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Abstract: This paper introduces a new method which facilitate the use of smartphones as a handheld
low-cost mobile mapping system (MMS). Smartphones are becoming more sophisticated and smarter
and are quickly closing the gap between computers and portable tablet devices. The current
generation of smartphones are equipped with low-cost GPS receivers, high-resolution digital cameras,
and micro-electro mechanical systems (MEMS)-based navigation sensors (e.g., accelerometers,
gyroscopes, magnetic compasses, and barometers). These sensors are in fact the essential components
for a MMS. However, smartphone navigation sensors suffer from the poor accuracy of global
navigation satellite System (GNSS), accumulated drift, and high signal noise. These issues affect
the accuracy of the initial Exterior Orientation Parameters (EOPs) that are inputted into the bundle
adjustment algorithm, which then produces inaccurate 3D mapping solutions. This paper proposes
new methodologies for increasing the accuracy of direct geo-referencing of smartphones using
relative orientation and smartphone motion sensor measurements as well as integrating geometric
scene constraints into free network bundle adjustment. The new methodologies incorporate fusing
the relative orientations of the captured images and their corresponding motion sensor measurements
to improve the initial EOPs. Then, the geometric features (e.g., horizontal and vertical linear lines)
visible in each image are extracted and used as constraints in the bundle adjustment procedure which
correct the relative position and orientation of the 3D mapping solution.

Keywords: mobile mapping system; close range photogrammetry; smartphone; low-cost navigation systems;
relative orientation; geometric constraints

1. Introduction

Over the past two decades, mobile mapping systems (MMS) have been a vital source of direct
geo-referenced data, which can be used for a variety of applications (e.g., mapping, 3D modeling,
highway inventory, engineering projects, and Geographic Information System (GIS) data updates).
Although land-based MMS is one of the main sources for acquiring direct geo-referenced data, there are
many drawbacks to using the current MMS (i.e., their large size and complexity, as well as its high
cost due to the use of expensive Inertial Measurements Unit (IMU) and GNSS receivers) which have
restricted their widespread adoption in the survey and mapping industries. Consequently, the market
for land-based MMS is small, and the existing MMS typically are operated by the companies or
institutions that built them, which unfortunately means that their more efficient data collection is
not available for wider use [1]. The research trend now is toward a more cost-effective, less complex,
and time-efficient MMS. The accuracy of direct geo-referenced data depends on the intended
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application; for example, inventory applications require one to two-meter accuracy. This paper
specifically focuses on the development of a low-cost MMS based on smartphone technology.

The proposed system overcomes the drawbacks of the current MMS (i.e., large size, complexity,
and high cost) that have restricted their widespread adoption in disciplines which demand meter-level
accuracies (e.g., documentation, inventory, surveying, and mapping). The development of such
a system will satisfy the demand for a MMS that can compete both in cost and in user-friendliness with
current terrestrial photogrammetry. The proposed system does not attempt to replace existing MMS,
rather, it offers new low-cost alternative for applications requiring one to five meters accuracy. The GPS
receivers used in most of the current smartphones (e.g., iPhone, Samsung, and HTC) have poor
positioning accuracy. Furthermore, the MEMS sensors, especially gyroscopes, will accumulate position
drift over short time because of their high signal-to-noise ratio over time. Furthermore, magnetometers
can be easily disturbed by the presence of metallic objects in its vicinity. Although these sensors offer
the ability to acquire direct geo-referencing data, their low-level sensor measurements can lead to
inaccurate exterior orientation parameters (EOPs) which, in turn, decrease the mapping accuracy
of the system. These erroneous EOPs must be corrected before calculating the final 3-D mapping
coordinates of the points of interest. Therefore, a relative orientation approach is introduced in this
paper to refine the initial EOPs. Then geometric features (e.g., straight vertical and horizontal linear
features) are extracted, matched, and used to impose constraints on the object space calculation and
adjustment inside the bundle adjustment model. The coplanarity constraint [2] is a well-known
method for relative orientation estimation through an iterative process. However, the coplanarity
constraint using least square adjustment requires good quality approximation of the unknown relative
EOPs due to the highly iterative process based on the nonlinear nature of the model [3]. To solve
this problem, several past studies introduced closed-form solutions to overcome these issues, such as
eight-point [4,5] and five-point [6] algorithms. Similarly, the Structure from Motion (SfM) algorithm
was originally developed by the computer vision community for solving 3D reconstruction problem
using these closed-form solutions. SfM is commonly being used now in photogrammetry for automatic
computation of initial relative EOPs [3,7,8].

2. Related Works

The process of integrating geometric constraints into bundle adjustment has generated a lot of
interest within the photogrammetric community. McGlone [9,10] incorporated geometric constraints
into bundle adjustment to improve the accuracy and precision of a detailed site model generated
using multiple oblique airborne imagery. The author used the coplanarity condition that involved
any number of object space points, which were used to fix the line or plane parameters and then
were used to constrain the bundle adjustment. The effectiveness of this method was demonstrated
in an experiment using airborne images of model-board buildings. Geometric constraints typically
also are used is in the camera calibration process. Habib et al. [11] integrated geometric constraints in
a bundle adjustment for self-calibration using straight lines and coplanarity conditions. The idea was
based on the fact that, in the absence of camera distortions, the perspective projection of straight lines
in object space must yield to a straight line in the image space. The idea behind this method is based
on the coplanarity condition, more specifically, using stereo-pair imagery where three vectors satisfy
the coplanar condition such that the first vector is connecting the perspective center to the first point
along an object space straight line; the second vector is connecting the perspective center to the first
point along an object space straight line; and the third vector is connecting the perspective center to any
intermediate point along the image space line. Gerke [12] evaluated the use of geometric constraints to
reduce the number of ground control points (GCPs) needed for indirect sensor orientation, whereby
the geometric scenes (linear horizontal, vertical, and right-angle) that were visible in overlapping
imagery were integrated into the bundle adjustment procedure along with some GCPs for the EOPs
and Interior Orientation Parameters (IOPs) recovery. The author focused mainly on performing
multi-camera self-calibrations by comparing the presence and the absence of certain distortion



Sensors 2017, 17, 2237 3 of 21

parameters for camera calibration in different scenarios as well as constraining the indirect orientation.
This method was evaluated using two different airborne datasets, one acquired using a pictometry
system and the other from a UAV equipped with a consumer digital camera. The author demonstrated
the suitability of incorporating geometric constraints for reducing the need of well-distributed GCPs.
Geometric constraints were also used to improve bad network geometry in past studies. For example,
Zhang et al. [13] included planarity constraints and the constraints of highly correlated EOPs in
a bundle adjustment to overcome the weak geometry connection of an image network to generate
a precise ortho-image of the Dunhuang wall painting. However, this wall is a near-planar wall
surface and the forward overlap between the network images were less than 60%, which produced
a strong correlation between the EOPs and led to a singular normal matrix and increased the error
propagation of the adjustment model. Therefore, the planarity constraints of the painting were used
by the authors to control the error propagation by improving the geometric connection. The results
of their experiment confirmed the effectiveness of these constraints for improving the stability and
accuracy of the adjustment model. Likewise, geometric constraints were used to improve the overall
accuracy of direct geo-referencing. El-Sheimy [14] used known geometric constraints, such as straight
lines to place additional constraints on the calibration of a land-based MMS. All the studies above
show the benefits of integrating geometric constraints for different photogrammetric applications;
however, no studies to date have used these constraints to improve direct geo-reference using low-cost
motion navigation sensors.

Current smartphones integrate on one platform low-cost GPS receivers, barometers, cameras,
IMUs, and magnetometers, which are the ideal MMS components and have the key advantages of low
cost, small size, and easy availability. A limited number of studies in the literature have investigated
the use of smartphones for mapping applications. Al-Hamad and El-Sheimy [15–17] developed
an innovative workflow for using smartphones as a low-cost MMS, whereby, the relative accuracy
of the captured images’ EOPs was improved using a vision-based epipolar geometry technique.
The epipolar line along with the automated matched points were used as a constraint to enhance
the relative position and orientation of each captured image with respect to the first captured image.
Although this work successfully illustrated that “Mobile Mapping Using Smartphones” is a potentially
promising low-cost solution, the accuracy of the entire solution is governed by the accuracy of the first
image’s EOPs, which are not usually accurate. Therefore, potential of a more robust method is needed.
Alsubaie and El-Sheimy [18] introduced the potential of generating a direct geo-referenced image-based
3D point cloud using smartphones. This study demonstrated the suitability of incorporating geometric
constraints to reduce the need for the conventional well distributed number of GCPs to improve
direct geo-referencing using the initial EOPs directly from smartphones. However, the accuracy of
the GPS chipset embedded in smartphones can exceed 10 m in multi-path conditions. However,
only a few recent releases of the android smartphones (e.g., Nexus 9) allow access to the raw
GPS measurements [19], while most of the Android and iOS smartphones do not provide raw
measurements. Such limitation makes it impossible to apply differential GPS method without hardware
modification [20].

Figure 1 illustrates the accuracy of the GPS chipset embedded in the iPhone 6 for a known shape.
The blue color trajectory represents the reference trajectory of a tennis court and the red color is the GPS
solution. Two tests were collected over the same trajectory with a short time difference between them.
As shown in Table 1, the total distance error in the second test was not acceptable for both navigation
and mapping applications, while the total distance error in the first test is within the expected accuracy
of the GPS single point positioning solution. These tests clearly show the challenge associated that
can be faced when relying only on smartphone’s GPS chipset for mapping applications. Therefore,
the objective of this paper was to use any smartphone as a MMS by overcoming the GPS limitation
and the IMU drift issue associated with most smartphones.
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Figure 1. (a) First test; (b) Second test @ Google. 

Furthermore, the errors of the MEMS sensors, used in smartphones, typically change over time 
(due to changing temperature) and from turn-on to turn-on of the smartphone [21,22]. Also, the 
magnetometer sensor can easily be disturbed in the presence of metallic objects [21]. The new 
methodology introduced in this paper intends to overcome these issues.  

3. System Implementation and Data Collection 

An iOS software application was developed to capture and synchronize the images with their 
corresponding GPS and motion sensors measurements (location and orientation) at the time of 
exposure. Figure 2 shows a snapshot of the developed application, which was installed on an iPhone-
6 equipped with a GPS receiver, 6-Axis IMU (3-axis gyroscope and 3-axis accelerometer), pedometer, 
compass, and barometer [23]. Furthermore, the iPhone-6 is already equipped with a high-resolution 
digital camera with a resolution of 8 megapixels. 
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4. Methodology 

As illustrated in Figure 3, the methodologies begin by estimating the relative orientations (RO) 
w.r.t the first image using Structure from Motion (SfM), which provides an up-to-scale 3D model. 
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Table 1. Example of iPhone 6 chipsets accuracy over known distance.

Trajectory Test 1 Test 2

reference distance 69.789 m 69.789 m
iPhone 6 GPS distance 73.9 m 199 m

Furthermore, the errors of the MEMS sensors, used in smartphones, typically change over
time (due to changing temperature) and from turn-on to turn-on of the smartphone [21,22].
Also, the magnetometer sensor can easily be disturbed in the presence of metallic objects [21]. The new
methodology introduced in this paper intends to overcome these issues.

3. System Implementation and Data Collection

An iOS software application was developed to capture and synchronize the images with their
corresponding GPS and motion sensors measurements (location and orientation) at the time of
exposure. Figure 2 shows a snapshot of the developed application, which was installed on an iPhone-6
equipped with a GPS receiver, 6-Axis IMU (3-axis gyroscope and 3-axis accelerometer), pedometer,
compass, and barometer [23]. Furthermore, the iPhone-6 is already equipped with a high-resolution
digital camera with a resolution of 8 megapixels.
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4. Methodology

As illustrated in Figure 3, the methodologies begin by estimating the relative orientations
(RO) w.r.t the first image using Structure from Motion (SfM), which provides an up-to-scale 3D
model. Thus, the initial EOPs acquired by smartphone sensors are used to calculate global relative
rotations (GRR) between each paired images. Then, each GRR is subtracted from the corresponding
rotation acquired by the SfM; and the norm of each difference is used to build symmetric rotational
difference matrix. The two corresponding relative rotations which have a close to zero difference are
corresponding to the most accurate IMU measurements that associated with two images in the network.
The accuracy of these two candidate absolute rotations is further examined where the most accurate
one is then used to rotate the SfM model to the mapping coordinate frame while the absolute scale
is determined using the ratio distance between two images, the relative distance is acquired by
the SfM, and absolute distance obtained using pedestrian navigation techniques (e.g., steps detection).
Also, the centroid of all the GPS locations associated with all images are calculated and used to translate
the SfM model to the global coordinate. Once the initial EOPs are refined then these EOPs, along with
geometric constraints, are entered into a free network bundle adjustment algorithm for reconstructing
robust 3D objects. These steps are explained in details in the following subsections.
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4.1. Network Global Relative Rotation (GRR) Acquired by Smartphone Based on Motion Sensors

The main objective of this step is to find the relative rotation between each two images based on
the absolute 3D rotations, which are directly acquired by smartphone’s motion sensors. These relative
rotations are then used to evaluate the accuracy of each absolute rotation when compared with
the SfM rotations.

The IMU along with magnetometers are used to obtain the direct 3D rotation of the smartphone
instantly when the smartphone’s camera captures an image. The accelerometers sensor in the IMU are
used to obtain the pitch and roll angles, which are rotation angles around the iPhone x-axis and y-axis
respectively. Whereas, the magnetometer is used to derive the heading angle of the iPhone, which is
measured w.r.t the iPhone y-axis as illustrated in Figure 4.
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These Euler angles are used to compute the rotation matrix Rm
b , which rotate the motion sensors

measurements from the IMU (body) frame to the Global frame as expressed by Equation (1):

Rm
b = Rz(Azimuth− 90) × Rx(Pitch) × Ry(Roll) (1)

In photogrammetry, the desired orientation is related to the involved camera frame. Therefore,
the Euler angles derived by the IMU (inside the phone) are used to determine the photogrammetric
orientation angles (e.g., omega, phi, and kappa) utilizing a boresight matrix as shown in Equation (2),
where omega, phi, and kappa are the rotation angles around the camera x-axis, y-axis, and
z-axis respectively:

boresight =

 0 −1 0
1 0 0
0 0 1

 (2)

These final absolute rotation angles are used to establish the Global Relative Rotation (GRR)
between each two images in the network as expressed by Equation (3). For instance, if we have
a network consisting of three images and we have the absolute EOPs acquired by the smartphone
motion sensor, the RO between image 1 and image 2 can be calculated using these absolute EOPs:

Ri
j = (Rm

i )
T × Rm

j

R1
2 = (Rm

1 )
T × Rm

2
(3)

where Rm
i is the rotation between image (i) and mapping frame (Global frame). Rm

j is the rotation

between image (j) and mapping frame. Ri
j is the GRR between image (i) and image (j).

This procedure is repeated for each paired image in the network. These relative rotations then
are compared to the relative rotations acquired by SfM algorithm in order to find the most accurate
absolute IMU rotation, which finally will be used to rotate the SfM model to the mapping frame.

4.2. Network RO Recovery Using SfM

As mentioned earlier, closed form solutions (e.g., SfM) are much faster and do not require initial
approximations of the unknowns compared to the traditional coplanarity conditions. Therefore,
SfM is adopted for initial relative EOP estimation. The process of the SfM algorithm begins
with the automatic computing of modified coplanarity condition using overlapped image pairs
with at least eight or five matched tie points depending on the previous knowledge of the IOPs.
The modified coplanarity condition is based on computing the essential matrix, which used to estimate
the transformation parameters between each image pair. The initial EOPs of the network w.r.t the first
image, are established via successive resections to compute the position and orientation for each image
in the network, whereas, the initial 3D coordinates of the tie points are computed using successive
intersection. These relative preliminarily EOPs and 3D coordinates of tie points are then refined using
Bundle adjustments with adoptive (non-strict) outlier rejection tolerances [3,7,24].
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The main idea of this process is to compare the GRR derived from IMU with the corresponding
RO obtained by SfM model. However, the GRR derived from IMU are computed for each paired image
in the network. For example, the third image is considered a reference for the relative coordinate
system based on IMU rotations (GRR), hence the GRR of any image is computed w.r.t the third
image. However, the RO obtained by SfM are obtained with respect to the first image in the network.
Therefore, new workflow is introduced to make each image in the network reference, one at a time,
for the SfM model, while the EOPs of other images are computed relatively to the new reference
image ith instead of 1st image. Therefore, Figure 5, Equations (4) and (5) illustrate the case where
the second image is chosen to be the new reference instead of first image for the SfM model.
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The workflow begins by rotating each image to the chosen reference image, which is illustrated in
Figure 5a and expressed by Equation (4):

Rx
i =

(
R1

x
)T × R1

i

R2
i =

(
R1

2
)T × R1

i
(4)

where (1) is the first image that is originally used as reference for the network relative EOPs
estimation using SfM. Rx

i is the relative rotation between the new reference image and other images.
R1

x is the relative rotation between the chosen new reference image (e.g., 2nd image in Figure 5a)
and the first image. R1

i is the relative rotation between each image in the network and image (1).
Then, the translation is redefined between each image and the reference one, as illustrated in Figure 5b
and expressed by Equation (5):

→
t1
3 =

→
t1
2 +

→
t2
3→

t2
3 =

(
R1

2
)T ×

(→
t1
3 −

→
t1
2

)
→
tx
i =

(
R1

x
)T ×

(→
t1
i −

→
t1
x

) (5)

where,
→
t1
3 is translation vector between 3rd image and 1st image.

→
t1
2 is translation vector between 2nd

image and 1st image.
→
t2
3 is translation vector between 3rd image and 2nd image. R1

2 is the relative
rotation between 2nd image and 1st image.

4.3. Comparing Different RO Matrices

As mentioned earlier, the objective of this step is to identify the image that is directly
geo-referenced with the most accurate IMU rotation angles, where it can be used to rotate the SfM
model to the global frame. Therefore, once the GRR and the SfM’s relative rotation for each paired
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image in the network are obtained, the difference between each corresponding rotation is calculated
using Equation (6) as illustrated in Figure 6. To represent the difference result with one value instead
of the (3 by 3) matrix, the norm of the difference matrix is calculated using Equation (7). This value
then is used to reconstruct a n by n matrix, where n is the number of images in the network:

Di f j
i = GRRj

i − Rj
i (6)

where Di f is the difference between each corresponding relative rotation matrices in the network.
GRRj

i is the relative rotation acquired based on the smartphone motion sensor measurements.

Rj
i is the relative rotation obtained using SfM algorithm.

The difference (Di f ) matrix is computed for each two images in the network. Each Di f matrix is
represented as one value using matrix norm as expressed by Equation (7):

N j
i = norm(Di f j

i ) (7)
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Symmetric Rotational Differences Matrices

The main objective of this step is to determine the most accurate absolute rotation among
the candidate IMU rotations in order to use it to rotate the SfM model to the global frame. Therefore,
based on Equations (6) and (7), the norm value is used to reconstruct a (n by n) matrix that consists of
the difference, where n is the number of images in the network. For example, for a network consisting
of three images, the norm of the difference matrix (N j

i ) between each two corresponding relative
rotations is calculated using Equations (6) and (7) and placed in the cell that is located between these
images as shown in Table 2. Based on the off-diagonal elements in Table 2, the two corresponding
relative rotations with difference value close to or equal to zero are selected as the candidate for rotating
the SfM model.
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Table 2. The difference between each corresponding relative rotation result.

DD Image 1 Image 2 Image 3

Image 1 ........ N2
1 N3

1
Image 2 N1

2 ........ N3
2

Image 3 N1
3 0.005 ........

However, one of the candidate rotation needs to be chosen to rotate the SfM model. In the case
of considering image 3 and image 2 to be associated with the most accurate IMU rotation (with off
diagonal value of 0.005 in the example in Table 2). Equation (8) is used to determine the most accurate
IMU rotation by calculating the mean of rows correspond to image 3, and the mean of the column
corresponds to image 2 in matrix DD. As a result, the image associated with less mean error value
corresponds the most accurate absolute IMU rotation in the network. This absolute IMU rotation is
then used to rotate the SfM model:

θrow = mean(DD(:, image2))
θcolumn = mean(DD(image3, :))

(8)

where, θrow is the mean of the error value along the column that is corresponding to image 2.
θcolumn is the mean of the error value along the row that is corresponding to image 3.

4.4. Transforming the SfM Relative Model to the Mapping Coordinate

The transformation of a model from one coordinate to another requires the prior knowledge
of seven parameters (i.e., three translations, three rotations, and a uniform scale) [2,25]. Therefore,
the process of transforming the SfM model to the global coordinates is organized in the following
order: SfM rotation, scale determination, and centroid of GPS solutions calculation.

4.4.1. SfM Rotation to Global Coordinate

As shown in Section 4.3, the most accurate absolute rotation derived by the smartphone IMU and
magnetometer is determined and used to rotate the SfM model, which is established w.r.t the image
that corresponds to the most accurate absolute rotation.

4.4.2. Centroid of GPS Solutions

The GPS chipset built into most smartphones does not provide raw measurements, such as
pseudorange or carrier phase. The user can only log the final position solution with its standard
deviation as calculated by the iOS or Android API system [20]. As a result, the user is limited by this
solution, whereby no further improvements can be made. Therefore, in this method, each GPS solution
that is used to geotag a captured image is used to calculate the network centroid based on the weighted
average. The weight is derived based on the provided standard deviation of each solution.

4.4.3. Mapping Scale Acquisition from Smartphone

The mapping scale can be determined using the ratio between two distances. One of which is
obtained in the SfM arbitrary coordinate and the other one is calculated in the actual mapping (global)
coordinate as expressed by Equation (9):

Scale =
DSfM

Dmapping
(9)

These distances can be calculated either between two points or two camera locations. Hence,
the distance between two images is employed in this method. The mapping scale can be acquired
using a traditional technique, which measures the distance between two points using measuring tape
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or imaging an object with a known length. The two distances are used to derive the scale value as
shown in Equation (9). Although this technique is the most accurate one, it requires user interference
in the process. Therefore, some pedestrian navigation techniques (e.g., step detection and step length
estimation) are adapted to calculate the scale automatically. Lee et al. developed a robust step detection
algorithm against the dynamics of smartphones, which is based on the 3D magnitude of accelerometer
measurements. This algorithm begins by filtering the acquired data using a low-pass filter, and then
extracting the measurements corresponding to the smartphone’s motion. Then, the extracted motions
epochs are classified as peak-valley relationships using adaptive thresholds that are based on step
average and step standard deviation. Furthermore, the adaptive time threshold is used to correct
the candidate peak and valley. This algorithm shows 98.6% step detection accuracy [26].

As a result, this algorithm is adopted in this method to detect the user steps between two
successive captured images as illustrated in Figure 7, where the user is constrained to walk in a straight
line and the strike consists of two steps. Hence, the detected peaks and valleys are sorted in ascending
order, and the acceleration between the first and last step is double integrated to calculate the distance
between two images. This distance is used to represent the denominator in Equation (8).Sensors 2017, 17, 2238  10 of 21 
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The main challenge of validating the proposed scale method over a known reference distance is
that it is impossible to start and end exactly over the start and end points of the reference distance.
Therefore, image-based technique is introduced as well to determine the possible shift between
the reference distance and the start and end distance estimated using the accelerometers.

Two color coded targets are placed on ground with a 7.22 m distance between them. The diameter (DT)
of each target is at 20 cm. At each validation experiment, the user is asked to capture two images,
one for the first target and another for the second target, as shown in Figure 8. Then, a morphological
image classification technique is used to extract the centroid and the diameter (Di) of each target,
whereby the scale (λi) is determined by the ratio between the actual target diameter and the image
diameter of the same target. The shift between the centroid of each target and the camera perspective
center position at the time of exposure then are calculated using Equation (10):

λi =
(

DT
Di

)
s1 =

(
c1 −

(w
2
))
× λ1

s2 =
(
c2 −

(w
2
) )
× λ2

(10)

where, s1 and s2 are the actual horizontal shifts from the smartphone camera perspective center
to the center of the target fixed on the ground for targets one and two respectively, c1 and c2 are
the image space coordinates for the centroids of targets one and two, respectively, measured in pixels.
w is the image format width, measured in pixels.
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The two shifts are then subtracted from the known distance to determine the exact true distance
for each validation test as expressed by Equation (11):

True Distance (i) =
(7.22 + s1 − s2)

100
(11)

Several validation tests were conducted to assess the performance of the distances measured
by the accelerometers and the result indicated the presence of approximately 7 cm errors between
the known truth distance and the proposed method.Sensors 2017, 17, 2238  11 of 21 
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4.5. Geometric Constraints in Bundle Adjustment

As mentioned previously, geometric information (i.e., vertical, and horizontal linear features) that
are visible in the captured images can be used as constraints to the bundle adjustment. These constraints
are independently determined observations, capable of being added to the system equations in
the normal matrix to ensure more reliable and higher quality solutions [18]. Therefore, vertical and
horizontal line constraints are used to enhance the final bundle adjustment result as expressed using
Equations (12) and (13) [14]. These constraints are measured in the object space domain and are added
to the object space unknown parameters. As illustrated in Figure 9, the only change between any
two points located along a vertical line is the height as expressed by Equation (11). The East and North
dimensions for these points are similar as expressed by Equation (12). Likewise, any two points along
the horizontal line have the same value for height, while the East and North dimensions for each point
are different as expressed by Equation (13):

Xi − Xj = Yi −Yj = 0 (12)

Zi − Zj = 0 (13)

where i, j are any two points on a straight line.
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4.6. Free Network Adjustment with Geometric Constraint

The 3D object reconstruction is conducted using collinearity equations, which defines
the mathematical relationship between the image and the ground coordinate system [2,25] as expressed
by Equations (14a) and (14b):

xa = xp − c
r11(XA − X0) + r12(YA − Y0) + r13(ZA − Z0)

r31(XA − X0) + r32(YA − Y0) + r33(ZA − Z0)
+ ∆x (14a)

ya = yp − c
r21(XA − X0) + r22(YA − Y0) + r23(ZA − Z0)

r31(XA − X0) + r32(YA − Y0) + r33(ZA − Z0)
+ ∆y (14b)

where ( r11 to r33) represents the element of the rotation matrix, c is the perspective distance of
the camera. The image coordinates of the principal point are xp, yp; the image coordinates of the object
point are xa, ya; the perspective centre ground coordinates are X0, Y0 and Z0, and the object point
ground coordinates are XA, YA and ZA.

The study in this paper aimed to develop a stable low-cost direct geo-referencing system that can
be operated in any outdoor environment without the need for GCPs whereas, the bundle adjustment
requires a fixed reference consisting of seven parameters, which defines the network datum. The datum
is traditionally defined by at least three GCPs for indirect geo-referencing or very accurate GPS/IMU
systems for direct geo-referencing. To overcome the datum deficiency issue, a free bundle-adjustment
procedure was used. This procedure uses the inner constraint matrix (G) to remove the rank defect of
the normal matrix [27–29]. This constraint fits the network onto the estimated initial ground coordinate
of the tie point values as shown in Equation (15). Hence, the inner constraint matrix accounts for
the datum seven parameters (three translations, three rotations, and scale):

G =

 1 0 0 0 −ZA YA XA
0 1 0 ZA 0 −XA YA
0 0 1 −YA XA 0 ZA

 (15)

where XA, YA and ZA are the initial values for the ground coordinate of the tie point, the free bundle
adjustment is a nonlinear least square technique used to calculate the EOPs, the desired 3D object point
coordinate, and the IOPs utilizing the collinearity condition and the inner constraint as expressed by
Equation (16):

 δx̂EOPs
δx̂OPs

K

 =

 AT
EOPsR−1 AEOPs + REops AT

EOPsR−1 AOPs 0
AOPs

T R−1 AEOPs AT
OPR−1 AOPs + ROps + AT

C R−1 Ac G
Sym. 0


−1

∗

 AT
EOPs R−1 w + REops + wEops

AT
OPsR−1w + ROps wOps + AT

C R−1wc

0

 (16)

where, δx̂ is the unknown parameters vector, A is the design matrix, R is the weight matrix,
w is the misclosure vector. The linear features constraints are denoted subscript (c), and the subscript
EOPs represents the EOPs parameters. Also, the subscript OPs represents the object’s point parameters.
K is the Lagrange multiplier.

5. Experimental Results

To test the developed methodologies, an iPhone 6 was used to collect close range images along
with their corresponding motion sensors measurements. As shown in Figure 10a, the collected
images emulate a network consisting of 18 images and 25 OPs. To test the accuracy of the proposed
methodologies, the reference EOPs of the images and the OPs were measured using Total Station,
whereby the position of each camera station was determined within 1 cm and the rotation angles were
within 30 arc second accuracies based on the Total Station’s measurement accuracy. Furthermore,
the 3D tie points’ position accuracy was within 1 cm.
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Figure 10. (a) The reference 3D model; (b) 3D model obtained by SfM.

The experimental data were collected over a small building located in a harsh environment,
for both the GPS and magnetometers, where the building is surrounded by high buildings which
could introduce multipath in the GPS signals. Moreover, the building is located close to large parking,
whereby, the presence of vehicles causes magnetometers measurements. Such environment is very
challenging for all MMS especially those with low-cost sensors.

According to Clive [30], network design is the technique to ensure the reliability and precision of
the bundle adjustment, especially the free network adjustment approach. The network design can be
classified to four orders as stated by Grafarend [31] and Clive [30]:

• Zero-Order Design (ZOD), which is associated with datum problem.
• First-Order Design (FOD), which is associated with optimum network configuration.
• Second-Order Design (SOD), which is associated with optimum number of observations and their

corresponding weighting scheme.
• Third-Order Design (TOD), which is associated with enhancing the network by adding more

images, observations, and object points.

These precautions were considered in the planning stage of this experiment, more specifically
the ZOD, FOD, and SOD, which are discussed in Section 5.3.

5.1. Initial EOPs and OPs 3D Coordinate Correction

The initial EOPs and OPs were determined using the SfM algorithm, which provided a good
shape for the network compared to the ground data collected using Total Station as shown in Figure 10,
but these initial parameters were in an arbitrary frame of coordinates. Therefore, this result needed to
be scaled, rotated, and shifted to the global coordinate as discussed in the proposed method.

First the scale was determined using the distance between two successive images; then, the SfM
model was rotated using the most accurate IMU data corresponding to one of the images. Finally,
the GPS centroid was utilized to translate the network. The results of the transformation process and
the corrected initial EOPs are illustrated in Figure 11.
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Figure 11. The final corrected initial EOPs and Ops.

Then, the well-known intersection method was conducted to calculate the 3D coordinates of
the desired tie points utilizing the image measurements and the corrected initial EOPs of the involved
camera stations as illustrated in Figure 12a,b.
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Figure 12. (a) Horizontal coordinate of OPs based on intersection; (b) Vertical coordinate of OPs based
on intersection.

Table 3 shows the accuracy of the corrected initial EOPs of the network using the proposed
relative orientation method compared to the ground truth data acquired using Total Station. Although
the proposed method attempted to overcome the GPS random errors by employing the GPS solutions
centroid, the existing error was within the accuracy of the single point positioning (SPP) solution
provided by iOS system. In addition to the horizontal errors that occurred due to the poor accuracy of
the low-cost GPS and the uncertainty of scale calculation, the SPP method provided inaccurate height
estimation compared to its horizontal accuracy. Table 4 lists the absolute difference between the initial
Object Points (OPs) and the absolute reference data acquired by Total station.
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Table 3. The corrected initial position of the Station’s camera absolute accuracy.

Error East (m) North (m) Height (m) Error East (m) North (m) Height (m)

Image 1 −3.01 −2.39 −14.66 Image 10 2.43 −1.88 −12.86
Image 2 −1.41 −4.59 −14.62 Image 11 1.97 −0.57 −12.03
Image 3 −3.50 −4.15 −15.18 Image 12 2.71 −0.05 −11.51
Image 4 −0.99 −4.09 −14.30 Image 13 0.91 0.30 −10.38
Image 5 −0.36 −5.65 −14.84 Image 14 1.43 1.55 −9.70
Image 6 2.13 −6.26 −15.09 Image 15 3.36 2.54 −8.67
Image 7 1.03 −4.69 −14.24 Image 16 1.63 2.72 −8.16
Image 8 3.37 −5.12 −14.66 Image 17 0.17 1.85 −9.49
Image 9 2.32 −3.66 −13.84 Image 18 −1.84 2.52 −9.42

RMS

East (m) North (m) Height (m)

2.16 3.52 12.66

Table 4. The determined absolute accuracy of the initial Object Points (OPs).

Error East (m) North (m) Height (m) Error East (m) North (m) Height (m)

OP 1 0.58 −1.25 −14.64 OP 13 −0.85 −2.15 −13.97
OP 2 0.44 −1.70 −14.52 OP 14 −0.08 −1.32 −13.66
OP 3 −0.34 −2.56 −14.46 OP 15 −0.35 −0.79 −12.61
OP 4 −0.09 −2.72 −14.56 OP 16 −0.27 −0.54 −11.10
OP 5 0.09 −2.94 −14.68 OP 17 −0.13 −0.64 −11.18
OP 6 0.23 −2.61 −14.18 OP 18 −1.04 −0.88 −10.97
OP 7 0.66 −2.81 −14.14 OP 19 −0.96 −0.58 −11.15
OP 8 0.68 −2.50 −14.47 OP 20 −0.86 −0.29 −11.25
OP 9 −0.05 −2.91 −14.34 OP 21 −1.12 −0.01 −10.90

OP 10 0.54 −2.12 −13.83 OP 22 −0.70 −0.36 −11.63
OP 11 0.54 −2.21 −13.85 OP 23 −0.75 −0.35 −11.35
OP 12 0.72 −1.57 −13.96 OP 24 −1.38 −0.19 −11.55

OP 25 −0.87 −0.34 −11.61

RMS

East (m) North (m) Height (m)
0.68 1.76 13.06

5.2. Free Network Adjustment with Geometric Constraint Cooperation

Although, the initial EOPs were corrected using the proposed relative orientation, they still
contained some errors due to the uncertainty of the scale automatic determination and the low-cost
sensor errors. Therefore, the corrected initial EOPs and OPs became the input to the free network
adjustment; and all the selected OPs were included in the inner constraints matrix to fix the network
as illustrated in Figure 13. Moreover, three vertical and three horizontal linear features were visible
in most of the captured images and distributed in different locations around the object, which were
chosen to improve the final solution as illustrated in Figure 13.

Each of these lines is defined by two points that were measured manually to ensure the accuracy
of extracting the same line in the overlapped images. The solution was obtained using the free network
adjustment two times; one with and the other without adding the geometric constraints equations to
the normal matrix. The inclusion of the linear constraints provided more accurate results as illustrated
in Table 5. Furthermore, the final iteration residual was very low, which yield to good convergence of
the solution as shown in Figure 14.

Table 5 lists the absolute difference between the calculated final OPs and the absolute reference
data. The incorporation of the linear features constraints into the free network adjustment improved
the absolute position in East, North, and the height by 8, 9 and 2 cm, respectively. This improvement is
associated with the absolute position of the OPs. This result is expected since free network adjustment
enhances the relative accuracy more than the absolute position.
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As can be observed from Table 5 and Figures 15 and 16, the calculated east and north ground
coordinates of the tie points were even better than the GPS accuracy when used directly without any
enhancement. However, the vertical accuracy was worse than the horizontal accuracy as illustrated in
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Figures 15 and 16, which is common normal case when acquiring the GPS solution based on the praise
point positioning technique. Overall, the proposed method mitigated the GPS random error by relying
on the centroid of all the solutions, which were calculated based on the weighted average rather than
including all the GPS solutions.Sensors 2017, 17, 2238  3 of 4 
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5.3. Impact of Network Design on the Proposed Method

To verify the robustness of the proposed methods, especially the relative accuracy; eight images
out of the previously used network are considered as a new network as illustrated in Figure 17.
Furthermore, the images that were found to correspond to the most accurate absolute rotations in
the previous experiment are removed from the new network. Also, a new set of nine object points are
added to the new network. Since the proposed methodologies involved several types of observations
with varied levels of uncertainty, the impact of changing any of these observations uncertainty on
the final solution was considered. Therefore, the new experiment was divided into two scenarios,
namely free network adjustment with and without linear features constraints.Sensors 2017, 17, 2238  18 of 21 
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5.3.1. Free Network Adjustment without Linear Feature Constraints

In this section, the ZOD is considered to determine the network datum. Also, the impact
of the mean precision (RMS) of the final 3D OPs by changing the standard deviation (σ) of
the photo/image measurements and the number of OPs was studied as shown in Table 6.

Table 6. The effect of changing observation weight on 3D OPs final solution RMS.

Number of Tie Points Image Observation σ
Mean Precision of 3D OPs Final Solution (RMS)

X Y Z

26
1/2 pixel 0.004 0.004 0.002
2 pixels 0.018 0.015 0.007
5 pixels 0.044 0.037 0.018

17
1/2 pixel 0.007 0.005 0.002
2 pixels 0.027 0.02 0.009
5 pixels 0.068 0.05 0.024

Based on Table 6, there is a direct linear relationship between the image observations standard
division (σ) and the output 3D OPs coordinate mean precision (RMS). Approximately, the mean
precision of the OPs coordinates degrades linearly when the image observations standard division (σ)

increases. Also, it can be seen that, as the number of OPs decreases, the mean precision of 3D OPs final
solution increases.
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5.3.2. Free Network Adjustment with Linear Features Constraints

In this section, the effect of changing the number of constraints on the solution is analyzed
while the image observation standard deviation remains unchanged from the previous scenario.
Also, the constraint observations weight was set to be smaller by five orders of magnitude compared
to the image observations, similar to the approach in Gerke [12]. Table 7 shows the RMS of the 3D OPs
final solution result when changing the number of linear feature constraints. The incorporation of
linear features constraints enhanced the mean precision of the 3D OPs, while increasing the number of
constraints further enhanced the RMS.

Table 7. The effect of changing number of constraints on 3D OPs final solution RMS.

Number of Vertical
Linear Features

Number of Horizontal
Linear Features

Image
Observation σ

Mean Precision of 3D OPs Final Solution

X Y Z

1/2 pixel 0.004 0.004 0.002
1 1 2 pixels 0.018 0.015 0.007

5 pixels 0.044 0.037 0.018

2 2
1/2 pixel 0.0033 0.0033 0.0014
2 pixels 0.013 0.012 0.005
5 pixels 0.033 0.033 0.014

4 3
1/2 pixel 0.002 0.002 0.001
2 pixels 0.008 0.008 0.004
5 pixels 0.021 0.022 0.010

The results obtained from the proposed methodology is, however, limited to the network design
used in this research. The network configuration influences the OPs precision, which thereby affects
the relative accuracy of the introduced methodology. However, its absolute accuracy depends on
the quality of low-cost GPS, which can vary between one to five meters in ideal conditions.

6. Conclusions

This paper introduced a robust smartphone-based MMS in conjunction with a new proposed
workflow that overcomes the drawbacks of random errors associated with the smartphone motion
sensors and poor GPS accuracy. The proposed workflow corrects the initial EOPs based on the relative
orientation of the captured images using the SfM algorithm. These relative orientations then are used
to validate the absolute orientations of these images, which are obtained directly by the smartphone’s
motion sensors measurements (i.e., accelerometers and magnetometers). First, the relative rotations
are calculated w.r.t the first image in the network utilizing the SfM algorithm. Then, this procedure
is repeated to make each image in the network a reference for the SfM model, thereby achieving
the relative rotation between each two images in the network. However, to evaluate the absolute
rotation for each image that are acquired directly by smartphones, these rotations are used to derive
the relative rotation between each two images in the IMU domain. Hence, the difference between each
corresponding relative rotation obtained in different domains are evaluated to identify the images that
have the most accurate relative rotation. Then, based on statistical evaluation, the absolute rotation
of one of these images is used to rotate the SfM model established w.r.t this image. Subsequently,
this model is scaled using the ratio between two corresponding distances, where one distance is
acquired based on a step detection algorithm utilizing accelerometer measurements along with
a pedestrian navigation technique, and the other distance is measured from the selected SfM model.
The network global absolute centroid is calculated using the acquired GPS solutions for all the captured
images, and this centroid is used to translate the centroid of the SFM model to the global coordinate.

Finally, the corrected initial EOPs are incorporated with the linear features constraints, and refined
using free network bundle adjustment. The proposed methodology was applied to a small building
that has well distributed GCPs all around the building facade. The proposed system and methodology
showed promising results for applications that require three to five meters absolute accuracy. Although
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this system provided reasonable accuracy compared to the employed sensors and their uncertainty,
future research should include finding a way to extract the scale without the user step length
measurement, which can introduce large error in case the user step length is changed while walking
between two images.
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