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Abstract: The kinematics of a two rotational degrees-of-freedom (DOF) spherical parallel manipulator
(SPM) is developed based on the coordinate transformation approach and the cosine rule of a trihedral
angle. The angular displacement, angular velocity, and angular acceleration between the actuators
and end-effector are thus determined. Moreover, the dynamic model of the 2-DOF SPM is established
by using the virtual work principle and the first-order influence coefficient matrix of the manipulator.
Eventually, a typical motion plan and simulations are carried out, and the actuating torque needed
for these motions are worked out by employing the derived inverse dynamic equations. In addition,
an analysis of the mechanical characteristics of the parallel manipulator is made. This study lays
a solid base for the control of the 2-DOF SPM, and also provides the possibility of using this kind of
spherical manipulator as a 2-DOF orientation, angular velocity, or even torque sensor.
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1. Introduction

Compared with traditional serial manipulators, the parallel manipulator is a more promising
branch of robotic mechanism which has the distinct advantages of high stiffness, high precision,
large load-weight ratio, high speed, and high acceleration. These advantages lead to its accordance with
the trends of modern electrical and mechanical equipment. Therefore, the parallel manipulator has been
a popular topic in manufacturing for decades [1–4]. With the development of robotics and automation
engineering, spherical parallel mechanisms of various forms have attracted wide attention, and have
found successful applications in industrial fields. In addition to the general characteristics of the
parallel manipulator, the spherical parallel manipulator has the special advantages of simple structure,
large workspace, interference-free of limbs, straightforward kinematics computation, reliable control,
and so on. As early as 1931, Gwinnett proposed an amusement instrument based on a spherical parallel
mechanism [5]. Cox developed a 3-RRR (R indicates the revolute joint) spherical 3-degrees-of-freedom
(DOF) parallel mechanism [6] which is characterized by the free rotation of the mobile platform around
the intersections of the revolute joint axes. Cox and Tesar proposed a 3-DOF parallel robotic shoulder
module [7] which is considered as a typical spherical parallel manipulator with triangular platforms
and three identical chains, each of which consisting of three revolute joints. The center of rotation of
this mechanism is located at the intersection of the revolute joint axes. Asada and Granito proposed
a spherical parallel manipulator with three collinear actuators [8] which improves the symmetry and
convenience of the assembly of the mechanism. Gosselin and Angeles proposed a spherical 3-DOF
parallel manipulator with three coplanar actuators [9] wherein the revolute joint axes of the base and
mobile platforms intersect at one point. This special structure results in its preferable symmetry in
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both kinematics and dynamics. Moreover, Kim and Tesar implemented a force-reflecting manual
controller by using this type of spherical 3-DOF parallel manipulator [10]. Gosselin et al. developed
an agile eye for the orientation of an ultra-high speed camera by using a spherical 3-DOF parallel
manipulator [11–13]. Birglen and Gosselin further developed this mechanism as a haptic device [14].
Gallardo and Rico et al. employed this mechanism in a transmission system [15].

Compared with 3-DOF spherical mechanisms, the study of 2-DOF spherical mechanisms is still in
the preliminary stage. Zhang and Li et al. proposed a spherical 2-DOF 5R parallel manipulator based
on spherical trigonometry [16] which can be used as the positioning device of a point on a spherical
surface. The dynamics of the spherical 5R parallel mechanism is investigated based on the Lagrange
equation [17]. Kong presented a novel 2-DOF 3–4R spherical parallel mechanism [18], but the structure
of the mechanism is rather complicated and thus decreases its practicality in engineering. According to
the geometrical constraint method, Xu and Chen et al. conducted motion decoupling analysis of a kind
of 2R parallel mechanism with two continuous rotational axes [19]. Hu and Huang proposed a family
of two-rotation and one-translation parallel manipulators with intersecting rotational axes which have
identical kinematics, although they are different in structure arrangement [20].

The motivation of this paper is to propose a two-rotational DOF spherical parallel mechanism
(SPM) based on the theory of spherical parallel mechanisms, which is eligible for vibration isolation and
2-DOF precision manipulation of all types. Considering implementation, a spherical joint is avoided in
the design. The kinematics and dynamics of this mechanism will be dealt with. Moreover, according to
the invertible property of a mechanism, one can swap its input and output terminals. Therefore,
the miniaturization of this mechanism can be used as 2-DOF orientation and force/torque sensors by
replacing the servo actuator with optical encoders and strain load cells, respectively. The advantage of
this type of sensor lies in its extra load capacity; for instance, it will be able to carry a heavy instrument
and measure its pitch and yaw angles. Therefore, there is no need to design a special mount when
employing this kind of sensor.

We begin this paper with an introduction and a brief review of the SPMs. In Section 2,
the description of the spherical 2-DOF parallel manipulator is elaborated. Then the kinematics are
developed in Section 3. In Section 4, by ignoring the friction of the joints, the virtual work principle
is employed to establish a dynamic model of the parallel manipulator. The motion plan of typical
trajectories and simulation of the inverse dynamics are carried out in Section 5, providing a theoretical
basis for the control of the manipulator. Finally, some meaningful conclusions and future work are
presented in Section 6.

2. Description of the Spherical Parallel Manipulator

As shown in Figure 1, the lower triangular platform of the 2-DOF SPM is the base, and the upper
platform is the end-effector (more generally called the mobile platform), which has only two rotational
degrees of freedom. The mobile platform and the base are connected by two active branches and one
vertical supporting column. All the joints between links in the two branches of the manipulator are
revolute. The lower end of the supporting column is fixedly mounted to the base, and its upper end is
hinged with the mobile platform with a universal joint. According to the conventions of the spherical
mechanism, when putting into operation, all points on the branch linkages move on a spherical surface
whose center is a specified point. Additionally, all the axes of the revolute joints intersect at a center
point called the kinematic center.
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Figure 1. Structure of the 2-degrees of freedom (DOF) spherical parallel mechanism (SPM). 
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Figure 1. Structure of the 2-degrees of freedom (DOF) spherical parallel mechanism (SPM).

The degrees of freedom of this manipulator can be verified according to the revised

Kutzbach–Grubler formula [3] M = d (n − g − 1) +
g
∑

i=1
fi + v − ζ, where d = 3 is the number of

common constraints for the spherical mechanism, n is the number of parts, g is the number of joints,
fi is the degrees of freedom of the ith joint, v is the number of redundant constraints, and ζ is the
isolated degree of freedom. In this research, n = 6, and the number of joints is g = 7. For the universal
joint, f1 = 2, for the other six revolute joints, fi = 1. There is no redundant constraint and isolated
degree of freedom, so v = 0, ζ = 0 in this research. Thus, the degrees of freedom of this mechanism
are M = 2.

In order to describe this 2-DOF SPM, a global coordinate system O-XYZ and the local coordinate
systems O-XijYijZij were established, as shown in Figure 2. The subscripts i and j represent the jth
revolute joint of the ith branch, respectively, where i = 1, 2, and j = 1, 2, 3. The coordinate conventions
are as follows. The center point O of the universal joint is the origin of each coordinate system.
The projection of X axes on the base are same direction coincident with vector

−−⇀
DB1, and those of the Y

axes are with
−−⇀
DB2; thus, Z axes can be determined according to the right hand rule. P1, T1, B1, P2, T2

and B2 represent the position vectors of center point of each revolute joint in the global coordinate
system. In branch 1, the axis X1j (j = 1, 2, 3) of the local coordinate system constantly points to the
center of the revolute joint from origin O, and Y11 coincides with Y21, Y21, and T1 × B1 are in the
same direction, Y13 is in the same direction with the Y axis of the global coordinate system, and Z1j
(j = 1, 2, 3) can be determined by the right hand rule. In branch 2, the Y2j (j = 1, 2, 3) of the local
coordinate system constantly points to the center of the revolute joint from the origin O, X21 coincides
with X11, X22 and B2 × T2 are in the same direction, X23 is in the same direction with the X axis of the
global coordinate system, and Z1j (j = 1, 2, 3) can be determined by the right hand rule. O-X11Y11Z11

coincides with O-X21Y21Z21. The position vectors of the six revolute joints in their local coordinate
systems are presented, respectively, as follows:

p1 = (R, 0, 0)T , p2 = (0, R, 0)T , b1 = (R, 0, 0)T

t1 = (R, 0, 0)T , t2 = (0, R, 0)T , b2 = (0, R, 0)T (1)
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Figure 2. Schematic diagram of the coordinate system. 
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3.1. Representation of the Joints 

Due to the mechanical constraint of the universal joint, the mobile platform practically has only 
two degrees of freedom, including roll angle x  and pitch angle y . Based on the knowledge of 
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In order to work out the kinematics of the 2-DOF SPM, this paper conducts a straightforward 
deduction. On one hand, once the mobile platform is assumed to be in a given orientation, the 
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hand, the angular displacement of actuators will also lead to the representation of T1 and T2. So, the 
kinematic equations can be formulated according to the equivalence of T1 and T2. The details are as 
follows. 
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represented with the input angular displacement θ1, θ2. 

Figure 2. Schematic diagram of the coordinate system.

3. Kinematics

3.1. Representation of the Joints

Due to the mechanical constraint of the universal joint, the mobile platform practically has only
two degrees of freedom, including roll angle φx and pitch angle φy. Based on the knowledge of
robotics [3,21], the coordinate transformation matrices of the mobile platform in Euler angle form are:

Ry(φy) =


cosφy 0 sinφy

0 1 0

−sinφy 0 cosφy

 (2)

Rx(φx) =


1 0 0

0 cosφx −sinφx

0 sinφx cosφx

 (3)

where φx and φy are roll and pitch angles of the mobile platform, respectively.
In order to work out the kinematics of the 2-DOF SPM, this paper conducts a straightforward

deduction. On one hand, once the mobile platform is assumed to be in a given orientation,
the representation of the position of related points such as P1, P2, T1 and T2 can be obtained. On the
other hand, the angular displacement of actuators will also lead to the representation of T1 and T2.
So, the kinematic equations can be formulated according to the equivalence of T1 and T2. The details
are as follows.

Assume that the original state of the 2-DOF SPM is that the local coordinate system O-X11Y11Z11

coincides with the global coordinate system O-XYZ. For the first operation, let the local coordinate
rotate around the Y axis by φy to get a new coordinate system. Then, for the second operation, let the
new coordinate rotate around the X axis by φx to get the final coordinate system. So, the resulting
vectors are:

P1 = Ry(φy)Rx(φx)p1 = R
(
cosφy, 0, −sinφy

)T (4)

P2 = Ry(φy)Rx(φx)p2 = R
(
sinφysinφx, cosφx, cosφysinφx

)T (5)

Since the lower links are directly connected to the actuators, their position vectors can be
represented with the input angular displacement θ1, θ2.
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T1 = Ry (β) Rx (θ1) Ry (−α1) t1 = R

 cosβcosα1 + sinβcosθ1sinα1

−sinθ1sinα1

−sinβcosα1 + cosβcosθ1sinα1

 (6)

T2 = Rx (−β) Ry (−θ2) Rx (α1) t2 = R

 −sinθ2sinα1

cosβcosα1 + sinβcosθ2sinα1

−sinβcosα1 + cosβcosθ2sinα1

 (7)

Besides, the actuator locations can be described in global coordinates as,

B1 = Ry(β)b1 = R (cosβ, 0, −sinβ)T (8)

B2 = Rx(−β)b2 = R (0, cosβ, −sinβ)T (9)

where α1, β are structural parameters as shown in Figure 1. R is the radius of the sphere of the
2-DOF SPM.

3.2. Inverse Kinematics

The inverse kinematics of a manipulator calculate the motion of actuators given the orientation of
the mobile platform, which is the theoretical base for the control of the manipulator.

In branch 1, the angle between P1 and B1 is denoted as α31, thus

cosα31 =
P1 · B1

|P1| |B1|
= cosφycosβ + sinφysinβ (10)

The planes related to angles α31, α2, and α1 intersect at point O. The angle between the planes of
α31 and α1 is denoted as θ11. According to cosine rule of a trihedral angle, the geometric Equation (11)
is obtained.

cosθ11 =
cosα2 − cosα1cosα31

sinα1sinα31
(11)

The angle of the plane of α31 and O-XZ is set to θ12. According to Equation (4), P1 and B1 are in the
plane of O-XZ. Thus θ12 = 0 holds. The input angle of the actuator in branch 1 is θ1 = θ11 + θ12 = θ11.

In branch 2, by applying the same principle, one can obtain

cosα32 =
P2 · B2

|P2| |B2|
= cosφxcosβ− cosφysinφxsinβ (12)

and
cosθ21 =

cosα2 − cosα1cosα32

sinα1sinα32
(13)

According to Equation (5), neither P2 nor B2 is in the plane of O-YZ. Thus, θ22 6= 0. In order to

obtain θ22 between O-P2B2 and O-YZ, the intermediate vector
→
j = (0, R, 0)T is introduced.

cosθ22 =

(B2 × P2) ·
(

B2 ×
→
j
)

|B2 × P2|
∣∣∣∣B2 ×

→
j
∣∣∣∣ = −sinβ

(
cosβcosφysinφx − sinβcosφx

)
(14)

Therefore, the angle of actuator 2 is worked out as θ2 = θ21 + θ22.

3.3. Forward Kinematics

The forward kinematics of this 2-DOF SPM calculate the orientation of the mobile platform,
provided the angular displacement of the two actuators. This procedure is of great importance for the
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orientation sensor application of this SPM. More generally, the semi-closed loop control of the parallel
mechanism also needs its forward kinematics so that the orientation can be obtained by reading out
the feedback values of the actuators and a further computation.

The angle between vectors T1 and P1 is constantly equal to α2, which can be expressed by

T1 · P1

|T1| |P1|
= cosα2 (15)

By solving Equation (15), the following solution of φy can be obtained

φy = arcsin
c1√

a2
1 + b2

1

− arctan
b1

a1
(16)

where a1 = sinβcosα1 − cosβcosθ1sinα1, b1 = cosβcosα1 + sinβcosθ1sinα1, c1 = cosα2.
Similarly, the angle between T2 and P2 is constantly equal to α2; thus, one can obtain

T2 · P2

|T2| |P2|
= cosα2 (17)

By calculating Equation (17), the following parameter can be obtained

φx = arccos
c2√

a2
2 + b2

2

+ arctan
a2

b2
(18)

where a2 = −sinθ2sinα1sinφy +(cosβcosθ2sinα1 − sinβcosα1) cosφy, b2 = cosβcosα1 + sinβcosθ2sinα1,
c2 = cosα2.

From the solutions to the forward kinematics mentioned above, one can infer that the rotation of
the mobile platform around the Y axis is only dependent on the motion of actuator 1. Compared with
this conclusion, the rotation of the mobile platform around X axis is dependent on the motion of
both actuators.

3.4. Analysis of Velocity and Acceleration

The velocity and acceleration analysis plays a key role in the mechanical design, controller

design, and hardware configuration. Let φ =
(
φy, φx

)T,
.
φ =

( .
φy,

.
φx

)T
, and

..
φ =

( ..
φy,

..
φx

)T
be the

orientation, rotation velocity, and rotation acceleration vectors of the mobile platform, respectively.

Let θ = (θ1, θ2)
T ,

.
θ =

( .
θ1,

.
θ2

)T
, and

..
θ =

( ..
θ1,

..
θ2

)T
be the angular displacement, angular velocity, and

angular acceleration vectors of the actuators, respectively. This section will deal with the input–output
relation of the velocity and acceleration of the 2-DOF SPM.

By differentiating Equations (16) and (18) with respect to time, Equation (19) can be obtained in
the following form

A
.
φ + B

.
θ = 0 (19)

where, A =

[
f11 0
f21 f22

]
, B =

[
l11 0
0 l22

]
.

f11 = (cosα1sinβ− cosβcosθ1sinα1) cosφy − (cosα1cosβ + cosθ1sinα1sinβ) sinφy

f21 = (cosα1sinβ− cosβcosθ2sinα1) sinφysinφx − sinα1sinθ2cosφysinφx

f22 = cosφx
[
cosφy (cosβcosθ2sinα1 − cosα1sinβ)− sinα1sinθ2sinφy

]
− (cosα1cosβ + cosθ2sinα1sinβ) sinφx

l11 = −cosφysinα1sinβsinθ1 + cosβsinα1sinθ1sinφy

l22 = −cosφxsinα1sinβsinθ2 − cosβcosφysinα1sinθ2sinφx − cosθ2sinα1sinφxsinφy

Additionally, Equation (17) can be rewritten in another form:
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.
φ =

[
Gφ

] .
θ (20)

where Gφ = −A−1B is the first-order rotation influence coefficient matrix on the 2-DOF rotations of
the mobile platform. One can conclude that the angular velocity of the mobile platform relates to the
angular displacement and angular velocity of the actuators.

Differentiation of Equation (19) with respect to time leads to the following differential equation

dA
dt

.
φ + A

..
φ +

dB
dt

.
θ + B

..
θ = 0 (21)

Equation (21) can be rewritten in another form:

..
φ = −A−1


∂ f11

∂φT

.
φ +

∂ f11

∂θT

.
θ 0

∂ f21

∂φT

.
φ +

∂ f21

∂θT

.
θ

∂ f22

∂φT

.
φ +

∂ f22

∂θT

.
θ

 .
φ− A−1


∂l11

∂φT

.
φ +

∂l11

∂θT

.
θ

T
0

0
∂l22

∂φT

.
φ +

∂l22

∂θT

.
θ

T

 .
θ − A−1B

..
θ (22)

where A and B are matrices as shown in Equation (19). From this result, one can likewise notice that
the angular acceleration of the mobile platform relates to the input angular velocity, input angular
acceleration, and the orientation and structural parameters of the manipulator.

4. The Dynamics Model Based on the Virtual Work Principle

The investigation of dynamics is dealing with the quantitative relation between the motion of the
mobile platform and the input torques provided by the actuating joints. Furthermore, calculating the
force or torque of each actuator on the active joint for the desired trajectory of the mobile platform is
called inverse dynamics. In this research, since the mobile platform has thirty times greater mass than
that of the four linkages, the mass of the four linkages is thus negligible for simplicity.

The inertial matrix tenor of the mobile platform is

[Ic] =

[
Ixx 0
0 Iyy

]
(23)

where Ixx = Iyy = 1/4mr2, m is the mass of the mobile platform, and r is the radius of the
mobile platform.

It is to be noted that for this 2-DOF SPM prototype, the center of gravity lies in the point above
the center of the universal joint by a distance of h, as shown in Figure 3. Therefore, the position vector
of the center of gravity of the mobile platform is

pcog = h
(
sinφycosφx, −sinφy, cosφycosφx

)T (24)

where φx and φy are roll and pitch angles of the mobile platform, respectively.
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Based on the virtual work principle, the dynamic equation  T T T T
cI m v m     θ τ v a g  is 

obtained. By substituting Equations (26) and (27) into this equation, the inverse dynamic equation of 
the 2-DOF SPM can be obtained as follows, 
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The differentiation of pcog with respect to time results in:

v = h


cosφycosφx sinφysinφx

−cosφy 0

−sinφycosφx cosφysinφx

 .
φ (25)

Equation (25) can be rewritten in the following form:

v = [Gv]
.
φ (26)

where [Gv] is the first-order translation influence coefficient matrix on the motion of the center of
gravity of the mobile platform. The translation here especially indicates the translation of the center of
gravity of the mobile platform.

By differentiating Equation (26) with respect to time, one can obtain:

a = h



.
φ

T
(
−cosφxsinφy

−sinφxcosφy

)
.
φ

T
(

sinφxcosφy

cosφxsinφy

)
.
φ

T
(

sinφy

0

)
0

.
φ

T
(
−cosφxcosφy

sinφxsinφy

)
.
φ

T
(
−sinφxsinφy

cosφxcosφy

)


.
φ + [Gv]

..
φ (27)

Based on the virtual work principle, the dynamic equation
.
θ

T
τ =

.
φ

T
[Ic]

..
φ + vTma + vTmg is

obtained. By substituting Equations (26) and (27) into this equation, the inverse dynamic equation of
the 2-DOF SPM can be obtained as follows,

τ =
[
Gφ

]T
[Ic]

..
φ + m

[
Gφ

]T
[Gv]

T (a + g) (28)

where g = (0, 0, −g0)
T is the gravitational acceleration vector.

[
Gφ

]
and [Gv] are the two influence

matrices of the input on the rotation and motion of the center of gravity of the mobile platform,
respectively. m and [Ic] are the mass and inertial tensor of the mobile platform, respectively. a is the
intermediate motion parameter as defined in Equation (27). This dynamic equation describes the
relation of input torque and the resulting motion of the mobile platform.

5. Numerical Simulation

To validate the theoretical results derived above, the motion planning, inverse, forward kinematic
simulation, and inverse dynamics simulation were conducted. The parameters of the 2-DOF SPM for
this simulation are listed in Table 1.

Table 1. Simulation parameters.

α1/◦ α2/◦ β/◦ m/kg g0/N·kg−1 r/m h/m

25 30 36.87 27 9.8 0.3 0.026

For the first typical trajectory motion following simulation, a linear orientation variation for 2 s is
designed in which the orientation of the mobile platform can be described by Equation (29) during
time 0 ≤ t ≤ 2 s. {

φy(t) = 5◦(t− 2)2 − 10◦

φx(t) = −5◦(t− 2)2 + 10◦
(29)
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The angular displacement of the mobile platform is shown in Figure 4. The resultant rotational
motion of the mobile platform displays strict linearity. By using the inverse kinematics developed
in Section 3.2, the angular displacement curves of the two actuators can be worked out, as shown
in Figure 5. One can observe that the actuator displays parabolic curves as a result of the quadratic
rotational motion function defined in Equation (29). Then, the angular velocity and angular acceleration
of the mobile platform can be derived as shown in Figures 6 and 7, respectively. The angular
velocity and angular acceleration of the two actuators can be obtained as shown in Figures 8 and 9,
respectively. The differential relation between the velocity and acceleration and also the symmetry
in two rotational degrees of freedom can be observed. Based on the dynamic equation shown in
Equation (28), the driving torque curves of the actuators are shown in Figures 10 and 11. In each
of them, the dashed line (Ti_1g) and solid line (Ti_0g) represent the driving torque with and without
gravity, respectively, from which one can notice that the linear angular acceleration of the mobile
platform leads to its relatively small constant inertial force supplied by the actuators, while the gravity
of the mobile platform accounts for a large proportion of the driving torque in this type of uniformly
accelerated motion.
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In addition, for the typical sinusoidal trajectory motion following simulation, the orientation of
the mobile platform can be described by Equation (30) during time 0 ≤ t ≤ 2s.{

φy(t) = 10◦cos(πt)
φx(t) = 10◦sin(πt)

(30)

By using the inverse kinematics developed in Section 3.2, the angular displacement curves of
the two actuators are shown in Figure 12. One can observe that the actuator displays periodical
curves slightly different from canonical sinusoidal or cosine curves. Moreover, Figure 13 illustrates
the comparison between the desired orientation curve and the forward kinematic result derived from
curves in Figure 12. It is clear that the inverse and forward kinematics obtained in Section 3.3 agree
with each other, which validates the forward kinematics deduced in this research. As this structure
contains two serial chains, the forward kinematics has the analytical form instead of iterative solutions
usually appearing in parallel mechanisms of all types. It is efficient to calculate the orientation of the
mobile platform once to get the angular information of the active joints. This fact is one of the distinct
characteristics of the possibility of using this 2-DOF SPM as a 2-DOF orientation sensor.
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As for the derivatives of the angular displacement, the angular velocity and angular acceleration
of the two actuators can be derived as shown in Figures 14 and 15, respectively. Because of the sharp
variation of the angular displacement of actuator 2 at the moment of t = 0, its angular velocity is quite
considerable, as shown in Figure 14. Especially for the angular acceleration, the peak value gets as
much as 248 ◦/s2. This kind of rigid impulse is very harmful for heavy load applications. Therefore,
in a practical motion of the SPM, this sharp jump of acceleration should be avoided or decreased by
trapezoidal or high-order polynomial velocity motion planning.
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Similarly, based on the dynamic equation expressed in Equation (28), the driving torque curve of
the actuators in this sinusoidal trajectory tracking simulation are shown in Figures 16 and 17, in which
Ti_1g and Ti_0g represent the driving torque with and without gravity, respectively. From these figures,
one can observe that the maximum torque of both actuators is less than 2.5 Nm, which satisfies the
provided performance of general commercial middle and small inertia AC servo motors. As for the
comparison of the driving torque under conditions with and without gravity, the conclusion for the
linear acceleration case does not apply in this simulation due to the fact that the accelerations are
highly time-varying and in larger magnitude.
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To investigate the singularity of the 2-DOF SPM, its first-order influence coefficient matrix is
considered as the Jacobian matrix J in this research. The mapping of condition number when the
orientation of the mobile platform is an arbitrary value within the workspace is shown in Figure 18.
Since the condition number lies in the rational finite interval for the orientation of the mobile platform,
one can reach the conclusion that this mechanism is singularity-free in the workspace. Additionally,
the condition number varies with the combination of the two rotational angles rather than keeping
constant, which implies that this mechanism fails to achieve homogenous performance, especially for
the error and static generalized force transmission from the active joints to the mobile platform. This is
also the reason why the driving force of the actuator displays a high value for certain orientations.
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As a tentative prototype, the 2-DOF SPM as shown in Figure 19 was fabricated, the diameter of
the mobile platform was 600 mm, the height of the vertical column was 378.6 mm, and the total mass
was 73.67 kg. Two YASKAWA MSMA AC servo motors (SGMGV-09A) were employed as the actuators.
The basic motion was achieved with the Googol CPAC motion controller as the master control unit.
An elementary motion control containing two degrees of freedom was firstly carried out, validating
the structural design and kinematic model. As future work, the thorough verification of the precision,
workspace, and dynamic performance should be conducted.
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6. Conclusions  

The kinematics of a 2-DOF SPM was elaborated based on the coordinate transformation 
approach and cosine rule of a trihedral angle. Moreover, the angular displacement, angular velocity, 
and angular acceleration relation between the actuators and the end-effector were determined. The 
dynamic model of the parallel manipulator were established by employing the virtual work principle 
and the first-order influence coefficient matrix of the manipulator. Finally, typical numerical 
simulations of the 2-DOF SPM reveal the quantitative relation between the input and output in terms 
of angular displacement, angular velocity, and acceleration. This preliminary result lays the 
foundation for better planning motion and control of the 2-DOF SPM, and also provides the 
fundamental verification of the possibility of using this kind of spherical mechanism as 2-DOF 
orientation or torque sensors. 
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6. Conclusions

The kinematics of a 2-DOF SPM was elaborated based on the coordinate transformation approach
and cosine rule of a trihedral angle. Moreover, the angular displacement, angular velocity, and angular
acceleration relation between the actuators and the end-effector were determined. The dynamic
model of the parallel manipulator were established by employing the virtual work principle and the
first-order influence coefficient matrix of the manipulator. Finally, typical numerical simulations of
the 2-DOF SPM reveal the quantitative relation between the input and output in terms of angular
displacement, angular velocity, and acceleration. This preliminary result lays the foundation for better
planning motion and control of the 2-DOF SPM, and also provides the fundamental verification of the
possibility of using this kind of spherical mechanism as 2-DOF orientation or torque sensors.
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