robot. The alpha
and beta values found by Fuzzy BCO with GT2FLS are 2.601 and 0.467, respectively. We applied
perturbation in the model, and this is a way of analyzing uncertainty in the fuzzy sets. Table 7 shows
results with the pulse generator with a value of 0.5 for each methodology used.
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Table 6. Simulation results without perturbation in the model.

Performance Index

Methods

Traditional
BCO

Fuzzy BCO
with Type-1

FLS

Fuzzy BCO
with Interval
Type-2 FLS

Fuzzy BCO with
Generalized
Type-2 FLS

ITAE 1967.419 1834.635 1890.023 1918.058

ITSE 790.797 744.277 773.802 779.201

IAE 39.650 37.054 38.416 38.918

ISE 15.994 15.098 15.770 15.887

MSE 5.090 2.599 4.059 6.118

RMSE 7.527 5.416 7.385 8.352

MSE

Standard Deviation 7.276 3.322 5.965 13.000

Best 0.002 0.004 0.006 0.003

Worst 27.951 13.132 24.411 66.507

Beta 2.5 (Fixed) 3.074 2.599 2.601

Alpha 0.5 (Fixed) 0.661 0.466 0.467

Table 7. Simulation results with pulse generator perturbation in the model.

Performance Index

Methods

Traditional
BCO

Fuzzy BCO
with Type-1

FLS

Fuzzy BCO
with Interval
Type-2 FLS

Fuzzy BCO with
Generalized
Type-2 FLS

ITAE 1974.966 1951.805 1893.691 1895.279

ITSE 795.631 785.731 762.295 759.013

IAE 39.340 37.545 38.242 38.269

ISE 16.110 15.945 15.456 15.380

MSE 2.601 3.490 3.361 2.467

RMSE 4.460 7.478 6.750 8.149

MSE

Standard Deviation 3.764 4.875 4.122 8.313

Best 0.018 0.001 0.034 0.007

Worst 14.048 23.393 4.122 40.853

Beta 2.5(Fixed) 2.992 2.812 2.601

Alpha 0.5(Fixed) 0.784 0.494 0.467

Table 7 shows that using the traditional method with perturbation in the model the average MSE
was 2.601 and with Generalized Type-2 FLS was 2.467 using the dynamic adjustment in alpha and beta
values, which tells us that if we apply perturbation in the model the dynamic adjustment produces
better results compared to the traditional BCO for the stabilization of the autonomous mobile robot.
The minimum value of MSE was 0.001 for the Fuzzy BCO with Type-1 FLS. The best alpha and beta
values found by GT2FLS are 2.601 and 0.467, respectively.

Figure 18 shows comparative results when applying a pulse generator with a value of 1 in the
model. The MSE is shown for comparison.
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Figure 18 shows that the best error is found by GT2FLS with a value of 0.0001. It is important to
mention that GT2FLS starts with a low error, but the stabilization in the trajectory of the autonomous
mobile robot is high compared to other methods.

As an example of the relation between noise and the FLS performance, Figure 19 shows these
relations for each type of performance index used, where in all accounts FBCO with GT2FLS is
somewhat better with respect to Fuzzy BCO with IT2FLS and then to Fuzzy BCO with T1FLS.
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FBCO-Interval Type-2 Fuzzy Logic System and FBCO-Generalized Type-2 Fuzzy Logic System are
used. (a) ITAE; (b) ITSE; (c) IAE; and (d) ISE.
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Two scenarios in the experiments were changed, the first is to observe the behavior of the Interval
Type-2 FLS, a reduction in the size of the Footprint Uncertainty (FOU) to a value of 0.5 was realized.
In experiments previously performed, the value of FOU was set to 0.9. The second is to minimize the
value of the FOU to 0.5 and also, increase the value of the volume (depth) of a generalized membership
function, the value set in previous experiments was of 0.5, for these experiments we change it to 1,
which indicates that we have more secondary functions memberships to evaluate with the Generalized
Type-2 FLS. The averages of 30 experiments are presented in Table 8.

Table 8. Simulation results minimizing Footprint Uncertainty (FOU) and increasing volume.

Method Level of Noise
Performance Index

ITAE ITSE IAE ISE MSE RMSE SD Best MSE Worst MSE

Traditional
BCO

N/A 1967.41 790.79 39.65 15.99 5.09 7.52 7.27 0.002 27.95
Band-Limited = 1 1878.92 782.34 37.81 15.76 2.63 5.60 3.99 0.059 16.89

Pulse Generator = 1 1965.27 972.43 39.56 16.02 3.91 6.49 5.21 0.008 18.65

FBCO
with

IT2FLS

N/A 1893.69 762.29 38.24 15.45 3.36 6.75 4.12 0.03 15.43
Band-Limited = 1 1825.72 762.65 39.99 15.45 3.18 6.59 3.79 0.02 17.17

Pulse Generator = 1 1961.68 788.96 39.58 15.98 4.04 7.42 5.78 0.004 26.49

FBCO
with

GT2FLS

N/A 1834.63 744.27 37.05 15.09 2.59 5.14 3.32 0.004 13.13
Band-Limited = 1 1935.24 806.40 38.85 16.21 2.95 5.11 3.67 0.024 15.77

Pulse Generator = 1 1973.42 799.61 39.75 16.16 3.69 5.62 4.89 0.001 21.99

Table 8 shows that when levels of noise are used in the model, the stabilization of the autonomous
mobile robot is better with the Fuzzy BCO with GT2FLS compared to the traditional BCO. The standard
deviation is smaller, which indicates that the results are similar. The best MSE error found was by
FBCO-GT2FLS with a value of 0.0001. The behavior of the trajectory of the autonomous mobile robot is
shown in Figure 20 with perturbation (pulse generator of 1) in the model. The Best MSE is also shown
in Figure 20.
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The convergence of the Fuzzy BCO with Generalized Type-2 FLS with dynamic alpha and beta
values is shown in Figure 21.Sensors 2016, 16, 1458 23 of 28 
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The best distribution in membership functions found by FBCO with Generalized Type-2 FLS is 
shown in Figure 22. With the objective to observe the performance that a Generalized Type-2 FLS has 
with respect to IT2FLS, T1FLS and Traditional BCO. The best FLS found by each method using 
simulations without perturbation in the model that was selected. We added more perturbation such 
as; a pulse generator of amplitude of 5 and pulse width of 5. The result of trajectory in the autonomous 
mobile robot is shown in Figure 23. 
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The best distribution in membership functions found by FBCO with Generalized Type-2 FLS is
shown in Figure 22. With the objective to observe the performance that a Generalized Type-2 FLS
has with respect to IT2FLS, T1FLS and Traditional BCO. The best FLS found by each method using
simulations without perturbation in the model that was selected. We added more perturbation such as;
a pulse generator of amplitude of 5 and pulse width of 5. The result of trajectory in the autonomous
mobile robot is shown in Figure 23.
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To observe the efficiency of proposed method, a different trajectory is shown in Figure 24,
where we have shown the best experiment with FBCO with GT2FLS and the best experiment of
the Traditional BCO used the perturbation pulse generator with value of 0.5 (see Table 7).
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With a linear trajectory, in Figure 24 the proposed method (a) the pink line (robot trajectory) is
closest to the yellow line (desired trajectory). This simulation is reflected with the MSE that the FBCO
with GT2FLS found with a value of 0.007 compared to the Traditional BCO (Figure 24b) that had the
best MSE of 0.018 with perturbations in the model.

7. Discussion

Every problem that has been analyzed required the optimal parameters for an optimization
algorithm. For this reason is necessary to realize several experiments to meet these parameters. In this
work, we realized a study to determine how the alpha and beta values affect the performance of the
BCO algorithm applied in the fuzzy controller, and to obtain whit this design of the fuzzy rules to
the GT2FLS.

Based on the experiments in Section 5, we analyzed the results; the Traditional BCO algorithm
is a good technique for the optimization and design of the fuzzy controller, because the behavior of
the trajectory in the autonomous mobile robot without applying perturbation in the model is good
(see Table 5), but when we increased the levels of noise, the stabilization in the model is better with the
adjustment dynamic of parameters using GTL2FLS (see Figure 23), this is because the uncertainty is
better handle and the perturbations the level of noise is minimized with GT2FLS.

When the size of the FOU in the Interval Type-2 FLS is increasing (see Table 8) the perturbation is
better analyzed, the best MSE found was of 0.004 compared to the Traditional BCO that was of 0.008.
It is important to mention that when the size of Volume in GT2FLS is increasing (see Table 8) to allow
evaluate more secondary membership functions and the standard deviation is smaller with a value of
3.32 with perturbation in the model compared to 7.27 with Traditional BCO; this determines that all
the results found by GT2FLS are similar.

Future work in this research consists in applying this technique to find the optimal values in
the alpha and beta parameters for the optimization the Interval Type-2 Fuzzy Logic Controller and
Benchmark Functions with the Fuzzy BCO algorithm, and thus able to observe that the optimal
parameters found with this method are adapted to any optimization problem.

8. Conclusions

In this paper, we conclude that the BCO algorithm is a good optimization technique for design and
stabilization of fuzzy controllers. The process of dynamically adjusting parameters of an optimization
method (in this case the Bee Colony Optimization algorithm), can improve the quality of results
and increasing the diversity of solutions to a problem. Three fuzzy systems were designed for the
adjustment the parameters for BCO algorithm, T1FLS, IT2FLS and GT2FLS. These proposed methods
show the quality of the results better that the Traditional BCO when the design of the parameters
in a fuzzy logic system for an autonomous mobile robot in simulation allow the stabilization of the
trayectory and minimization of the error efficiently.

Experiments were performed with the proposed method to find the optimal alpha and beta
values in the parameters of BCO algorithm, and a comparison was made between the method of
traditional bee colony optimization and the proposed methods, i.e., with the three fuzzy systems for
parameters adjustment.

The BCO algorithm was implemented to find the optimal distribution of parameters in the design
of the fuzzy controller, especially in controlling the trajectory in an autonomous mobile robot, thus
being able to demonstrate the efficiency of the Fuzzy BCO algorithm as a technique to improve the
performance in fuzzy controllers. By comparing the proposed methods and the Traditional BCO
algorithm, in the design of fuzzy logic systems applied to fuzzy control it was found that based on
the experiments, it was possible to develop a method for dynamically adjusting the alpha and beta
parameters of the BCO through the three fuzzy logic systems. And in this way improving the results
compared with the simple BCO method.

The performance of each fuzzy system, used in this research was observed in the results,
when IT2FLS is increased the FOU size and when GT2FLS is increasing the volume size.
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FLC Fuzzy Logic Controller.
MSE Mean Square Error
RMSE Root Mean Square Error
ITAE Integrated Time Absolute Error
ITSE Integrated Time Square Error
IAE Integrated Absolute Error
ISE Integrated Square Error
SD Standard Desviation

References

1. Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [CrossRef]
2. Banklouti, N.; John, R.; Alimi, A.M. Interval type-2 fuzzy logic control of mobile robot. Inf. Learn. Syst. Appl.

2012, 4, 291–302.
3. Sánchez, M.A.; Castillo, O.; Castro, J.R. Generalized type-2 fuzzy systems for controlling a mobile robot

and a performance comparison with interval type-2 and type-1 fuzzy systems. Expert Syst. Appl. 2015, 42,
5904–5914. [CrossRef]

4. Martinez, R.; Castillo, O.; Aguilar, L. Optimization of interval type-2 fuzzy logic controllers for a perturbed
autonomous wheeled mobile robot using genetic algorithms. Inf. Sci. 2009, 179, 2158–2174. [CrossRef]

5. Grelle, C.; Ippolito, L.; Loia, V.; Siano, P. Agent-based architecture for designing hybrid control systems.
Inf. Sci. 2006, 176, 1103–1130. [CrossRef]

6. Zi, B.; Zhu, Z.C.; Du, J.L. Analysis and control of the cable-supporting system including actuator dynamics.
Control Eng. Pract. 2011, 19, 491–501. [CrossRef]

7. Zi, B.; Ding, H.; Cao, J.; Zhu, Z.; Kecskeméthy, A. Integrated mechanism design and control for completely
restrained hybrid-driven based cable parallel manipulators. J. Intell. Robot. Syst. 2014, 74, 643–661. [CrossRef]

8. Gao, Z.; Zhang, D. Performance analysis, mapping, and multiobjective optimization of a hybrid robotic
machine tool. IEEE Trans. Ind. Electron. 2015, 62, 423–433. [CrossRef]

9. Rachman, E.; Jaam, J.M.; Hasnah, A.M. Non-linear simulation of controller for longitudinal control
augmentation system of F-16 using numerical approach. Inf. Sci. 2004, 164, 47–60. [CrossRef]

10. Hagras, H.; Sobh, T. Intelligent learning and control of autonomous robotic agents operating in unstructured
environments. Inf. Sci. 2002, 145, 1–12. [CrossRef]

11. Zadeh, L.A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and
fuzzy logic. Fuzzy Sets Syst. 1997, 90, 111–127. [CrossRef]

12. Mendel, J.M.; Mouzouris, G.C. Type-2 fuzzy logic system. IEEE Trans. Fuzzy Syst. 1999, 7, 642–658.
13. Mendel, J.M.; John, R.I.B. Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 2002, 10, 117–127.

[CrossRef]
14. Linda, O.; Manic, M. Monotone centroid flow algorithm for type reduction on general type-2 fuzzy sets.

IEEE Trans. Fuzzy Syst. 2012, 20, 805–819. [CrossRef]
15. Mo, H.; Wang, F.-Y.; Zhou, M.; Li, R.; Xiao, Z. Footprint of uncertainty for type-2 fuzzy sets. Inf. Sci. 2014,

272, 96–110. [CrossRef]

http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/j.eswa.2015.03.024
http://dx.doi.org/10.1016/j.ins.2008.12.028
http://dx.doi.org/10.1016/j.ins.2005.07.018
http://dx.doi.org/10.1016/j.conengprac.2011.02.001
http://dx.doi.org/10.1007/s10846-013-9848-0
http://dx.doi.org/10.1109/TIE.2014.2327008
http://dx.doi.org/10.1016/j.ins.2003.09.013
http://dx.doi.org/10.1016/S0020-0255(02)00221-9
http://dx.doi.org/10.1016/S0165-0114(97)00077-8
http://dx.doi.org/10.1109/91.995115
http://dx.doi.org/10.1109/TFUZZ.2012.2185502
http://dx.doi.org/10.1016/j.ins.2014.02.092


Sensors 2016, 16, 1458 26 of 27

16. Yeh, C.-Y.; Jeng, W.-H.R.; Lee, S.-J. An enhanced type-reduction algorithm for type-2 fuzzy sets. IEEE Trans.
Fuzzy Syst. 2011, 19, 227–240. [CrossRef]

17. Zhao, L.; Li, Y.; Li, Y. Computing with words for discrete general type-2 fuzzy sets based on α plane.
In Proceedings of the 2013 IEEE International Conference on Vehicular Electronics and Safety, Dongguan,
China, 28–30 July 2013; pp. 268–272.

18. Sanchez, M.A.; Castro, J.R.; Castillo, O. Formation of general type-2 Gaussian membership functions based
on the information granule numerical evidence. In Proceedings of the 2013 IEEE Workshop on Hybrid
Intelligent Models and Applications (HIMA), Singapore, 16–19 April 2013; pp. 1–6.

19. Mamdani, E.H. Applications of fuzzy algorithms for simple dynamic plant. Proc. IEEE 1974, v121, 1585–1588.
[CrossRef]

20. Zadeh, L.A. The concept of a lingüistic variable and its application to approximate reasoning, Part I. Inf. Sci.
1975, 8, 199–249. [CrossRef]

21. Zadeh, L.A. The concept of a lingüistic variable and its application to approximate reasoning, Part II. Inf. Sci.
1975, 8, 301–357. [CrossRef]

22. Angelov, P.P.; Buswell, R.A. Automatic generation of fuzzy rule-based models from data by genetic
algorithms. Inf. Sci. 2003, 150, 17–31. [CrossRef]

23. Sanchez, E.N.; Becerra, H.M.; Velez, C.M. Combining fuzzy, PID and regulation control for an autonomous
mini-helicopter. Inf. Sci. 2007, 177, 1999–2022. [CrossRef]

24. García-Nieto, S.; Salcedo, J.; Martínez, M.; Laurí, D. Air management in a diesel engine using fuzzy control
techniques. Inf. Sci. 2009, 179, 3392–3409. [CrossRef]

25. Boulkroune, A.; M’Saad, M.; Chekireb, H. Design of a fuzzy adaptive controller for MIMO nonlinear
time-delay systems with unknown actuator nonlinearities and unknown control direction. Inf. Sci. 2010, 180,
5041–5059. [CrossRef]

26. Zaheer, S.A.; Choi, S.H.; Jung, C.Y.; Kim, J.H. A modular implementation scheme for nonsingleton type-2
fuzzy logic systems with input uncertainties. IEEE/ASME Trans. Mechatron. 2015, 20, 3182–3193. [CrossRef]

27. Xie, X.P.; Yue, D.; Hu, S.L. Fuzzy control design of nonlinear systems under unreliable communication links:
A systematic homogenous polynomial approach. Inf. Sci. 2016. in press. [CrossRef]

28. Corne, D.; Dorigo, M.; Glover, F. New Ideas in Optimization; McGraw-Hill: New York, NY, USA, 1999.
29. Arabshahi, P.; Choi, J.J.; Marks, R.J.; Caudell, T.P. Fuzzy parameter adaptation in optimization: Some neural

net training examples. IEEE Comput. Sci. Eng. 1996, 3, 57–65. [CrossRef]
30. Shi, Y.; Eberhart, R.C. Fuzzy adaptive particle swarm optimization. In Proceedings of the 2001 Congress on

Evolutionary Computation, Seoul, Korea, 26–30 May 2001; pp. 101–106.
31. Chatterjee, A.; Siarry, P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm

optimization. Comput. Oper. Res. 2006, 33, 859–871. [CrossRef]
32. Melin, P.; Olivas, F.; Castillo, O.; Valdez, F.; Soria, J.; Valdez, M. Optimal design of fuzzy classification

systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Syst. Appl. 2013, 40,
1–12. [CrossRef]

33. Ochoa, P.; Castillo, O. Differential evolution with dynamic adaptation of parameters of the optimization of
Fuzzy Controller. In Recent Advance of Hybrid Approach for Designing Intelligent Systems; Springer International
Publishing: Tijuana, Mexico, 2014; pp. 275–288.
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