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Abstract: Sensor-based motion recognition integrates the emerging area of wearable sensors with
novel machine learning techniques to make sense of low-level sensor data and provide rich contextual
information in a real-life application. Although Human Activity Recognition (HAR) problem has
been drawing the attention of researchers, it is still a subject of much debate due to the diverse nature
of human activities and their tracking methods. Finding the best predictive model in this problem
while considering different sources of heterogeneities can be very difficult to analyze theoretically,
which stresses the need of an experimental study. Therefore, in this paper, we first create the most
complete dataset, focusing on accelerometer sensors, with various sources of heterogeneities. We then
conduct an extensive analysis on feature representations and classification techniques (the most
comprehensive comparison yet with 293 classifiers) for activity recognition. Principal component
analysis is applied to reduce the feature vector dimension while keeping essential information.
The average classification accuracy of eight sensor positions is reported to be 96.44% ± 1.62% with
10-fold evaluation, whereas accuracy of 79.92% ± 9.68% is reached in the subject-independent
evaluation. This study presents significant evidence that we can build predictive models for HAR
problem under more realistic conditions, and still achieve highly accurate results.

Keywords: human activity recognition; machine learning; supervised classification; wearable sensors;
sensors heterogeneities

1. Introduction

The maturity of pervasive sensing, wireless technology, and data processing techniques enables us
to provide an effective solution for continuous monitoring and promote individual’s health. Today, the
miniature sensors can be unobtrusively attached to the body or can be part of clothing items to observe
people’s lifestyle and behavior changes [1]. According to study presented in [2], on-body sensing
proves to be the most prevalent monitoring technology for the gait assessment, fall detection and
activity recognition/classification. As such, extensive research has been undertaken to select or develop
reasoning algorithms to infer activities from the wearable sensor data. Human activity recognition
thattargets the automatic detection of people activities, is one of the most promising research topics in
different areas such as ubiquitous computing and ambient assistive living [3]. Low-cost, yet highly
reliable accelerometer is the most broadly used wearable sensor for the sake of activity recognition and
could provide high classification accuracy of 92.25% [4], 96% [5], and 99.4% [6]. 3-D accelerations can
be represented as:
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s2 . There is a large amount of work on the use of sensing for activity monitoring and behavior

profiling. For example, there are surveys [7–9] that provide an outline of relevant research and
applicable techniques. In the real-life scenarios, the performance of a recognition system is often
significantly lower than in reported research results. Igual et al. recently applied two different fall
detection algorithms to show that the performances of the fall techniques are adversely affected with
cross-dataset evaluation [10]. It shows that the performance of a fall detector reduced when it is
tested on a dataset different from the one used for training. This is because there exist variations in
training and testing device hardware, sensor models, and their operating system characteristics among
others [11]. The performance of recognition models mainly depends on the activity set, training data
quality, extracted features, and learning algorithms. Since each Machine Learning (ML) model in the
literature was trained with a specific dataset and activity set, there is no significant evidence to claim
that any predictive model is more precise than the others. In other words, the classification model is
built based on the collected samples under specific conditions involving sensor type, position and
orientation of sensors on the human body, sampling rate, and activity performance style. Therefore,
the trained model may not be directly applied to other related datasets and may fail to understand
the pattern, if there is any change in the sensor characteristics, data acquisition scenarios or the users
(concerning, e.g., age, weight or physical fitness). For instance, different accelerometer sensors often
suffer from various biases and thus differ in precision and resolution. This issue, combined with
sampling rate instability of each device introduces major challenges for the HAR system design [12].
The difference in the styles of performance of an activity also poses some challenges for application
developers and researchers. Stisen et al. [11] showed that even OS type and CPU load have also
drastic negative effects on recognition accuracy. Therefore, we aim to comprehensively evaluate the
machine learning algorithms to extend the applicability of the trained model dealing with diverse
accelerometer measurements. In this work, we have aggregated 14 well-known benchmark datasets
that are publicly available to the research community and, in each dataset, data have been collected with
different devices (commercial mass-marketed or research-only devices), acquisition protocols (under
naturalistic circumstances or laboratory environments), participants, sensors placements, models and
biases, motion artifacts and sampling rate heterogeneities to have a big realistic dataset. Considering
these challenges makes it difficult to obtain a robust activity recognizer that is invariant to biases and
performs well on unseen datasets. This is the first time to the best of our knowledge that such rigorous
activity recognition evaluation at a large-scale on ML techniques is investigated. This study will
explain the pros and cons of variety of learning methods and will speed up implementation of robust
recognition algorithms using wearable accelerometer sensors. We report the effects of heterogeneities
on various classifiers considering two cross-validation techniques. K-fold (k = 10) is the most widely
accepted methodology to compute the accuracy of a developed model in HAR problem [13]. In this
technique, the model is trained using k – 1 of the folds as training data and the obtained model is
validated on the remaining part of the data to compute the accuracy or other performance metrics.
However, to explore the limitations of finding a personalization approach caused by large variance in
per-user accuracy, a subject-independent cross-validation technique, Leave-One-Subject-Out (LOSO),
is also considered.

This paper in organized as follows. In Section 2, backgrounds in the field of human activity
recognition and the adopted methodologies including feature extraction/selection and classification
techniques with the parameters of prediction functions are addressed. The used datasets in this study
will be discussed and listed in Section 3. Section 4 presents the experimental results obtained with
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different cross-validation techniques. Finally, a conclusion and some research perspectives are given in
Section 5.

2. Backgrounds and Methodologies

Human Activity Recognition (HAR) starts with collecting data from the motion sensors. The data
are partitioned into windows to apply feature extraction thereby filtering relevant information in the
raw signals. Afterward, extracted features are used as inputs of each classifier that ultimately yields
the HAR model. To evaluate the effect of sensing heterogeneity on classifiers, we do not perform any
preprocessing steps. This problem is formulated as follows:

Definition: With p extracted features from the motion sensors, given a set W = {w1, w2, . . . , wn} of
labeled and equal-sized time windows, and a set A = {a1, a2, . . . , al} of activity labels, the goal is to find
the best classifier model C, such that for any wk which contains a feature set Fk =

{
fk,1, fk,2, . . . , fk,p

}
,

the predicted label âk = C(Fk) is as identical as possible to the actual activity performed during wk. p
is the number of features in vector Fk extracted from wk. Figure 1 depicts the whole system flow of
sensor-based activity recognition for nine activities.
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2.1. Data Segmentation, Feature Extraction and Selection

Stream of sensory data needs to be divided into subsequent segments. Fixed-size Sliding Window
(FSW) is the most common method in segmentation step where the data stream is allotted into
fixed-length windows with no inter-window gaps. If there is no degree of overlap between adjacent
windows, it is called Fixed-size Non-overlapping Sliding Window (FNSW). The second method is
Fixed-size Overlapping Sliding Window (FOSW), which is similar to FNSW except that the windows
overlap during segmentation [8,9]. The use of overlap between adjacent windows has been shown to
be effective in classification problem using wearable sensor data [14,15]. Finding the optimal window
size t is an application-dependent task. The window size should be properly determined in such a
way that each window is guaranteed to contain enough samples (at least one cycle of an activity)
to differentiate similar movements. In addition, increasing the window size does not necessarily
enhance the accuracy but may add computational complexity (causing higher latency). To better
address the challenge, we analyze the influence of window sizes (ranging from 1 s to 15 s) on the
classification performance.

Feature extraction is to obtain the important characteristics of a data and represent them into
a feature vector used as input of a classier [16]. Table 1 gives details about the most effective
time/frequency-domain and heuristic features in the literature in the context of activity recognition.
Due to low computational cost and high discriminatory ability of time-domain features, they are the
most frequently employed features for real-time applications. We compute all the features listed in
Table 1 using each reading of accelerometer sensor consists of 3-D accelerations (x, y, z). However,
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to minimize the effects of sensor orientation, we add another dimension to the sensor readouts, which
is called the magnitude of the accelerometer vector, i.e.,

√
x2 + y2 + z2, because it is less sensitive to

the orientation changes [17]. It is worth noting that the correlation features are calculated between
each pair of axes, and the tilt angles are estimated by combination of all three axes as shown in Table 1.
Each classifier is fed with the feature vectors obtained from fusing data at the feature level. As a result
of the above feature extraction process, a total of 176 features are obtained for each segment and then
scaled into interval [0, 1] using min-max normalization so as to be used for classification.

As not all features are equally useful in discriminating between activities, Principal Component
Analysis (PCA) is applied to map the original features Fk =

{
fk,1, fk,2, . . . , fk,p

}
into a lower

dimensional subspace (i.e., new mutually uncorrelated features) F′k =
{

f ′k,1, f ′k,2, . . . , f ′k,m

}
, where

m ≤ p [18]. It also significantly reduces the computational effort of the classification process. The PCA
components can be counted by X = YP, where X and Y are centering and input matrix, respectively
and P is a matrix of eigenvector of the covariance vector matrix Cx = PΛPT. Λ is a diagonal matrix
whose diagonal elements are the eigenvalues corresponding to each eigenvector [19]. The new feature
vectors are so-called principal components and arranged according to their variance (from largest to
lowest). To keep the essential information in acceleration data that describe human activity, we take
the first principal components that explain 95% of the total variance. The pairwise scatter plots of the
first four components (transformed features) of one of test cases are given in Figure 2. As expected,
the first components (the first component against the second component) for different classes are better
clustered and more distinct.

Table 1. The features list.

Feature Description Feature Description

Mean µs =
1
n

n
∑

i=1
si Skewness 1

nσs3

n
∑

i=1
(si − µs)

3

Minimum min(s1, s2, . . . sn) Kurtosis 1
nσs4

n
∑

i=1
(si − µs)

4

Maximum max(s1, s2, . . . sn) Signal Power
n
∑

i=1
s2

i

Median median (s1, s2, . . . sn) Root Mean Square

√
1
n

n
∑

i=1
si

2

Standard
Deviation σs =

√
1
n

n
∑

i=1
(si − µs)

2 Peak Intensity The number of signal peaks within a certain period of time

Coefficients
of Variation

σs
µs

Pearson's Correlation
Coefficient

cov(a,b)
σaσb

Peak-to-peak
Amplitude max (s)−min(s) Inter-axis

Cross-Correlation
∑n

i=1(ai−µa)(bi−µb)√
∑n

i=1(ai−µa)
2 ∑n

i=1(bi−µb)
2

Percentiles
t = npi

100 + 0.5, pi = 10, 25, 50, 75, 90
Autocorrelation

R(k) = 1
(n−k)σs2 ∑n−k

i=1 (si − µ)(si+k − µ) ∀ k < n; the height of
the first and second peaks and the position of the second peak

of R(k)

percentile(s, pi) = (1− f )sk + f sk+1
k = integer part of t; f = fractional part of t

Interquartile
Range percentile(s, 75 )− percentile(s, 25 )

Trapezoidal
Numerical Integration

∫ n
1 s(x)dx using Multiple Segment Trapezoidal Rule

Pitch Angle arctan( xi√
y2+zi

2
) Signal Magnitude

Area
1
n

n
∑

i=1
(|xi|+|yi|+ |zi|)

Roll Angle arctan( yi√
x2+zi

2 )
Signal Vector

Magnitude
1
n

n
∑

i=1

√
xi

2 + y2 + zi
2

Median
Crossings

t = s − median(s)
Power Spectral

Density

1
n ∑n−1

i=1 (si cos 2π f i
n )

2
+ (si sin 2π f i

n )
2

f denotes the fth Fourier
coefficient in the frequency domain; the positions and power levels
of highest 6 peaks of PSD computed over the sliding window; total

power in 5 adjacent and pre-defined frequency bands.

MC =
n
∑

i=1
sgn(ti.ti+1)

sgn(a,b) = {1 if (a.b) < 0; 0 if (a.b) > 0}

2.2. Machine Learning Techniques

In this study, we are dealing with the supervised machine learning methods where the class labels
are used to train the feature vectors extracted from each separate segment of data. We attempt the
most complete analysis on performance of classifiers to discriminate among different types of activity.
Wide range of machine learning methods have been applied for recognition of human activities such
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as decision tree (DT) [20–25], Support Vector Machines (SVM) [4,5,20,23,25–28], K-Nearest Neighbors
(KNN) [20,21,23,25,27], Naïve Bayes (NB) [20,23,25,29], artificial Neural Network (NN) [23,24,26,30]
and ensemble of classifiers [6,20,25,26].
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We explore 293 different classifiers including Decision Tree, Discriminant Analysis, Support
Vector Machines, K-Nearest Neighbors, Ensemble Methods, Naïve Bayes and Neural Network with
their different parameters. The methods and their parameters setting are described and given IDs
in Appendix A. The main objective of implementing different classification techniques is to review,
compare and evaluate their performance considering the most well-known heterogeneous datasets
publicly open to the research community. We are going to intertwine different issues and suggest
solutions if we expect reasonable results in the practical applications.

3. Datasets

To design a robust learning model working in more realistic conditions, we combined 14 datasets,
focusing on accelerometer sensors that contain several sources of heterogeneities such as measurement
units, sampling rates and acquisition protocols that are present in most real-world applications. Table 2
listed the datasets and brought the details of the collected data in each project. In total, the aggregated
dataset has about 35 million acceleration samples from 228 subjects (with age ranging from 19 to 83)
of more than 70 different activities. This is the most complete, realistic, and transparent dataset in
this context.

We considered 10 major positions on the body i.e., Waist (W), Right Lower Arm (RLA), Left Lower
Arm (LLA), Right Upper Arm (RUA), Left Upper Arm (LUA), Right Lower Leg (RLL), Left Lower Leg
(LLL), Right Upper Leg (RUL), Left Upper Leg (LUL), and Chest (C). All sensors positions described in
each dataset have been mapped into the major positions. For example, if a subject puts the cellphone
in the left front pants pocket, we consider it as Left Upper Leg (LUL) position, or wrist, which is a
great place for many commercial wearables, is considered as RLA/LLA in this paper. In this field,
numerous studies [31,32] have shown that the performance of HAR systems strongly depends on
sensor placement since the number and the placement of inertial sensors have direct effects on the
measurement of bodily motions. Each placement turns out to be more suitable in terms of performance
for particular activities. Besides, having fewer sensors attached to the body is more preferable since
wearing multiple ones can become burdensome and is not well-accepted. Therefore, we limited our
modeling and analysis for single-accelerometer data while we still expect a sufficiently high recognition
rate for the picked activities. According to the datasets, the most examined activities (top activities)
are walking, running, jogging, cycling, standing, sitting, lying down, ascending and descending stairs
which also represent the majority of everyday living activities. Another observation we find is that in
eight major positions we have data for all top activities. Therefore, we choose them as target activities
for eight separate positions (W, RLA, LLA, RUL, LUL, RLL, LLL and C). We created rectangular tree
map that presents dense volumes of data in a space filling layout allowing for the visual comparison
of datasets contributions in each target position (see Figure 3). For example, as depicted in Figure 3,
datasets 3, 5, 6, 7 and 8 contribute data for constructing the chest dataset with nine activities.
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Table 2. The datasets used in this study.

Dataset Number of Subjects Sensor Type Frequency Sensor Placement Activity Type Description

(1) [5] 30 (19–48 year)
accelerometer gyroscope
(Samsung Galaxy S II
smartphone)

50 Hz waist (1) walking, ascending stairs, descending stairs,
sitting, standing, laying (6)

In the first trial, each subject placed the
smartphone in a predetermined position
i.e., the left side of the belt. However, in
the second attempt, they could fix the
phone in a desired position on the waist.

(2) [6] 4 (28–75 year)
(45 ± 21.49)

ADXL335 accelerometer
(connected to an
ATmega328V microcontroller)

~8 Hz waist, left thigh, right
ankle, right arm (4)

walking, sitting, sitting down, standing,
standing up (5)

The data have been collected during 8 h
of five different activities for all subjects.

(3) [27] 8 (20–30 year)
accelerometer gyroscope
magnetometer
(Xsens MTx unit)

25 Hz
chest, right and left wrists,
right side of the right knee,
left side of the left knee (5)

walking in a parking lot, sitting, standing,
lying, ascending/descending stairs, walking
on a treadmill with a speed of 4 km/h (in
flat and 15◦ inclined positions), etc. (19)

The subjects performed nineteen
activities by their own style and were
not controlled during data
collection sessions.

(4) [33] 16 (19–83 year) accelerometer
(6-bit resolution) 32 Hz right wrist (1)

walking, climbing stairs, descending stairs,
laying down on bed, sitting down on chair,
brushing teeth, eating meat, etc. (14)

There are postural transitions, reiterated
and complex activities in the dataset.

(5) [34] 22 (25–35 year) Accelerometer
(Google Nexus One) ~30 Hz jacket pocket on the

chest (1) walking (1)
The walking data of several subjects
were collected in indoor and outdoor
under real-life circumstances.

(6) [34] 15 (27–35 year) accelerometer (Shimmer) 52 Hz chest (1)
walking, walking and talking, standing,
standing up, talking while standing, going
up/down stairs, etc. (7)

They used a low-power, low-cost
BeagleBoard with a Linux embedded
operating system to transmit data
over Bluetooth.

(7) [21] 17 (22–37 year)
accelerometer gyroscope
magnetometer
(Xsens MTx unit)

50 Hz

right and left calves, right
and left thighs, back, right
and left lower arms and
right, left upper arms (9)

walking, jogging, running, jump up, rowing,
cycling, etc. (33)

The dataset includes a wide range of
physical activities (warm up, cool down
and fitness exercises).

(8) [22] 10 accelerometer gyroscope
magnetometer (Shimmer) 50 Hz chest, right wrist, left

ankle (3)

walking, sitting and relaxing, standing still,
lying down, climbing stairs, running,
cycling, etc. (12)

This dataset covers common activities of
the daily living, given the diversity of
body parts involved in each one, the
intensity of the actions and their
execution speed or dynamicity.
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Table 2. Cont.

Dataset Number of Subjects Sensor Type Frequency Sensor Placement Activity Type Description

(9) [35] 14 (21–49 year)
(30.1 ± 7.2)

accelerometer gyroscope
(MotionNode) 100 Hz front right hip (1)

walking forward, left and right, sitting and
fidgeting, standing, going upstairs and
downstairs, running forward, jumping up
and down, etc. (12)

There were 5 trials for each activity and
each subject performed the experiments
on different days at indoor and
outdoor places.

(10) [36] 20 (19–75 year) accelerometer 2-axis gyroscope
(attached to Tmote Sky) 30 Hz waist, right and left wrists,

right and left ankle (5)

walking forward, right-circle and left-circle,
sitting, lying down, standing, going upstairs
and downstairs, jogging, jumping, turning
right and left etc. (13)

The design of the wearable sensor
network was based on platform named
DexterNet that implemented a 3-level
architecture for controlling
heterogeneous body sensors.

(11) [23] 4 (25–30 year) accelerometer gyroscope
(Samsung Galaxy S II) 50 Hz belt, right arm, right wrist

and right jeans pocket (4)
walking, sitting, standing, walking upstairs
and downstairs, running (6)

Every participant performed each
activity between 3 and 5 min. The
smartphone was horizontally kept for
belt and vertically for the arm, wrist,
and pocket.

(12) [24] 36 accelerometer
(Android-based smartphone) 20 Hz front pants leg pocket (1) walking, sitting, standing, upstairs,

downstairs, jogging (6)

The android app, through a simple
graphical user interface, permits to
record the user’s name, start and stop
the data collection, and label the activity
being performed.

(13) [37] 19 (23–52 year)
accelerometer gyroscope
magnetometer (Xsens
MTx unit)

100 Hz
belt either on the right or
the left part of the body, at
the subject’s choice (1)

walking, sitting, standing, lying, running,
falling, jumping (9)

Data were logged in indoor and outdoor
settings under
semi-naturalistic conditions.

(14) [25] 10 (25–30 year)
accelerometer gyroscope
magnetometer (Samsung
Galaxy S II)

50 Hz

right and left jeans pocket,
belt position towards the
right leg, right upper arm,
right wrist (5)

walking, sitting, standing, walking upstairs
and downstairs, jogging, biking (8)

All test protocols were carried inside a
building, except biking.
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4. Experimental Results and Discussions

In this section, we report the effects of the heterogeneities, from sensors characteristics, data
collection scenarios and subjects, on various feature representation techniques and 293 classifiers
considering two cross-validation techniques. First, the 10-fold cross-validation strategy is applied as
one of the most accurate approaches for model selection. Figure 4 shows the minimum and maximum
obtained accuracy of each classifier over different window sizes with the waist accelerometer data.
The algorithms are sorted according to the best obtained accuracy. Considering the best acquired
accuracy for each classification category in this position, the ensemble methods KNN (Subspace) and
Tree (Bagging) achieved the highest activity recognition rate whereas DT performed the worst. Further
DA, DA (Subspace), Tree (AdaBoost), Tree (RUSBoost) and NB performed almost equal but worse
than SVM, NN and KNN. As can be seen, some classification learning algorithms are more sensitive to
parameters settings and window size and may thus be more likely to exhibit significant differences.
To have a better and deeper investigation, we extracted the classifiers with top 5% accuracies and call
them “topClassifiers” for each position. Figure 5 depicts the range of topClassifiers accuracies for each
position. A red dashed line annotation shows the 95th percentile of obtained accuracies.
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size 8 s. The first line in this figure shows the window sizes of the best accuracies for each position. 
In contrast to LLL where the top four accuracy values have been observed in small window sizes 
ranging from 2 s to 5 s, chest provides the top-rank accuracy values in large window sizes from 10 s 
to 15 s. This observation is more highlighted in orange line (w = 1 s) where all positions obtain the 
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the window size can be reduced from 15 s to 7 s by only tolerating 0.16% in recognition performance. 

Figure 4. The minimum and maximum accuracy of each classifier over different window sizes, ranging
from 1 s to 15 s, with the waist accelerometer data.

As can be seen in this figure, most of the recognition methods remain consistent in their relative
performance across different accelerometer data obtained from different positions. As explained in
Section 2, finding the optimal length of window size is an application-dependent task. The window
size should be properly determined in such a way that each window is guaranteed to contain enough
samples to differentiate similar activities or movements. Thus, we consider different window sizes
ranging from 1 s to 15 s in steps of 1 s to ensure the statistical significance of the calculated features.
It comprises most of the values used in the previous activity recognition systems [8]. Figure 6 describes
the ranking of different window sizes in providing the best accuracy (among all classifiers) in each
position. For example, window of length 7 s provides the best classification accuracy when the
sensor is attached on the RLA. The second best accuracy value for RLA is achieved with window
size 8 s. The first line in this figure shows the window sizes of the best accuracies for each position.
In contrast to LLL where the top four accuracy values have been observed in small window sizes
ranging from 2 s to 5 s, chest provides the top-rank accuracy values in large window sizes from 10 s
to 15 s. This observation is more highlighted in orange line (w = 1 s) where all positions obtain the
worst case accuracy values except for the LLL. However, in some cases we can change the window
size (increase/decrease) at the expense of a subtle performance drop. For example, in chest position,
the window size can be reduced from 15 s to 7 s by only tolerating 0.16% in recognition performance.
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interval 3–10 s proves to provide the best accuracies in most cases considering the target activities. 
This range can be reduced if fusion of multiple sensors is used for feature extraction. Another point 
worth mentioning that is for the underlying periodic activities, large window sizes do not necessarily 
translate into a better recognition performance. 
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Although accuracy is necessary for all recognition algorithms, it is not the only parameter to 
consider in designing a recognition model. The runtime complexity (classification step) is another 
important challenge as the model should be working fast and responsive regardless of where it is 
deployed i.e., on/off-device. Thus, we make use of the concept of Pareto optimality to extract superior 
solutions from topClassifiers to tradeoff classifier accuracy and runtime. We consider two objective 
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Figure 6. The rank of window sizes in providing the best accuracy in each position.

The bar charts in Figure 5 indicate the number of window sizes (1 s to 15 s) in which the
topClassifiers provided good results (top 5%). An interesting observation from the bars is that some
classifiers such as KNN (Subspace), Tree (Bagging) and SVM work well with most windows sizes.
This means they could mitigate the effect of window size to gain meaningful information for the activity
classification process. To have a better understanding of window size effect on accuracy, Figure 7
shows the topClassifiers across all window sizes in each position. As can be observed, the interval 3–10 s
proves to provide the best accuracies in most cases considering the target activities. This range can be
reduced if fusion of multiple sensors is used for feature extraction. Another point worth mentioning
that is for the underlying periodic activities, large window sizes do not necessarily translate into a
better recognition performance.
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and (b) 2D representations.

Although accuracy is necessary for all recognition algorithms, it is not the only parameter to
consider in designing a recognition model. The runtime complexity (classification step) is another
important challenge as the model should be working fast and responsive regardless of where it is
deployed i.e., on/off-device. Thus, we make use of the concept of Pareto optimality to extract superior
solutions from topClassifiers to tradeoff classifier accuracy and runtime. We consider two objective
functions, i.e., misclassification and runtime, to be minimized. A feasible solution x dominates a
feasible solution y when

∀ i, fi(x) ≤ fi(y)
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where fi is the ith objective function. However, in many problems, there is usually no single solution
that is superior to all others, so the non-dominated solutions compose the Pareto front. For example,
in Figure 8, we populate the runtime-accuracy plane with some topCalssifiers for waist position and
depict the Pareto front. The shaded area represents the region in f1 × f2 space that is dominated
by the point x which is non-dominated and hence belong to the Pareto front [38]. All points in
this region are inferior to x in both objectives. In addition, if we want to minimize an objective
to a constraint, e.g., f1(x) < c, the Pareto front provides the solution for all possible values of the
cap c [38]. Therefore, the Pareto front contains significantly richer information than one obtains from
single-objective formulations. Table 3 summarizes the non-dominated classifiers in each position.
The results show a clear tradeoff between classifiers runtime and accuracy. There is no strong relation
between the sensor position and classification performance. In overall, the highest classification
accuracy was achieved by KNN (Subspace), and KNN stayed in the second place, which is followed by
SVM and NN. Figure 9a depicts the overall view of the non-dominated classifiers and their power in
providing high recognition accuracy. The size of each classifier ID in this figure represents the number
of times that the corresponding classifier has been reported in Table 3.
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classification runtime) according to the obtained results in the waist.

The KNN has the best classification runtime (7 ± 1.78 ms) fed with a feature vector among all of
them. While for classification accuracy, it is always after its ensemble method KNN (Subspace). In all
cases, KNN (Subspace) with average accuracy (96.42% ± 1.63%) provided better results than all other
non-dominated classifiers, with the exception of data from the RLL, where the SVM (95.52%) provided
superior accuracy. However, SVM’s prominence is negligible while considering its runtime (113.05 ms)
and no significant accuracy improvement (0.1%). Given the accuracy results stated in Table 3, although
NN classifiers provide promising results in most cases, they are dominated by other techniques and
could be only among the selected methods in three positions RUL, RLL and LLL. With a closer look
at the classifications results in Figure 5 and tabulated results, we find out ensemble method Tree
(Bagging) is a very strong method and is among topClassifiers in all cases, but is always outperformed
by other methods in terms of both accuracy and runtime. According to the selected KNN classifiers,
the distance method affects most in the performance. City block and Euclidean have been the best
choices and too large value for k does not improve the performance as it destroys locality. We also can
draw another conclusion that there was no significant difference in KNN (Subspace) performance with
different number of learners (i.e., 10, 20 and 40). Therefore, applying fewer learners is preferentially
utilized due to its much lower runtime.

Regarding the position analysis, the best performance (98.85% and 98.03%) is achieved with the
aggregated data on RUL and LUL. Chest is the next best performing placement (97.72%) compared to
the RLL (95.52%), LLL (96.38%), RLA (95.30%), LLA (94.06%) and Waist (95.67%).
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Different studies [15,26,39] show that the use of overlap between successive sliding windows
help the classifiers to be trained with more feature vectors and consequently improve the recognition
performance. However, it adds more computational work needed to process the overlapped data
multiple times. To evaluate the effectiveness of the degree of overlap, the overlaps of 10%, 25%, 50%,
75% and 90% are used where the percentage is the amount the window slides over the previous window.
For instance, a sliding window with 25% overlap will start the next window while the previous window
is 75% complete. The value can range from 0% to 99%, since a 100% sliding window is erroneous.
Figure 9b illustrates the recognition system capabilities for diverse overlap values while keeping
the best window size in each position (see Figure 6). The results demonstrate that the performance
tendency is increased in most cases by overlapping more data segmentations. An average increase
of 3.28% in the best accuracy was found between the 0% and 90% overlap scenarios and all obtained
with ensemble of KNN. Figure 10 also illustrates the number of classifiers that provide good results
(90%–99%) by considering different overlap sizes. The larger the overlap, the more improvement is
expected in performance. As described, this is because more features can be trained and consequently
the predictive model almost certainly works better in testing phase; however, it suffers from more
training time.
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expected the accuracy of recognition in all positions was reduced since the trained model deals with 
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In activity recognition problem, K-fold cross-validation is an accurate approach for model
selection; however, Leave-One-Subject-Out (LOSO), which is also called subject-independent
cross-validation, can be used to avoid possible overfitting and is one of the best approaches in
estimating realistic performance. Because LOSO reflects inter-subject variability and tests on yet-unseen
data, it consequently leads to a decrease in accuracy. According to combined datasets in each position
(see Figure 3), we conducted LOSO evaluation where the KNN (Subspace) is trained on activity data
for all subjects except one. Then, the classifier is tested on the data for only the subject left out of
the training data set. The procedure is then repeated for all subjects in each position and the mean
accuracy is reported. For each position, the window size and overlap are set based on the best acquired
results from 10-fold evaluation. Based on the aggregated data for each position, the models trained in
LUL (92.35%) and LLL (90.03%) positions were not affected much by interpersonal differences in the
body movement of subjects and could obtain relatively good results of accuracy. They are followed by
Chest (86.31%) and RLL (83.51%), which are better performing placements compared to the lower arm
positions. The RLA (64.62%) was influenced the most and LLA (77.12%) accounted for a substantial
decrease in accuracy, as well. Result of Waist (72.53%) was very similar to one reached by RUL (72.91%),
but both suffer performance degradation by more than 25%. As expected the accuracy of recognition
in all positions was reduced since the trained model deals with a set of data that might have new
measurement characteristics. As the best classifier of each position in average goes down 17.13% in
accuracy, there is a need for further studies investigating new relevant features and novel machine
learning model to be sufficiently flexible in dealing with inter-person differences in the activities’
performances in a position-aware scenario.
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Table 3. The accuracy and runtime of non-dominated classifiers.

Classifier
ID

Accuracy
(%)

Misclassification
(%)

Runtime
(ms)

Classifier
ID

Accuracy
(%)

Misclassification
(%)

Runtime
(ms)

Waist Left Upper Leg

21 93.82 6.18 9.31 21 96.69 3.31 3.52
28 94.02 5.98 9.57 24 96.62 3.38 3.39
108 93.75 6.25 9.24 57 95.93 4.07 2.92
109 94.07 5.93 10.41 60 96.11 3.89 3.11
183 93.75 6.25 8.92 222 96.15 3.85 3.16
189 93.72 6.28 8.80 267 97.63 2.37 34.73
190 94.04 5.96 10.13 268 97.86 2.14 102.90
267 95.48 4.52 45.95 269 98.03 1.97 151.83

268 95.51 4.49 121.58 Right Lower Leg

269 95.67 4.33 196.10 16 95.52 4.48 113.05

Right Lower Arm 24 93.82 6.18 8.03

24 93.11 6.89 7.61 28 93.45 6.55 8.02
102 93.29 6.71 8.01 267 95.36 4.64 30.73
267 95.14 4.86 33.90 290 94.52 5.48 8.25
268 95.29 4.71 87.80 291 94.97 5.03 9.14

269 95.30 4.70 149.78 Left Lower Leg

Left Lower Arm 21 94.26 5.74 7.91

28 92.29 7.71 7.59 25 93.16 6.84 7.79
57 91.50 8.50 7.31 267 95.99 4.01 32.36
63 91.61 8.39 7.35 268 96.38 3.62 83.45
102 92.24 7.76 7.50 290 93.64 6.36 7.89
267 94.06 5.94 32.50 291 95.02 4.98 8.85

Right Upper Leg Chest

24 97.93 2.07 7.04 21 96.17 3.83 6.97
57 97.33 2.67 6.94 84 95.25 4.75 6.58
63 97.43 2.57 6.94 87 95.43 4.57 6.95
183 98.05 1.95 7.49 105 96.48 3.52 7.63
189 97.97 2.03 7.21 168 95.39 4.61 6.91
267 98.85 1.15 32.12 183 96.37 3.63 7.02
291 98.14 1.86 8.08 267 97.52 2.48 29.64

268 97.67 2.33 76.49
269 97.72 2.28 125.10
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5. Conclusions 

In this study, different machine learning techniques were deeply explored when heterogeneity 
of devices and their usage scenarios are intrinsic. In addition, each position was analyzed based on 
the aggregated tri-axial accelerometer data from different datasets. Hence, the quantitative 
comparison of the classifiers was hindered by the fact that each position is explored with a different 
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5. Conclusions

In this study, different machine learning techniques were deeply explored when heterogeneity
of devices and their usage scenarios are intrinsic. In addition, each position was analyzed based
on the aggregated tri-axial accelerometer data from different datasets. Hence, the quantitative
comparison of the classifiers was hindered by the fact that each position is explored with a different
aggregated dataset. In each position investigation, in addition to different sources of heterogeneities
in data, there are also different factors such as body shape, clothing, straps, belt and accidental
misplacements/disorientations (in the form of rotations or translations) that make the analysis harder
to have a solid model. The averaged results showed 96.44% ± 1.62% activity recognition accuracy
when using K-fold and 79.92% ± 9.68% accuracy when using a subject-independent cross-validation.
According to the obtained results, it is clear that new data with different sources of heterogeneities
could significantly reduce the accuracy with more than 32% (e.g., in RLA) based on LOSO evaluation.
An overall look into the results, KNN and its ensemble methods showed stable results over different
positions and window sizes, indicating its ability in designing a robust and responsive machine
learning model in the wearables, and they are followed by NN and SVM. However, as we showed in
this paper, the choice of parameter values in each classifier can have a significant impact on recognition
accuracy and should be taken into account (see Appendix A). Considering the promising results in this
pilot study, we intend to work on novel features extraction methods and classifiers that outperform
classical classification methods while better dealing with inter-person differences and data diversities.
Another point that deserves to be further assessed is optimizing the runtime performance since it has a
great role in efficiency of the cloud-based machine learning deployments.
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Abbreviations

The followings are the list of abbreviations: SC: Split Criterion; MS: Maximum number of Splits; T: Type; KF:
Kernel Function; C: Coding; KS: Kernel Scale; P: Polynomial; GA: GAussian; OO: One-vs-One; PO: Polynomial
Order; BT: Break Ties; D: Distance; DW: Distance Weight; EX: EXponent; N: number of Neighbors;
SM: SMallest; NE: NEarest; RA: RAndom; CB: City Block; CC: ChebyChev; CO: COrrelation; CS: CoSine;
EU: EUclidean; SE: Standardized Euclidean; MA: MAhalanobis; MI: MInkowski; SP: SPearman; EQ: EQual;
IN: INverse; SI: SquaredInverse; EL: Ensemble Learner; NL: Number of Learners; DI: DIstribution; TF: Training
Function; HL: number of Hidden Layers; SCG:: Scaled Conjugate Gradient; RP: Resilient backPropagation;
LM: Levenberg–Marquardt backpropagation.

Appendix A.

In this section, the utilized approaches for activity classification problem are summarized while considering
different parameters settings.

Appendix A.1. Decision Tree

In this method, the discriminatory ability of the features is examined one at a time to create a set of rules.
Decision Tree (DT) has been used in many studies [15,39], and the results show that it performs well with time
and frequency domain features. In the top-down tree structure, each leaf represents a classification label and
each branch denotes conjunctions of attributes that lead to the leaves. In other words, decision trees classify
instances by starting at the root of the tree and moving through it (with decision being made at each node) until
a leaf node. Generally, the utilized growing and pruning algorithms in decision tree induction are greedy and
follow a recursive manner. The construction of a tree involves determining split criterion, stopping criterion and
class assignment rule [40]. The most common techniques to measure the node impurity (for splitting nodes) are
explained in Table A1 [41]. They define the node splits, where each split maximizes the decrease in impurity.
In this study, we split branch nodes layer by layer until there are 4, 20 or 100 branch nodes. Therefore, we define
nine different decision trees considering the mentioned split and stopping criteria. When a node is determined to
be a leaf, it has to be given a class label. A commonly used class assignment function is the majority rule meaning
that class k is assigned to node t as follows [42]:

lk = max
i

p(i|t), t ∈ T̃

The set of terminal nodes (leafs) denoted by T̃.

Appendix A.2. Discriminant Analysis

Discriminant Analysis (DA) is widely used in classification problems [43,44]. In this algorithm, there
are three main elements: prior probability, posterior probability and cost [45]. A prior probability P(k) is the
probability that an observation will fall into class k before you collect the data. There are two main choices, i.e.,
uniform and empirical. If the prior probability of class k is 1 over the total number of classes, it is called uniform.
Besides, the number of training feature vectors of class k divided by all training features set defines the empirical
prior probability.

Table A1. The common techniques for splitting nodes in DT.

Split
Criterion Description Split

Criterion Description Split
Criterion Description

Gini’s
Diversity

Index (GDI)

∑
i

p(i)(1− p(i)) =

1−∑
i

p2(i)
Deviance

−∑
i

p(i)log p(i)

Towing rule

p(L)p(R)
(

∑
i
|L(i)− R(i)|

)2

Let L(i)/R(i) denote the fraction of members of
class i in the left/right child node after a split

and p(L)/p(R) are the fractions of observations
that split to the left/right

p(i) is the probability
that an arbitrary sample

belongs to class li.

based the concept of
entropy from

information theory

A posterior probability is the probability of assigning observations to classes given the data. The product of
the prior probability and the multivariate normal density explains the posterior probability that a point x belongs
to label k. With mean µk and covariance Σk at a point x, the density function of the multivariate normal can be
described as below [45]:

(x|k) = 1

(2π|Σk|)1/2 exp

(
−1

2
(x− µk)

T
−1

∑
k
(x− µk)

)
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The observed data x (the feature vector of one analysis segment) is classified to label k with the largest
posterior probability. The posterior probability that an observation x belongs to label k is:

P̂(k|x) = P(x|k)P(k)
P(x)

where P(x) indicates the probability of the feature vector x and is the sum over k of P(x|k)P(k). Therefore,
the predicted classification ŷ with m classes is:

ŷ = arg min
y=1...k

m

∑
k=1

P̂(k|x)C(y|k)

C(y|k) is the cost of classifying an observation y when its correct label is k [45]. In this paper, we consider five
types of discriminant analysis classifiers: linear; and diagonal and pseudo variants of linear and quadratic types.

Appendix A.3. Support Vector Machine

A Support Vector Machine (SVM) is defined based on one or a set of separating hyperplanes in a high
dimensional space and was first proposed for binary-classification problems. SVM generates linear functions by
considering a set of labels obtained from training dataset. The linear separator is created considering the maximum
margin from the hyperplane to the support vectors [46,47]. By n training samples, (xi, yi); i = 1, 2, . . . , n
we have:

{xi, yi}, i = 1, . . . n, yi ∈ {−1,+1}, xi ∈ Rd

yi shows the binary nature of the classifier with either 1 or −1, representing the class of xi. The Rd is a
d-dimensional vector space over the real numbers. The decision boundary of a linear SVM classifier is as follows:

wT x + b = 0

where w and b indicate a weight vector and bias, respectively. There are different linear separators, though SVM
targets the one with maximum-margin hyperplane from any data point. The linear classifier is as follows:

f (x) = sign
(

wT x + b
)

The main goal is to find the best w and b which can maximize the geometric margin ( 2
||w|| ), with linear

constraints yi(wT xi + b) ≥ 1 for all (xi, yi). This optimization problem can be defined as a minimization problem
as follows:

min
w,b

(
1
2
||w||2)

s.t.yi(wT xi + b) ≥ 1, i = 1, . . . n

To solve this problem, the optimization function is transformed into the Lagrangian dual with the
Karush–Kuhn–Tucker (KKT) conditions so that the Lagrange multiplier vector αi is linked with each inequality of
the constraints as:

max
α≥0

min
w,b
{1

2
||w||2 −

n

∑
i=1

αi[yi(wT xi + b)− 1]},

max
α≥0

 n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjxT
i xj

, s.t.
n

∑
i=1

αiyi = 0

Thus, the optimal linear classification function is obtained as below, where nsv denotes the number of
support vectors. Different studies show that SVM could provide an efficient non-linear classification and provide

very promising results [48,49]. K
(

xi, xj

)
= φ(xi)

Tφ
(

xj

)
is the kernel function which provides the inner product

value of xi and xj in the feature space.

f (x) = sign(wT x + b) = sign(
nsv

∑
i,j=1

αiyixT
i xj + b)

f (x) = sign

 nsv

∑
i,j=1

αiyiK
(

xi, xj

)
+ b


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The most often used kernels in SVM are as described in Table A2. The type of the kernel function that
transforms data from input space to a higher dimensional feature space has direct impact on the performance of the
SVM classifier. Although there exist no well-defined rules for selecting the kernel type [46], here three well-known
kernel functions are applied in SVM with Error Correcting Output Codes (ECOC) with One-Versus-One (OVO)
technique to evaluate our multi-classification problem. ECOC breaks the multiclass task into a number of binary
classification tasks which are then combined to output the final result [50]. The OVO coding design exhausts all
combinations of class pair assignments. Therefore, if we have K distinct classes, the number of learners is k(k−1)

2 .
For each binary learner, one class is positive, another is negative, and the rest are ignored.

Table A2. The applied kernels in SVM.

Kernel Formula Kernel Formula Kernel Formula

Linear xi
T xj Polynomial (xi

T xj + 1)d Radial basis
function (RBF) exp

(
−||xi−xj||2

2σ2

)

Table A3. The distance metrics in KNN.

Distance
Metric Description Distance

Metric Description Distance
Metric Description

Euclidean

√
n
∑

i=1
(xsi − yti)

2 Standardized
Euclidean

√
n
∑

i=1

(xsi−yti)
2

s2
i

si is the

standard deviation of the xsi and
yti over the sample set

Correlation
1− (xs−xs)(yt−yt)

′
√

(xs−xs)(xs−xs)′
√

(xs−xs)(yt−xs)
′

xs =
1
n ∑

i
xsi and ys =

1
n ∑

i
yti

City Block
n
∑

i=1
|xsi − yti| Minkowski

p
√

∑n
i=1|xsi − yti|p In this

work, p = 3
Mahalanobis

√
(xsi − yti)C−1(xsi − yti)

′ C is the
covariance matrix

Chebychev max
i
{|xsi − yti|} Cosine 1− xsyt

′√
(xs xs ′)(ytyt ′)

Spearman

1− (rs−rs)(rt−rt)
′

√
(rs−rs)(rs−rs)

′√(rs−rs)(rt−rs)
′ rsi

is the rank of xsi over xs. If any xs
values are tied, their average rank

is computed

Appendix A.4. K-Nearest Neighbors

K-Nearest Neighbor (KNN) is based on a neighborhood majority voting scheme and assigns the new instance
to the most common class amongst its K nearest. Simplicity and runtime are the main advantages of this method
which used in several research works [15,26,51]. There are different metrics to determine the distance d(xs, yt)
between two vectors xs and yt. Table A3 describes the methods used in this study. The three applied distance
weights are equal (no weighting), inverse (1/d) and squared inverse (1/d2). If multiple classes have the same
smallest cost, the smallest index, the class with the nearest neighbor or a random tiebreaker among tied groups
is used. Regarding selection of k, larger value may improve performance and reduce the effect of noise on the
classification, but makes boundaries between classes are less distinct [52]. In addition, setting k to a too large value
may destroy locality, and as a result, KNN looks at samples that are not neighbors. They are different techniques
to select and find a good k [53,54]. Here, we consider three values 1, 10 and 100 for k; therefore, in total we run
243 KNNs with different settings.

Appendix A.5. Ensemble Methods

Generally, ensemble classifier refers to a combination of different classifiers that are cooperatively trained
on data set and then classify new data by taking a weighted vote of their predictions to obtain better predictive
performance. Indeed, within the sensor-based recognition domain, different studies [6,15,20,25,26] report
where an ensemble method outperformed a range of other classification models. Bagging, as named from
the phrase “bootstrap aggregating”, is used to improve results of classification algorithms and help to avoid
overfitting [55]. This ensemble method constructs bootstrap samples by repetitively resampling training instances
with replacement. A sequence of classifiers c1:b (b = 10, 30, 50) in respect to variation of the training set is created
by the bagging method. The prediction of a compound classifier, derived from the combinations of c1:b, is given as:

c(di) = sign

(
b

∑
m=1

αmcm(di)

)
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The above formula can be interpreted as to classify an example di to the class with majority voting, and α
should be chosen so that more accurate classifiers have stronger impact on the final prediction than less accurate
classifiers [56]. More details about the theory of classifier voting can be found in [57].

Another approach is boosting which attempts to turn a weak leaner into a strong learner by gradually
adapting how models are made. Each new model added to the ensemble is biased to take more notice to training
instances that earlier models misclassified [45]. AdaBoost.M2 is a very prevalent boosting algorithm for multi-class
classification. The algorithm trains learners sequentially and requires the weak learner to output an array of
confidences associated with each possible labeling of an example. For every learner with index t, AdaBoost.M2
computes the weighted pseudo-loss for N observations and k classes as below [45]:

εt =
1
2

N

∑
n=1

∑
k 6=yn

d(t)n,k(1− ht(xn, yn) + ht(xn, k))

where ht(xn, k) and d(t)n,k are the confidence of prediction by learner and observation weights at step t for class k,
respectively. The second sum is over all classes other than yn that is the true class. For more details, the reader is
referred to [58].

RUSBoost is designed to improve the performance of models trained on skewed data. It combines data
sampling and boosting, providing an effective method at classifying imbalanced data. It applies Random Under
Sampling (RUS), a method that randomly takes out examples from the majority class for each weak learner in the
ensemble until a preferred class distribution is found. If the smallest class has N training instances, classes with
more instances are under sampled by taking only N observations. For reweighting and constructing the ensemble,
it follows the procedure in AdaBoost.M2 [59].

Random subspace ensembles (Subspace) is similar to bagging except that the features are randomly sampled.
Thus, subspace ensembles have the advantage of less memory and computations than ensembles with all features
resulting in considerably shorter model training times. To train a weak learner, this technique selects a random set
of m predictors (in this study, m = 12) from the d possible values without replacement. In our study, it repeats this
procedure until there are 10, 30 or 50 weak learners. Finally, it takes an average of the score prediction of the weak
learners, and classifies the observation with the maximum mean score [60].

In this manuscript, the boosting and bagging algorithms are based on tree learners, and the subspace has
been applied to discriminant analysis and k-nearest neighbor learners.

Appendix A.6. Naïve Bayes

Naïve Bayes (NB) is a powerful probabilistic classifier employing a simplified version of Bayes formula
to decide on a class of a new instance [61]. In activity recognition, NB proved to perform well in the previous
studies [20,62]. The following equation shows the Naïve Bayes under assumption of feature independence, though
the assumption is usually violated in practice.

P(l| f1 . . . fn) =
p(l)∏n

i=1 p( fi
∣∣l)

p( f1 . . . fn)

where l represents labels/classes (l = 1, 2 . . . L) and fi is a feature vector. The denominator of the right side of the
equation is a constant, and p(l) is a prior. The posterior probability P(l| f1 . . . fn) is determined by the likelihood

∏n
i=1 p( fi

∣∣l) and p( f1 . . . fn) is the joint density of the predictors, so, p( f1 . . . fn) = ∑L
l=1 p(l)∏n

i=1 p( fi

∣∣∣l) .

Table A4. The applied kernel smoother types in NB.

Kernel Type Formula Kernel Type Formula

Uniform 0.5 I{|x| ≤ 1} Epanechnikov 0.75
(
1− x2) I{|x| ≤ 1}

Normal (Gaussian) 1√
2π

e−0.5 x2
Triangular (1− |x|) I{|x| ≤ 1}

The Naïve Bayes classifier combines the independent feature mode with a decision rule. The common rule is
known as the maximum a posteriori or MAP decision rule.

arg max
l

P(l| f1 . . . fn) = arg max
l

n

∏
i=1

p( fi|l)
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A typical assumption when dealing with data stream is that continuous values associated with each class are
distributed according to a Normal (Gaussian) distribution. However, to alleviate this assumption, NB classifier
computes a separate kernel density estimate for each class according to its training data [45]. There exists a large
range of kernels that can be exploited for the kernel density estimate. Table A4 shows the kernel smoother types
we applied in this study.

Appendix A.7. Neural Network

Artificial Neural Network (NN) is generally presented as a system of interconnected neurons that are capable
of machine learning. The basic processing unit of an NN is called perceptron and is a decision making unit with
several inputs and a single output. The input neuron pi is weighted with an appropriate wi. The perceptron sums
the dot product of weights and inputs vectors, and adds a bias b. The obtained total signal will be transformed
by a function which not only can be linear, but is most often a nonlinear transformation (e.g., log-sigmoid and
tan-sigmoid) [63]. This process is summarized as:

a = f

b +
i

∑
j=1

wj pj


Feedforward neural networks are one of the most broadly used models in many real-world scientific

problems. The network is divided into layers; therefore, it can learn nonlinear relationships between input and
output vectors with nonlinear transfer functions. In the input layer, the nodes pass the values to the neurons or
hidden units placed in the subsequent layer, which is called hidden layer. In this paper, we considered 10, 20,
and 40 hidden neurons. The final layer is the output layer that depends upon the number of class labels in the
classification problem [64].

In training the network, its parameters are adjusted incrementally until difference between the output
units and the target values is minimized. Resilient backpropagation [65], scaled conjugate gradient [66] and
Levenberg–Marquardt backpropagation are the most well-known network training algorithms. For example,
Levenberg–Marquardt optimization uses the Hessian matrix approximation, JT J, in the following Newton-like
update [45]:

wi(t + 1) = wi(t)−
[

JT J + µI
]−1

JTe

where Jacobian matrix J holds the first derivatives of the network errors in respect of the weights and biases.
µ stands for an adjustment factor, e for a vector of network errors and I for the identity matrix [63,67]. Resilient
backpropagation network training algorithm updates weight and bias values according to the algorithm explained
in [65]. In this method, the magnitude of the derivative has no influence on the weight update and only the sign
of the derivative can define the direction of the weight update.

Therefore, in total, there are 293 different classifiers with different settings, as listed in Figure A1.
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Figure A1. The list of the classifiers we explored in this paper. The numbers indicate the classifiers 
IDs. 

1 DT_SC(gdi)MS(4) 75 KNN_BT(SM)D(MI)EX(3)DW(EQ)N(1) 149 KNN_BT(NE)D(MA)DW(EQ)N(100) 223 KNN_BT(RA)D(EU)DW(IN)N(10) 
2 DT_SC( gdi)MS(20) 76 KNN_BT(SM)D(MI)EX(3)DW(EQ)N(10) 150 KNN_BT(NE)D(MA)DW(IN)N(1) 224 KNN_BT(RA)D(EU)DW(IN)N(100) 
3 DT_SC( gdi)MS(100) 77 KNN_BT(SM)D(MI)EX(3)DW(EQ)N(100) 151 KNN_BT(NE)D(MA)DW(IN)N(10) 225 KNN_BT(RA)D(EU)DW(SI)N(1) 
4 DT_SC(towing)MS(4) 78 KNN_BT(SM)D(MI)EX(3)DW(IN)N(1) 152 KNN_BT(NE)D(MA)DW(IN)N(100) 226 KNN_BT(RA)D(EU)DW(SI)N(10) 
5 DT_SC(towing)MS(20) 79 KNN_BT(SM)D(MI)EX(3)DW(IN)N(10) 153 KNN_BT(NE)D(MA)DW(SI)N(1) 227 KNN_BT(RA)D(EU)DW(SI)N(100) 
6 DT_SC(towing)MS(100) 80 KNN_BT(SM)D(MI)EX(3)DW(IN)N(100) 154 KNN_BT(NE)D(MA)DW(SI)N(10) 228 KNN_BT(RA)D(MA)DW(EQ)N(1) 
7 DT_SC(deviance)MS(4) 81 KNN_BT(SM)D(MI)EX(3)DW(SI)N(1) 155 KNN_BT(NE)D(MA)DW(SI)N(100) 229 KNN_BT(RA)D(MA)DW(EQ)N(10) 
8 DT_SC(deviance)MS(20) 82 KNN_BT(SM)D(MI)EX(3)DW(SI)N(10) 156 KNN_BT(NE)D(MI)EX(3)DW(EQ)N(1) 230 KNN_BT(RA)D(MA)DW(EQ)N(100)
9 DT_SC(deviance)MS(100) 83 KNN_BT(SM)D(MI)EX(3)DW(SI)N(100) 157 KNN_BT(NE)D(MI)EX(3)DW(EQ)N(10) 231 KNN_BT(RA)D(MA)DW(IN)N(1) 
10 DA_T(linear) 84 KNN_BT(SM)D(SE)DW(EQ)N(1) 158 KNN_BT(NE)D(MI)EX(3)DW(EQ)N(100) 232 KNN_BT(RA)D(MA)DW(IN)N(10) 
11 DA_T(diagLinear) 85 KNN_BT(SM)D(SE)DW(EQ)N(10) 159 KNN_BT(NE)D(MI)EX(3)DW(IN)N(1) 233 KNN_BT(RA)D(MA)DW(IN)N(100)
12 DA_T(diagQuadratic) 86 KNN_BT(SM)D(SE)DW(EQ)N(100) 160 KNN_BT(NE)D(MI)EX(3)DW(IN)N(10) 234 KNN_BT(RA)D(MA)DW(SI)N(1) 
13 DA_T(pseudoLinear) 87 KNN_BT(SM)D(SE)DW(IN)N(1) 161 KNN_BT(NE)D(MI)EX(3)DW(IN)N(100) 235 KNN_BT(RA)D(MA)DW(SI)N(10) 
14 DA_T(pseudoQuadratic ) 88 KNN_BT(SM)D(SE)DW(IN)N(10) 162 KNN_BT(NE)D(MI)EX(3)DW(SI)N(1) 236 KNN_BT(RA)D(MA)DW(SI)N(100) 
15 SVM_KF(linear)C(OO) KS(auto) 89 KNN_BT(SM)D(SE)DW(IN)N(100) 163 KNN_BT(NE)D(MI)EX(3)DW(SI)N(10) 237 KNN_BT(RA)D(MI)EX(3)DW(EQ)N(1)
16 SVM_KF(P)C(OO)PO(2)KS(auto) 90 KNN_BT(SM)D(SE)DW(SI)N(1) 164 KNN_BT(NE)D(MI)EX(3)DW(SI)N(100) 238 KNN_BT(RA)D(MI)EX(3)DW(EQ)N(10)
17 SVM_KF(P)C(OO)PO(3)KS(auto) 91 KNN_BT(SM)D(SE)DW(SI)N(10) 165 KNN_BT(NE)D(SE)DW(EQ)N(1) 239 KNN_BT(RA)D(MI)EX(3)DW(EQ)N(100)
18 SVM_KF(GA)C(OO) KS(1.2) 92 KNN_BT(SM)D(SE)DW(SI)N(100) 166 KNN_BT(NE)D(SE)DW(EQ)N(10) 240 KNN_BT(RA)D(MI)EX(3)DW(IN)N(1)
19 SVM_KF(GA)C(OO) KS(4.9) 93 KNN_BT(SM)D(SP)DW(EQ)N(1) 167 KNN_BT(NE)D(SE)DW(EQ)N(100) 241 KNN_BT(RA)D(MI)EX(3)DW(IN)N(10)
20 SVM_KF(GA)C(OO) KS(20) 94 KNN_BT(SM)D(SP)DW(EQ)N(10) 168 KNN_BT(NE)D(SE)DW(IN)N(1) 242 KNN_BT(RA)D(MI)EX(3)DW(IN)N(100)
21 KNN_BT(SM)D(CB)DW(EQ)N(1) 95 KNN_BT(SM)D(SP)DW(EQ)N(100) 169 KNN_BT(NE)D(SE)DW(IN)N(10) 243 KNN_BT(RA)D(MI)EX(3)DW(SI)N(1)
22 KNN_BT(SM)D(CB)DW(EQ)N(10) 96 KNN_BT(SM)D(SP)DW(IN)N(1) 170 KNN_BT(NE)D(SE)DW(IN)N(100) 244 KNN_BT(RA)D(MI)EX(3)DW(SI)N(10)
23 KNN_BT(SM)D(CB)DW(EQ)N(100) 97 KNN_BT(SM)D(SP)DW(IN)N(10) 171 KNN_BT(NE)D(SE)DW(SI)N(1) 245 KNN_BT(RA)D(MI)EX(3)DW(SI)N(100)
24 KNN_BT(SM)D(CB)DW(IN)N(1) 98 KNN_BT(SM)D(SP)DW(IN)N(100) 172 KNN_BT(NE)D(SE)DW(SI)N(10) 246 KNN_BT(RA)D(SE)DW(EQ)N(1) 
25 KNN_BT(SM)D(CB)DW(IN)N(10) 99 KNN_BT(SM)D(SP)DW(SI)N(1) 173 KNN_BT(NE)D(SE)DW(SI)N(100) 247 KNN_BT(RA)D(SE)DW(EQ)N(10) 
26 KNN_BT(SM)D(CB)DW(IN)N(100) 100 KNN_BT(SM)D(SP)DW(SI)N(10) 174 KNN_BT(NE)D(SP)DW(EQ)N(1) 248 KNN_BT(RA)D(SE)DW(EQ)N(100) 
27 KNN_BT(SM)D(CB)DW(SI)N(1) 101 KNN_BT(SM)D(SP)DW(SI)N(100) 175 KNN_BT(NE)D(SP)DW(EQ)N(10) 249 KNN_BT(RA)D(SE)DW(IN)N(1) 
28 KNN_BT(SM)D(CB)DW(SI)N(10) 102 KNN_BT(NE)D(CB)DW(EQ)N(1) 176 KNN_BT(NE)D(SP)DW(EQ)N(100) 250 KNN_BT(RA)D(SE)DW(IN)N(10) 
29 KNN_BT(SM)D(CB)DW(SI)N(100) 103 KNN_BT(NE)D(CB)DW(EQ)N(10) 177 KNN_BT(NE)D(SP)DW(IN)N(1) 251 KNN_BT(RA)D(SE)DW(IN)N(100) 
30 KNN_BT(SM)D(CC)DW(EQ)N(1) 104 KNN_BT(NE)D(CB)DW(EQ)N(100) 178 KNN_BT(NE)D(SP)DW(IN)N(10) 252 KNN_BT(RA)D(SE)DW(SI)N(1) 
31 KNN_BT(SM)D(CC)DW(EQ)N(10) 105 KNN_BT(NE)D(CB)DW(IN)N(1) 179 KNN_BT(NE)D(SP)DW(IN)N(100) 253 KNN_BT(RA)D(SE)DW(SI)N(10) 
32 KNN_BT(SM)D(CC)DW(EQ)N(100) 106 KNN_BT(NE)D(CB)DW(IN)N(10) 180 KNN_BT(NE)D(SP)DW(SI)N(1) 254 KNN_BT(RA)D(SE)DW(SI)N(100) 
33 KNN_BT(SM)D(CC)DW(IN)N(1) 107 KNN_BT(NE)D(CB)DW(IN)N(100) 181 KNN_BT(NE)D(SP)DW(SI)N(10) 255 KNN_BT(RA)D(SP)DW(EQ)N(1) 
34 KNN_BT(SM)D(CC)DW(IN)N(10) 108 KNN_BT(NE)D(CB)DW(SI)N(1) 182 KNN_BT(NE)D(SP)DW(SI)N(100) 256 KNN_BT(RA)D(SP)DW(EQ)N(10) 
35 KNN_BT(SM)D(CC)DW(IN)N(100) 109 KNN_BT(NE)D(CB)DW(SI)N(10) 183 KNN_BT(RA)D(CB)DW(EQ)N(1) 257 KNN_BT(RA)D(SP)DW(EQ)N(100) 
36 KNN_BT(SM)D(CC)DW(SI)N(1) 110 KNN_BT(NE)D(CB)DW(SI)N(100) 184 KNN_BT(RA)D(CB)DW(EQ)N(10) 258 KNN_BT(RA)D(SP)DW(IN)N(1) 
37 KNN_BT(SM)D(CC)DW(SI)N(10) 111 KNN_BT(NE)D(CC)DW(EQ)N(1) 185 KNN_BT(RA)D(CB)DW(EQ)N(100) 259 KNN_BT(RA)D(SP)DW(IN)N(10) 
38 KNN_BT(SM)D(CC)DW(SI)N(100) 112 KNN_BT(NE)D(CC)DW(EQ)N(10) 186 KNN_BT(RA)D(CB)DW(IN)N(1) 260 KNN_BT(RA)D(SP)DW(IN)N(100) 
39 KNN_BT(SM)D(CO)DW(EQ)N(1) 113 KNN_BT(NE)D(CC)DW(EQ)N(100) 187 KNN_BT(RA)D(CB)DW(IN)N(10) 261 KNN_BT(RA)D(SP)DW(SI)N(1) 
40 KNN_BT(SM)D(CO)DW(EQ)N(10) 114 KNN_BT(NE)D(CC)DW(IN)N(1) 188 KNN_BT(RA)D(CB)DW(IN)N(100) 262 KNN_BT(RA)D(SP)DW(SI)N(10) 
41 KNN_BT(SM)D(CO)DW(EQ)N(100) 115 KNN_BT(NE)D(CC)DW(IN)N(10) 189 KNN_BT(RA)D(CB)DW(SI)N(1) 263 KNN_BT(RA)D(SP)DW(SI)N(100) 
42 KNN_BT(SM)D(CO)DW(IN)N(1) 116 KNN_BT(NE)D(CC)DW(IN)N(100) 190 KNN_BT(RA)D(CB)DW(SI)N(10) 264 EL(Discriminant)Method(Subspace)NL(10)
43 KNN_BT(SM)D(CO)DW(IN)N(10) 117 KNN_BT(NE)D(CC)DW(SI)N(1) 191 KNN_BT(RA)D(CB)DW(SI)N(100) 265 EL(Discriminant)Method(Subspace)NL(30)
44 KNN_BT(SM)D(CO)DW(IN)N(100) 118 KNN_BT(NE)D(CC)DW(SI)N(10) 192 KNN_BT(RA)D(CC)DW(EQ)N(1) 266 EL(Discriminant)Method(Subspace)NL(50)
45 KNN_BT(SM)D(CO)DW(SI)N(1) 119 KNN_BT(NE)D(CC)DW(SI)N(100) 193 KNN_BT(RA)D(CC)DW(EQ)N(10) 267 EL(KNN)Method(Subspace)NL(10) 
46 KNN_BT(SM)D(CO)DW(SI)N(10) 120 KNN_BT(NE)D(CO)DW(EQ)N(1) 194 KNN_BT(RA)D(CC)DW(EQ)N(100) 268 EL(KNN)Method(Subspace)NL(30) 
47 KNN_BT(SM)D(CO)DW(SI)N(100) 121 KNN_BT(NE)D(CO)DW(EQ)N(10) 195 KNN_BT(RA)D(CC)DW(IN)N(1) 269 EL(KNN)Method(Subspace)NL(50) 
48 KNN_BT(SM)D(CS)DW(EQ)N(1) 122 KNN_BT(NE)D(CO)DW(EQ)N(100) 196 KNN_BT(RA)D(CC)DW(IN)N(10) 270 EL(Tree)Method(AdaBoostM2)NL(10)
49 KNN_BT(SM)D(CS)DW(EQ)N(10) 123 KNN_BT(NE)D(CO)DW(IN)N(1) 197 KNN_BT(RA)D(CC)DW(IN)N(100) 271 EL(Tree)Method(AdaBoostM2)NL(30)
50 KNN_BT(SM)D(CS)DW(EQ)N(100) 124 KNN_BT(NE)D(CO)DW(IN)N(10) 198 KNN_BT(RA)D(CC)DW(SI)N(1) 272 EL(Tree)Method(AdaBoostM2)NL(50)
51 KNN_BT(SM)D(CS)DW(IN)N(1) 125 KNN_BT(NE)D(CO)DW(IN)N(100) 199 KNN_BT(RA)D(CC)DW(SI)N(10) 273 EL(Tree)Method(RUSBoost)NL(10) 
52 KNN_BT(SM)D(CS)DW(IN)N(10) 126 KNN_BT(NE)D(CO)DW(SI)N(1) 200 KNN_BT(RA)D(CC)DW(SI)N(100) 274 EL(Tree)Method(RUSBoost)NL(30) 
53 KNN_BT(SM)D(CS)DW(IN)N(100) 127 KNN_BT(NE)D(CO)DW(SI)N(10) 201 KNN_BT(RA)D(CO)DW(EQ)N(1) 275 EL(Tree)Method(RUSBoost)NL(50) 
54 KNN_BT(SM)D(CS)DW(SI)N(1) 128 KNN_BT(NE)D(CO)DW(SI)N(100) 202 KNN_BT(RA)D(CO)DW(EQ)N(10) 276 EL(Tree)Method(Bag)NL(10) 
55 KNN_BT(SM)D(CS)DW(SI)N(10) 129 KNN_BT(NE)D(CS)DW(EQ)N(1) 203 KNN_BT(RA)D(CO)DW(EQ)N(100) 277 EL(Tree)Method(Bag)NL(30) 
56 KNN_BT(SM)D(CS)DW(SI)N(100) 130 KNN_BT(NE)D(CS)DW(EQ)N(10) 204 KNN_BT(RA)D(CO)DW(IN)N(1) 278 EL(Tree)Method(Bag)NL(50) 
57 KNN_BT(SM)D(EU)DW(EQ)N(1) 131 KNN_BT(NE)D(CS)DW(EQ)N(100) 205 KNN_BT(RA)D(CO)DW(IN)N(10) 279 NB_DI(kernel)Kernel(normal) 
58 KNN_BT(SM)D(EU)DW(EQ)N(10) 132 KNN_BT(NE)D(CS)DW(IN)N(1) 206 KNN_BT(RA)D(CO)DW(IN)N(100) 280 NB_DI(kernel)Kernel(box) 
59 KNN_BT(SM)D(EU)DW(EQ)N(100) 133 KNN_BT(NE)D(CS)DW(IN)N(10) 207 KNN_BT(RA)D(CO)DW(SI)N(1) 281 NB_DI(kernel)Kernel(epanechnikov)
60 KNN_BT(SM)D(EU)DW(IN)N(1) 134 KNN_BT(NE)D(CS)DW(IN)N(100) 208 KNN_BT(RA)D(CO)DW(SI)N(10) 282 NB_DI(kernel)Kernel(triangle) 
61 KNN_BT(SM)D(EU)DW(IN)N(10) 135 KNN_BT(NE)D(CS)DW(SI)N(1) 209 KNN_BT(RA)D(CO)DW(SI)N(100) 283 NN_pattNet_TF(SCG)HL(10) 
62 KNN_BT(SM)D(EU)DW(IN)N(100) 136 KNN_BT(NE)D(CS)DW(SI)N(10) 210 KNN_BT(RA)D(CS)DW(EQ)N(1) 284 NN_pattNet_TF(SCG)HL(20) 
63 KNN_BT(SM)D(EU)DW(SI)N(1) 137 KNN_BT(NE)D(CS)DW(SI)N(100) 211 KNN_BT(RA)D(CS)DW(EQ)N(10) 285 NN_pattNet_TF(SCG)HL(40) 
64 KNN_BT(SM)D(EU)DW(SI)N(10) 138 KNN_BT(NE)D(EU)DW(EQ)N(1) 212 KNN_BT(RA)D(CS)DW(EQ)N(100) 286 NN_pattNet_TF(RP)HL(10) 
65 KNN_BT(SM)D(EU)DW(SI)N(100) 139 KNN_BT(NE)D(EU)DW(EQ)N(10) 213 KNN_BT(RA)D(CS)DW(IN)N(1) 287 NN_pattNet_TF(RP)HL(20) 
66 KNN_BT(SM)D(MA)DW(EQ)N(1) 140 KNN_BT(NE)D(EU)DW(EQ)N(100) 214 KNN_BT(RA)D(CS)DW(IN)N(10) 288 NN_pattNet_TF(RP)HL(40) 
67 KNN_BT(SM)D(MA)DW(EQ)N(10) 141 KNN_BT(NE)D(EU)DW(IN)N(1) 215 KNN_BT(RA)D(CS)DW(IN)N(100) 289 NN_pattNet_TF(LM)HL(10) 
68 KNN_BT(SM)D(MA)DW(EQ)N(100) 142 KNN_BT(NE)D(EU)DW(IN)N(10) 216 KNN_BT(RA)D(CS)DW(SI)N(1) 290 NN_pattNet_TF(LM)HL(20) 
69 KNN_BT(SM)D(MA)DW(IN)N(1) 143 KNN_BT(NE)D(EU)DW(IN)N(100) 217 KNN_BT(RA)D(CS)DW(SI)N(10) 291 NN_pattNet_TF(LM)HL(40) 
70 KNN_BT(SM)D(MA)DW(IN)N(10) 144 KNN_BT(NE)D(EU)DW(SI)N(1) 218 KNN_BT(RA)D(CS)DW(SI)N(100) 292 NN_softmax_TF(SCG) 
71 KNN_BT(SM)D(MA)DW(IN)N(100) 145 KNN_BT(NE)D(EU)DW(SI)N(10) 219 KNN_BT(RA)D(EU)DW(EQ)N(1) 293 NN_softmax_TF(LM) 
72 KNN_BT(SM)D(MA)DW(SI)N(1) 146 KNN_BT(NE)D(EU)DW(SI)N(100) 220 KNN_BT(RA)D(EU)DW(EQ)N(10)  
73 KNN_BT(SM)D(MA)DW(SI)N(10) 147 KNN_BT(NE)D(MA)DW(EQ)N(1) 221 KNN_BT(RA)D(EU)DW(EQ)N(100)  
74 KNN_BT(SM)D(MA)DW(SI)N(100) 148 KNN_BT(NE)D(MA)DW(EQ)N(10) 222 KNN_BT(RA)D(EU)DW(IN)N(1)  

Figure A1. The list of the classifiers we explored in this paper. The numbers indicate the classifiers IDs.
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