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Abstract: This paper presents a platform for airborne sensor applications using low-cost, open-source
components carried by an easy-to-fly unmanned aircraft vehicle (UAV). The system, available in
open-source , is designed for researchers, students and makers for a broad range of exploration and
data-collection needs. The main contribution is the extensible architecture for modularized airborne
sensor deployment and real-time data visualisation. Our open-source Android application provides
data collection, flight path definition and map tools. Total cost of the system is below 800 dollars. The
flexibility of the system is illustrated by mapping the location of Bluetooth beacons (iBeacons) on a
ground field and by measuring water temperature in a lake.
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1. Introduction

The use of civilian unmanned aircraft vehicles (UAVs, or simply, drones) by professionals,
researchers and hobbyists alike, has increased over the recent years. Commonly, the drones are
used for aerial photography, inspection and surveys. Possible applications extend to any conceivable
task where an aerial presence with minimal environmental impact brings value or new insights [1].
What sets a modern UAV platform apart from earlier flying robots is that enhancements in technology
allow for the UAV to carry a networked computer payload. Consequently, the UAVs now have the
ability to collect, process, store and relay data on their own and in real time.

UAVs afford three-dimensional, spatial coverage, which makes them particularly suitable for
airborne sensor deployment in, for instance, ecology research and disaster management [2–4]. The most
common deployed sensors are cameras sensitive to different light spectra. They are most useful for
manual as well as automated inspection, and are often assisted by computer vision to identify relevant
conditions or objects on the ground. Single drones can be programmed to follow predefined paths,
covering a particular area of interest, or are flown manually either in line-of-sight, if possible, or guided
by GPS or other sensory feedback. Multiple drones may be deployed in swarms, e.g., to map out and
track pollution [5] or to make up a grid network and relay the data over large distances.

This paper proposes an airborne sensor platform based on commercial off-the-shelf components
that provides a modularized sensor system and data acquisition infrastructure. The drone is
a commercial quad-copter that allows for attaching external sensors and relaying the data back
to a ground station using a telemetry communications link. The platform supports a simple
and expandable interface for attaching custom sensors to the UAV, overcoming the limitation of
single-purpose platforms which are costly to convert for other tasks. Since the sensor system is
modularized, sensors can be exchanged rapidly. Besides the hardware platform, which easily integrates
sensors, we provide the possibility to use an established open-source infrastructure to collect and
visualize sensor data from the drone in real time. This allows for both autonomous path generation and
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following (see Figure 1) and operator-assisted (see Figure 2) flights towards areas of interest based on
sensor feedback — and beyond line-of-sight if needed (The drone needs not be visible to the operator,
but some line-of-sight is, however, required in the sense that telemetry signals may not be blocked, as
this would result in lost data points).

(a) (b) (c)

Figure 1. For autonomous flight: (a) Install sensor (Bluetooth in this scenario) and write a small sketch
in Arduino, (b) mark the area to cover and (c) take-off and interpret the data (see “Supplementary files”
for the data collected from this flight).

(a) (b) (c)

Figure 2. Operator-assisted flight: (a) A sensor (i.e., water thermometer) is mounted in the multi-socket
and a small sketch in Arduino is written, (b) entire system with drone, sensor, smart-phone and antenna
(c) flying manually over the lake to measure water temperature.

Our choice of a multi-rotor aircraft delivers desirable operational parameters in some respect
(i.e., agility, vertical take-off and landing, hovering and low-altitude performance), but sacrifices on
other parameters like range, speed, and altitude. However, the proposed design targets makers,
students and researchers that intend to conduct experiments with custom sensors and only need data
collected within the boundaries of unlicensed operation. To that end, our system may be considered
a prototyping platform for airborne sensor deployments, although it provides a way to rapidly
implement a concrete application in its own right. In particular, we hope it may become a flexible
first-step learning tool for students within engineering and environmental programmes.

While designing the system, four primary design objectives were kept in mind. The system
should be: (1) low-cost; (2) easy to use; (3) modularized, for fast development and deployment of
sensors; and (4) provide real-time data.

The following sections will first outline some usage scenarios. A more detailed system description
follows with its technical implementation presented and illustrated with a field demonstration. Finally,
we discuss shortcomings and future improvements.
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2. Previous Work

Low-cost, light-weight UAVs have been used extensively within research for more than a decade
to measure, for instance, air quality [6,7], mapping of 3D geodata [8–10] and remote sensing within
agriculture [1,11–13]. These UAVs were build with a single purpose and with one particular sensor
on board. While relatively cheap in comparison with other means for airborne measurements (e.g.,
airplanes, helicopters or high-grade UAVs), they cost several thousand dollars.

The use of open source UAV software is promoted by several research teams, (e.g., [10,14]).
Aside from research, amateurs with an interest in UAVs have formed communities at places like
diydrones.com to show their prototypes and discuss further developments. Some of the drones are
made of parts from electronics outlets, while others are built using open-source Arduino parts intended
for aviation (e.g., “Arducopters”). Anderson [15], who initiated the diydrones community, sees this
as an example of amateur makers potentially revolutionizing the industry by sharing, for instance,
code for a 3D-printout of a construction part. When cheap, consumer-grade drones became available,
their flight computers were hacked almost immediately (e.g., [16]). Even with this "maker" movement,
modifying low-cost UAVs for remote sensing is still difficult, which may prevent people with limited
technical skills in computers and embedded control systems to take advantage of them.

Sensor measurements from UAVs may benefit teaching, for example, in engineering and
environmental disciplines. Jung et al. [17] developed a low-cost UAV test-bed based on a model
airplane, with in-house -design and -assembling of most system parts. They argue that a way to
provide interdisciplinary skills for UAV development is to promote educational projects on UAV
technologies. Recently, Eriksen et al. [18] and Mathias [19] augmented low-cost drones with the same
educational purpose.

3. Usage Scenarios

The following fictitious scenarios guided our implementation. All address the collection of
real-time data from the sensor attached to the drone.

• Mapping WiFi coverage in outdoor areas

The task is to map out wireless network (WiFi) coverage in 2D or 3D for a large outdoor area, for
instance a festival venue. A technician sets up access points and mounts a sensor on the drone that
collects signal strength (i.e., received signal strength indicator (RSSI) values). A telemetry radio
dongle is connected to the technicians’ smart phone on which a flight path covering the entire area
is marked out using an Android ground station application. The drone will then fly between the
set way-points at regular intervals. For each flight, it sends timestamped and absolute positioned
sensor values back via the telemetry link. The Android app generates a heat map in real time,
allowing the technician to quickly assess the coverage without waiting for the entire flight path to
complete. Offline, the technician further analyses the data collected.

• Detecting radio beacons

A simple Bluetooth 4.0 (BLE) module is used to detect and track radio tags, i.e., iBeacons [20].
A beacon is attached to a key-chain that has been lost on a field. The drone flies over the field and
maps signal strengths, guiding the search for the key-chain.
A signal map can be updated by flying over the area multiple times, for example, when tracking
objects in motion. A zoologist tags a beacon to a badger cub. In the following weeks, the drone
tracks the cub when outside its cave, mapping how its territory expands day by day.

• Tracking pollution sources

An agriculturalist detects an airborne aggressive pollutant on field crops by manual inspection.
The source of it needs to be tracked down quickly, and the agriculturalist, therefore, mounts a
sensor for the drone platform that measures the concentration of the pollutant in the air. The drone
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is instructed to follow an inwards spiraling pattern from the point of detection. The agriculturalist
receives values sent from the sensor as the drone continues its flight path. A heatmap pattern
starts to emerge on his mobile phone, indicating a stronger concentration of pollutants in a certain
direction. The agriculturalist can choose to manually alter the flight path or specify a concentration
threshold for the drone sensor on the ground station software.

4. System Description

Our system is meant for attaching arbitrary low-cost sensors to an open-source robotics vehicle
platform. Figure 3 provides a conceptual overview of the entire platform. The sensors are, in part,
a piece of hardware that attaches to the drone. A simple protocol based on the common I2C peripheral
protocol is used for interfacing with the flight computer. As long as the sensor modules conform to
our hardware and software specifications, any low-weight sensor can be used.

Figure 3. System overview. Interchangeable sensor modules attach to the quadcopter platform. Sensor
data is relayed through the flight computer via a wireless telemetry link to the Android ground station
application. The ground station software stores sensor data and provides intelligent survey flight path
planning, heat-maps and platform configuration.

The UAV, a 3D Robotics IRIS+ [21], which can be classified as an MAV (Micro Arial Vehicle) and
a VTOL (Vertical Take-Off and Landing) according to [1], is a common commercially available drone.
It was selected from a set of criteria that met our needs:

• Cost and availability. The drone is relatively low-cost, produced in high quantities and obtainable
from resellers in both North America and Europe. Total cost for the system described herein runs
just short of $800.

• Spare-parts and repairability. Except for the body, no legacy components are used; all spare-parts
are low-cost and available from alternative brands.

• Open-source hardware and software. The drone is equipped with a Pixhawk flight controller [22,23].
This is a spin-off from an ETH Zürich research project [24], where the software and hardware are
open-source, and the system is well-documented and supported through a community effort.

• Telemetry options. The drone ships with long-range radio telemetry modules. One is attached
to the Pixhawk, and the other can be tethered to a computer or smart phone using a USB cable.
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The radio module firmware is optimized for communication using the open standard MAVLink
protocol [25].

• Attaching payloads. The drone has mounting holes underneath the body for attaching a camera
gimbal. This makes it easy to make a custom bracket for attaching other hardware without altering
the body.

We prototyped a casing that attaches to a bracket that fits in the gimbal mounting points (see the
first image at Figure 1). The housing contains an Arduino-based microcontroller that is powered by
and interfaces with the flight computer. Smaller housings containing the actual sensors can then be
attached to the microcontroller unit.

The readings picked up by the sensor module are relayed to a ground station using the featured
telemetry modules; on the drone, the radio link module is connected directly to the flight computer
(the Pixhawk/PX4). For this to work seamlessly with the drone setup, modifications have been made
to the open-source flight computer firmware and ground station. Firstly, drivers and user space code
on the Pixhawk computer interface with the sensor module and communicate with the ground station
using custom messages defined as part of an existing open protocol format. Extensive modifications
have gone into the code base of an open-source ground station application for Android. This allows
the user to configure flight paths for surveying and retrieving the sensor data stream that, in turn, are
seen in real time and are visualized on the map for every 10th reading—used later for offline analysis
(see “Supplementary file” for example of collected data).

In addition, built-in safety features in the flight computer manage potentially dangerous situations;
the UAV will automatically land when the battery is running low or when crossing a geofence boundary.
In its current state, the drone is operational for ∼25 min on a single battery, while the Android phone
(the used Android phone is a Google Nexus 5 running Android 6.0) is able to operate for ∼1 h. The
Pixhawk flight computer is not solely intended for air vehicles. It may just as well be applied for
autonomous path following in rovers or other ground vehicles, and our sensor platform may be ported
to these vehicles without changing any parts in the system.

5. Technical Implementation

Our design goals call for a "full stack" implementation, touching components from sensors to the
ground station. This includes an IRIS+ drone, a Pixhawk flight computer, an ArduPilot flight stack
and a microcontroller driving the sensors of choice.

Substantial previous work [22,23,26,27] has gone into creating the flight computer, its firmware
and the ground station software, thus enabling us to focus on integrating the features supporting
the usage scenarios. Our original contributions include building and programming sensor modules,
developing drivers and communication extensions for the flight computer, and building system specific
features into the Android ground station application. Figure 4 shows the overall system components
and the software packages that our project has contributed.
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Figure 4. General package diagram of software involved in the system. The green packages are
contributions of our package, including map tools, i.e., heat-map visualization.

5.1. Sensor Modules

To facilitate easy module installation, a bracket has been designed [28] to fit two mounting points
underneath the drone, as originally intended for a camera gimbal. A sensor module can then be fitted
to the bracket in various ways. It will not interfere with the structural integrity of the drone as long as
the module is kept within certain physical limits: The IRIS+ specifications list a maximum payload
of 400 g, and, to minimize handling interference, we suggest a sensor module design no larger than
approximately the volume of the body of the drone (L 200 × W 120 × H 70 mm). The design of the
module can be seen in image 1 of Figure 1: three parts are 3D printed to act as (i) base; (ii) container for
micro controller and (iii) sensor mount. The sensor mount is for convenience to easily replace a sensor,
while the base and container for the micro controller are the main parts of the system. By 3D-printing
the mounts ourselves, we can comply with a broad range of sensors within a very short production
time (see Figure 5 for examples), at a low cost, and just adding a few extra grams to the payload of
the drone.

The Pixhawk flight controller exposes several pins useful for connecting peripherals. Besides
digital GPIO (general purpose input/output) pins, there are dedicated connectors for UARTs (universal
asynchronous receiver/transmitter) and SPI (serial peripheral interface)/I2C (inter-integrated circuit)
buses. Since most UARTs are used for other peripherals and SPI requires a dedicated slave-select
signal for each connected device, the I2C bus [29] was chosen for its availability and the possibility to
daisy-chain multiple devices using just two signal wires.

The choice of I2C also means that a cable with just four wires (+5 V, Ground, Data and Clock)
needs to be brought out from the flight computer to the underside of the chassis where the sensor
module attaches to the mounting bracket. Power is provided by the Pixhawk as a regulated 5 V source,
but the I2C clock and data lines are designed for 3.3 V logic only. The sensor module therefore must be
able to accept 5 V power while honoring the 3.3 V levels on the bus lines, a common feature for several
modern microcontrollers.

Although many sensor ICs support I2C directly, these are meant to be connected to
an intermediary, such as a microcontroller for offloading communication and to perform preliminary
data processing. This is also our strategy: a sensor module must contain at least a microntroller
or embedded processor with a hardware I2C interface and support for the addressing and register
scheme that we outline. The embedded computer can then connect to and retrieve readings from
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any number of sensor peripherals and relay the data back to the flight computer upon request in a
standardized format.

Figure 5. Examples of 11 low-cost sensors that can be integrated with the Arduino based micro
controller. From top left are the following modules/sensors: HM-10 (Bluetooth), ESP8266 (WiFi),
MQ-135 (air quality: NH3, NOx, alcohol, benzene, smoke and CO2), Figaro TGS2600 (air quality:
methane, CO, ethanol, hydrogen and iso-butane), Figaro TGS2602 (air quality: ammonia, hydrogen
sulfide, toluene, ethanol and hydrogen), MQ-7 (air quality: CO), Figaro TGS2442 (air quality: CO),
SparkFun 13683 (humidity and temperature), SparkFun 12758 (electric microphone), IR (infrared
light) receiver and IR receiver module. The weight and cost of the sensors can be seen in Table 1.

At this point, we only support one sensor module at a time. This limitation is a result of not
being able to handle requests for more than one value at a time from the sensor module. The module
must respond when addressed using the address reserved for this purpose, and it must implement
responses to the virtual registers that make up a simple protocol on top of the I2C layer (see GitHub
repository [30] for details of the protocol).

Figure 6. Electronic components on the drone. Basically, any type of sensor peripheral can be attached
to the development board as long as it can be connected to the the Pixhawk via the I2C + power
interface and implements the I2C register semantics (see code repository [30]). Photo by PixHawk/CC.
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The two sensor modules we developed use a Teensy 3.1 development board [31] that contains
an ARM Cortex-M4 processor running at 3.3 V. The board supports a 5V power input. Combined
with a small footprint, the Teensy board is well suited for this application. The module design only
occupies one I2C interface and all remaining pins (GPIO and DAC (digital to analog converter)) and
bus interfaces can be used to connect the actual sensors. Figure 6 shows the electronic components
involved on the drone.

If a new sensor is required, it can be implemented within hours, as the Arduino related world
allows for rapidly prototyping new sensors — they just need to comply with the simple requirement
that the interface is I2C at a 3.3v logic level, which many MCUs (micro controllers units) support, e.g.,
the entire Arduino world. If a specific MCU is needed, a voltage regulator makes it possible to use the
drone’s battery as a power source, while having a logical converter to bridge between the device and
the Pixhawk.

Table 1 provides cost and weight information for some of the sensors that may be attached to the
drone within a few hours, while Figure 5 provides a visual of those sensors.

Table 1. Examples of sensors, including cost and weight, which may be used with the proposed system.
The sensors can be seen in Figure 5.

Sensor Price Weight Notes

HM-10 2.92 USD 4 g Bluetooth Low Energy (BLE) 4.0 module for iBeacon detection

ESP8266 1.90 USD 2 g WiFi module, that i.e., can measure signal strength

MQ-135 1.70 USD 4 g For air quality: NH3, NOx, alcohol, benzene, smoke and CO2

Figaro TGS2442 18.19 USD 2 g For air quality: CO

Figaro TGS2600 15.71 USD 2 g For air quality: Mehtane, CO, ethanol, hydrogen and iso-butane

Figaro TGS2602 15.52 USD 2 g For air quality: Ammonia, hydrogen sulfide, toluene, ethanol
and hydrogen

MQ-7 7.25 USD 2 g For air quality: CO

SparkFun 13683 41.95 USD 2 g Humidity and temperature

SparkFun 12758 5.95 USD 2 g Electric microphone (noise filtering will be needed)

IR receiver 2.04 USD 2 g Just the IR component. (Price includes emitter)

IR receiver module 1.29 USD 2 g IR light module

5.2. Flight Computer Firmware

In order to communicate with the sensor module, a driver for the Pixhawk firmware is needed.
The software that runs on the flight computer consists of firmware on top of a real-time OS (RTOS)
and a flight stack. The RTOS, based on NuttX [32], is responsible for scheduling and generally adding
deterministic behavior to the timing of critical paths in the flight control software, i.e., position and
attitude control. The firmware takes care of hardware abstraction, inter-module communication, and
drivers. The flight stack is a set of modules or processes that perform specific tasks. These modules
cooperate to get the wanted behavior from the drone. At its core, the flight stack uses inertial sensors
and precise motor drivers to maintain attitude and position while responding correctly to user RC
(radio controlled) inputs. These tasks have the highest priority and update frequency. Other modules
with lower priority provide telemetry communication, waypoint management and more. Currently,
two open-source flight stacks exist for the Pixhawk:

1. PX4: a highly modularized flight stack where each flight function runs in separate threads.
It builds on the current NuttX and PX4 firmware development efforts.

2. ArduPilot: flight control runs as one large program on top of NuttX and the PX4 firwmare.
The reason for this is legacy considerations. The ArduPilot flight stack can also be compiled for
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older integrated flight computers. In addition, it has a huge code base that supports casual and
light commercial flying very well.

We have chosen the ArduPilot flight stack because it provides good support for the drone and the
software ecosystem around it. From a software engineering perspective, the monolithic structure is
not ideal. However, since we are running it on the Pixhawk hardware, most of the ArduPilot codes are
thin wrappers around the PX4 firmware layer.

The driver that we developed for the sensor module is a native PX4 firmware driver. It is loaded
by the firmware, and its update cycle is scheduled directly in NuttX. Hence, it runs autonomously
from the ArduPilot flight stack, and, to access it, a wrapper driver is needed to communicate with the
native driver using an ioctl (input/output control) like interface. This wrapper driver can then be used
in the Ardupilot flight stack to read and configure the sensor module and relay data to the ground
station using its own telemetry transport.

To recap, our modifications to the flight computer to support the external sensor modules are:

• PX4 firmware native driver: a low-level driver that accesses the I2C peripheral directly and exposes
a device interface for configuration and reading data. The driver runs at a user-defined interval
where it commands the sensor module to convert readings and read the actual values after an
appropriate amount of time depending on the sensor.

• Wrapper driver for the ArduPilot flight stack: an adapter class that wraps the ioctl interface of the
native driver and exposes methods that can be used directly in Ardupilot user space code.

• ArduPilot user space code: minor additions to the ArduPilot handles messaging to and from the
sensor module drivers using a radio telemetry link.

5.3. MAVLink Protocol Messages

Micro Air Vehicle Link (MAVLink) is "a very lightweight, header-only message marshalling library
for micro air vehicles" [25]. It defines an extensible set of messages and mechanisms to transfer data
such as streams. The IRIS+ drone comes with MAVLink optimized radio telemetry modules, and we
take advantage of this feature by describing our own MAVLink messages for sending and receiving
sensor data. Because the active set of MAVLink messages must be identical on both the drone flight
computer and the ground station, all messages are defined in a platform-agnostic XML file that can be
used in different development projects to automatically generate the necessary message code. The
code generation is done by utilities provided by the MAVlink project.

We have added two new message types to the hundreds of existing messages. The messages
contain GPS position, timestamp and sensor values. Even though GPS coordinates and timestamps are
sent via other messages, it is important that the sensor values are reliably correlated to the position
and time of conversion. At this point, the two custom messages are just placeholders for simple single
integer or floating point values. The basic structure of the sensor messages, which may be e-mailed
post-flight, are: latitude, longitude, altitude in cm, sensor value, and time. e.g., 55.4868037, 12.1692884,
461.0, 27, Fri Jun 24 15:33:31 GMT+02:00 2016.

To illustrate how data collection may be used for educational purposes, a student assignment
could be to conduct a test of the accuracy by which the Bluetooth sensor locates a beacon on the ground
(cf. Figure 2). The students would then be asked to place two beacons somewhere on a field and collect
data from e.g. a 2 m altitude. First, students should make a graph of signal strengths (i.e., RSSI-values)
from their test flight (cf. Figure 7). The next assignment could then be to compare these results with
recordings made when flying at, for example, 10 m, to conduct low-pass filtering of the raw data [33],
and, finally, to depict the relation between true distance to the beacons and the RSSI-values.
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Figure 7. Signal strength measures during a flight above two beacons on a field. These data were
collected with the drone flying at an altitude between 2 to 3 m.

5.4. Android Ground Station Application

The Android application is divided into two parts because of the modularized APIs provided by
3D Robotics. The first part is the 3DR Services Library [26]. Its responsibility is to transmit and receive
data between the device itself and the drone via the included radio telemetry module. This part is
acting as a service on the device, providing a pipeline to other applications that need to communicate
with the drone. The service will copy and store the latest of each data type coming from the drone,
i.e., altitude, battery level, etc, just before notifying all subscribing applications. The subscribers may
then collect the latest data in a way that prevents jeopardizing the stability of the 3DR Services Library.
Our contribution to this part of the system is the ability to handle sensor values and provide these to
other applications.

The second part of the Android system is the user interface (UI) named Tower [27], which allows
the user to interact with the drone by using the 3DR Services Library. We have extended this to
include the possibility to collect the sensor values and store these in a local database (the SQLite
implementation for Android) from where they can be forwarded by email in a CSV (comma separated
values) format. This is done pre-flight by defining the flight parameters in terms of, for example,
frequency of measurements, how long each measurement is estimated to take, altitude, etc. After the
flight, the email address may be defined, if not already done, and the data are then forwarded. Another
feature is the possibility to show the 300 latest sensor values as a heat map, either by defining the area
to be observed in the UI and letting the autopilot handle the rest, or by manually controlling the drone.
In both cases, real-time data are displayed in terms of the measured value, while a graphical map is
updated with every 10th data point.

If an area is marked for observation, the UI will show the flight path based on an algorithm
that creates a spiral going outside-in (see Figure 1 for the process of using the drone autonomously
in a scenario to locate two iBeacons in a soccer field). It is possible to easily mark an area and scan
it, while still being able to override the autopilot at any given point—or not use the autopilot at all,
but instead operate it manually (see Figure 2).
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6. Discussion

The main contribution of this paper is the extensible architecture that facilitates modularized
airborne sensor deployment and real-time data feedback. We expand and augment a proven
embedded robotics research platform and provide a foundation for continued work on airborne
sensor prototyping.

Most previous research concerning drone measurements of the environment have used computer
vision (CV). Our motivation went towards a more generic sensor approach, contributing to a
system that may be applied on both multi-copters, fixed-wings, rovers, and other vehicles as well.
We developed a platform for of-the-shelf sensors, based on the PX4 driver, as this supports a great
variety of vehicle platforms and is open-source. The PX4 system by Meier et al. [22] was intended
not just for aerial vehicles but for any novel vehicle platform, and we have deliberately chosen a
commercial drone based on the PX4 platform. This allows for taking our contribution to the PX4
middleware and using it in application where other types of vehicles may be more suited, be it in the
air, under water or on the ground. Villa et al. [7] points to a number of limitations for the use of small
lightweight UAVs in research that is critical for our system, namely short range operation, low payload
capacity, and sensitivity limitations of smaller sensors. Undoubtedly, there will be research projects
requiring far more than this system supports. However, the area of UAV deployment of sensors is
rapidly evolving, and we believe it will take some years to sort out when to use what equipment—just
like land transportation conducted with a range of vehicles, from mini-vans to long-haul trucks. Our
present system offers some of the benefits that Villa et al. [7] mentions: cost effectiveness, flexibility,
short time for set-up, high repeatability of data collection and safety in operation.

The used drone from 3D Robotics, which is based on the PixHawk flight computer, comes
with two default telemetry systems: one for communicating with the remote control and one for
communicating with other systems which can interface with the USB antenna, i.e., a computer or
a smartphone. Throughout the testing and usage of the proposed system, we experienced that the USB
signal was rather weak, compared to the remote control signal. At a distance of roughly 100 m, the
signal strength was occasionally too weak.

In its current state, the proposed system does not support the recovery of a missed data package.
Thus, a measurement may be permanently lost if the drone moves out of the telemetric field of the
ground station, which also is prohibited in several countries.

A key aspect for the project was uncovering the benefits and possibilities of the system. We devised
three usage scenarios that the platform should ultimately support. A weakness of this approach is the
lack of proper validation of the scenarios. Are they credible to potential users and how should they be
evaluated under real task conditions?

The community around research and DIY drones is thriving, and open designs and software for
UAVs are becoming increasingly available. This makes it harder to maintain a plug-and-play solution
for a particular brand of drone. One could picture at least two paths for future efforts: one solution is
to simply ignore the drone and flight systems and make a go for an isolated and autonomous payload.
Another path is to support a complete open design for a research drone system that is tailored for
carrying generic sensor modules. It is our hope and ambition that we have contributed to the latter
approach by the work presented in this paper and by the available source code.

7. Future Work

To prevent data from getting lost, the firmware on the drone should be improved to expect
a confirmation message from the ground station upon retrieval of a measurement. In case the
confirmation signal is absent, the measurement should be stored until the connection is re-established.

At the moment, the system is unable to accurately track a moving source in real time. However,
since the system can collect and store all measured values, with some further work, it might eventually
track down a source in motion. This requires an algorithm for determining the vehicles’ next most
optimal heading, while the system already supports a change of way-points in mid-air.
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The current usage scenarios are outdoor. However, we foresee a range of indoor sensing tasks
in which drones—flying or driving—may do well, for instance locating gas leaks or mapping signal
strengths in a building. Our future research will address indoor navigation by use of various non-vision
sensors, e.g., ultra-sound, IR-beacons and by fingerprinting ubiquitous radio waves. In order to do
this, we need a platform that can change sensors easily and quickly. Eventually, the current platform
should be improved in order to carry more than one sensor at a time.

8. Conclusions

We have demonstrated the feasibility of turning a commercial drone into an extensible airborne
sensor platform by adding new functionality to the stack of components in a drone system, from the
sensor attachment to the user interface in the ground station software. The one important premise for
this to succeed, however, is the availability of well-documented open-source or open-API software
(and hardware for that matter) in all of the subsystems.
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