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Abstract: Finding the source of an accidental or deliberate release of a toxic substance into
the atmosphere is of great importance for national security. The paper presents a search
algorithm for turbulent environments which falls into the class of cognitive (infotaxi) algorithms.
Bayesian estimation of the source parameter vector is carried out using the Rao–Blackwell
dimension-reduction method, while the robots are controlled autonomously to move in a scalable
formation. Estimation and control are carried out in a centralised replicated fusion architecture
assuming all-to-all communication. The paper presents a comprehensive numerical analysis of the
proposed algorithm, including the search-time and displacement statistics.
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1. Introduction

Search strategies for finding an emitting source of hazardous substance based on sporadic sensory
cues are a topic of great importance. In the context of national security, for example, the search could
be for the source of an accidental or deliberate biochemical agent release into the atmosphere [1],
which would require urgent attention. Similar techniques are also used in search and rescue missions
and to explain the foraging behaviour of animals. In many studies of these search techniques, the
searching agent is assumed to be mobile and capable of sensing the emitted substance from the source.
The sensing cues are often sporadic, fluctuating and discontinuous, due to turbulent transport through
the medium over a large search domain [2]. The objective of the search is to find the emitting source in
the shortest possible time.

Recent advances in biochemical sensing technologies [3,4] have made the deployment of robots
to search for such emitting sources very attractive [5]. Developing autonomous robots equipped with
appropriate sensing capability to explore and search in harsh and dangerous environments, such
as toxic or flammable ones, is the ultimate goal of this research. Due to its importance, the topic
has attracted a great deal of interest from the scientific community. A survey including a taxonomy
of pre-2008 search algorithms can be found in [6]. The dominant class of methods are bio-inspired
strategies [7–9], which mimic the use of olfactory senses by bacteria, insects and other animals to
localise food sources, detect predators, or find mates. Typically, the search actions depend on sensory
cues. For example, upon sensing an odor signal, male moths surge upwind in the direction of the flow.
When odor information vanishes, they exhibit random cross-wind casting or zigzagging to perform a
local search until the plume is reacquired. Chemotaxis algorithms are a bio-inspired class of algorithms,
in which the search is carried out by climbing the concentration gradient [10]. These strategies are
effective close to the source where the odor plume can be considered as a continuous cloud. In the
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absence of positive detections, the robot may stay in one position, move linearly, or carry out a random
walk. Once the chemical is detected, motion is directed towards higher gradients of concentration.
These bio-inspired techniques are simple, as they require only limited spatial perception [11], however
they are mostly ad hoc. Another popular class of algorithms, not mentioned in [6], are stochastic
source-seeking algorithms [12–14]. While these algorithms are theoretically sound, they rely on smooth
gradients of concentration. In the presence of turbulence, however, where the plume of the tracer
randomly breaks up into time-varying disconnected patches resulting in intermittent measurements,
these stochastic source-seeking algorithms are not practical.

Recently, a class of algorithms referred to as infotaxis [15] was developed specifically for searching
in turbulent flows. In the absence of a smooth distribution of concentration, caused by turbulence, this
strategy directs the robot towards the highest information gain. As a theoretically principled approach,
with the source-term estimation being carried out in the Bayesian framework and the robot motion
control being based on information-theoretic principles, the infotaxic strategy has been adopted by a
number of research groups [16–24].

The goal of Bayesian estimation is to construct the posterior probability density function (PDF)
of the source parameter vector, which typically includes its location, release rate and size. In [15] the
estimation was carried out using an approximate grid-based nonlinear filtering technique [25] on a
two-dimensional parameter space consisting of the x and y Cartesian coordinates of the source location.
The source-release rate was assumed known, as well as the environmental parameters. The search was
carried out using a single robotic platform. Grid-based nonlinear filtering was subsequently replaced
with the sequential Monte Carlo method (also known as the particle filter) in [21–23,26]. The particle
filter is more efficient than grid-based methods and is therefore capable of estimating the source-release
rate jointly with the source location. Multi-robot infotaxis were investigated in [16,22,24].

Sequential estimation of the source posterior PDF using the particle filter is problematic when
the state (the source parameter vector) is random, but stationary [27]. The absence of dynamics in the
state implies that the exploration of the parameter space is limited to the first time index only. Even by
artificially introducing dynamics to the state (e.g. a random walk-like dynamic with a small variance),
the depletion of particles is inevitable over time and causes the collapse of the PF for long-duration
searches [23]. In this paper we apply a Rao–Blackwell dimension reduction method to estimate
the posterior PDF of the source parameter vector. This method computes the source release-rate,
conditioned on the source location, analytically and uses the Monte Carlo method only in the space of
x and y coordinates of the source. As a batch method, it does not suffer from depletion of particles over
time. This paper studies the multi-robot search assuming a replicated centralised fusion with all-to-all
communication. The robots move in a scalable formation, where the maximum size of the formation
is determined by the specified communication range. Control actions are made autonomously by
all robots using entropy reduction as the information theoretic measure. In computing the reward,
however, we also introduce a cost of motion. The paper analyses the statistical patterns of the search,
in particular the formation displacements and its scale.

The organisation of the paper is as follows. Mathematical models are presented in Section 2.
The method of source parameter estimation is described in Section 3. Robotic platform motion control
is explained in Section 4. Section 5 presents the numerical results, through simulations and using an
experimental dataset characterised by a turbulent flow. Finally, the conclusions are drawn in Section 6.

2. Mathematical Models

2.1. Robot Motion Model

In this section we describe the motion model of each individual robotic platform. Suppose there
are N ≥ 1 robotic platforms, with the pose of the ith platform at time tk denoted by a vector
θi

k = [(ri
k)

ᵀ, φi
k]
ᵀ, i = 1, . . . , N. Here ri

k = (xi
k, yi

k)
ᵀ is the robot location and φi

k is its heading.
The motion of the group of robots is coordinated, i.e they move in a formation. In particular, we use
a circular formation with the N robots spread approximately equally on the perimeter of a circle
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(the formation is controlled to be equally spread on a circle, but due to process noise in the motion
model, this can be only approximately achieved), whose center at time tk is (xc

k, yc
k) with the radius

ρk ∈ [rmin, rmax]. The minimum radius rmin is introduced to prevent the robots from colliding; the
maximum radius rmax is to ensure all-to-all communication amongst the platforms. The bearing of
the ith platform within the formation is fixed, while its radius is allowed to vary. The position of the
ith platform is defined by the offset (∆xi, ∆yi) from the centre (xc

k, yc
k). All platforms in the formation

have approximately equal orientation, while the offset is given by:

∆xi = 2ρ cos(2πi/N), ∆yi = 2ρ sin(2πi/N) (1)

for i = 1, . . . , N.
The biochemical sensors are activated at time instants tk, k = 1, 2, · · · to report concentration

measurements. During the interval of time [tk−1, tk] between two consecutive sensing instants, the
formation is moving. The duration of this interval, Tk = tk − tk−1 ≥ 0, is referred to as the travel time.
The assumption is that sensing is suppressed during the travel time. The motion of the formation
during the interval [tk−1, tk] is controlled by the following input parameters: the linear velocity Vk,
the angular velocity Ωk, and the formation scale increment ∆ξk = ξk − ξk−1 (which can be positive or
negative). Given the control vector uk = [Vk, Ωk, ξk, Tk]

ᵀ, the dynamics of ith platform during a short
integration time [t− δ, t], where t ∈ [tk−1 + δ, tk] and δ � Tk, can be modelled by a Markov process
with the transitional density π(θi

t|θi
t−δ, uk) = N (θi

t; β(θi
t−δ, uk), Qk). The mean of this normal density,

β(θi
t−δ, uk), is a nonlinear function specified as follows:

β(θi
t−δ, uk) = θi

t−δ + δ

Vk cos(φi
k−1)

Vk sin(φi
k−1)

Ωk

+ B + C (2)

where:

B =
(t− tk−1)∆ξk

Tk

∆xi
∆yi
0

 , t ∈ [tk−1 + δ, tk],

describes the motion due to the formation-scale change. Vector C in (2) introduces the corrections to
the pose in order to remove the difference between the desired (deterministic) pose:

θ̄
i
k−1 =

1
N

N

∑
j=1

θ
j
k−1 + ξk−1

∆xi
∆yi
0


and the actual pose (perturbed by process noise) θi

k−1 at the previous sensing time tk−1, i.e.,

C = −(θ̄i
k−1 − θi

k−1)(tk − t)/Tk. Without the correction term C, the platforms could drift and break the
formation during the search time. Finally, Qk is the covariance matrix which accounts for stochastic
disturbances in motion. Figure 1 illustrates a simulated path of a robot formation based on the
described motion model. In this illustration, the formation of N = 5 robots is expanding (the scales are
ξ1 = 1, ξ2 = 4 and ξ3 = 8). Note that, despite random individual paths, the formation at measurement
time instants t1, t2, t3 is almost a perfect pentagon. Apart from some randomness due to process noise,
the motion model keeps the formation with the fixed bearings relative to its centre and a fixed north
(i.e., the formation does not rotate).
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Figure 1. An illustration of a path of a coordinated group of N = 5 searching robots at three consecutive
time instants, with the scale of the formation increasing. The small circles in the figure represent robot
locations ri

k; the vertical lines indicate the current headings φi
k, for i = 1, . . . , N.

2.2. Measurement Model

Dispersion of the emitted hazardous substance in a turbulent environment is modelled using the
Lagrange particle encounters model developed in [15]. Suppose that the emitting source is located
at coordinates r0 = (X0, Y0)

ᵀ and its release rate, or strength, is Q0. The source parameter vector is
denoted η = [rᵀ0 Q0]

ᵀ. The particles released from the source propagate with combined molecular and
turbulent isotropic diffusivity D, but can also be advected by wind. The released particles have an
average lifetime of τ before being absorbed. Let the average wind characteristics be the speed U and
direction, which by convention, coincides with the direction of the x axis.

Suppose a spherical sensor of small radius a is mounted on the ith robot platform, whose pose at
time k is θi

k = [xi
k, yi

k, φi
k]
ᵀ (robot location is assumed non-coincidental with the source location r0).

This sensor will experience a series of encounters with the particles released from the emitting source.
The average rate of encounters can be modelled as follows [15]:

Rη(ri
k) =

Q0

ln
(

λ
a

) exp

[
(X0 − xi

k)U
2D

]
· K0

(
di

k(r0)

λ

)
(3)

where D, τ and U are known environmental parameters,

di
k(r0) =

√
(xi

k − X0)2 + (yi
k −Y0)2 (4)

is the distance between the source and ith sensor platform, K0 is the modified Bessel function of the
second kind of order zero, and

λ =

√
Dτ

1 + U2τ
4D

. (5)

depends on environmental parameters only.
The stochastic process of sensor encounters with the dispersed particles is modelled by a Poisson

distribution. The probability that a sensor at location ri
k encounters z ∈ Z+ ∪ {0} particles (z is a

non-negative integer) during a time interval t0 is then:

P(z; µi
k) =

(µi
k)

z

z!
e−µi

k (6)
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where µi
k = t0 · Rη(ri

k) is the mean number of particles expected to reach the sensor at location ri
k

during t0.

3. Source Parameter Estimation

3.1. Problem Specification

Let zi
k denote the sensor measurement recorded by the ith robot platform at time tk. The sequence

of such measurements from platform i, starting from the beginning of the search until tk is a vector
zi

1:k = [zi
1, · · · , zi

k]
ᵀ, i = 1, · · · , N. Similarly, the measurements from all platforms up to time tk is a

vector z1:k =
[
(z1

1:k)
ᵀ, · · · , (zN

1:k)
ᵀ
]ᵀ. Accordingly we can define the vector of sensor measurement

locations corresponding to z1:k as r1:k =
[
r1

1, · · · , r1
k , · · · , rN

1 , · · · , rN
k
]ᵀ. This vector is assumed to be

known. Whenever in the text we refer to the measurement vector z1:k, we implicitly assume that it is
in pair with r1:k.

Assuming all-to-all communication between the platforms for exchanging mutually their latest
measurements and positions (ignoring the time-delays and bandwidth limitations), z1:k and r1:k are
available at every platform at time tk for processing. Thus, every platform can independently carry out
centralised fusion in order to estimate the source parameter vector η. This type of fusion architecture is
known as replicated centralised.

Assuming the sensor measurements, conditioned on η, are independent, the likelihood function of
the measurement vector z1:k can be written as a double product `(z1:k|η) = ∏N

i=1 ∏k
j=1 P

(
zi

j; t0Rη(ri
j)
)
.

We adopt the Bayesian estimation framework with the goal of computing the posterior PDF
p(η|z1:k). In this framework, in addition to `(z1:k|η), one needs to specify the prior distribution of the
parameter vector π(η). Then, using the Bayes’ rule, the posterior PDF is:

p(η|z1:k) =
`(z1:k|η)π(η)∫
`(z1:k|η)π(η)dθ

. (7)

For the described problem, (7) cannot be solved analytically and we need to apply a numeric
approximation. However, it will be shown that, assuming the prior of the source strength π(Q0) is
a gamma distribution, the posterior p(Q0|z1:k, r0) can be solved analytically. Because the posterior
p(η|z1:k), using the chain rule, can be expressed as:

p(η|z1:k) = p(Q0|z1:k, r0) p(r0|z1:k), (8)

we will only need to apply a numeric approximation to estimate the posterior p(r0|z1:k).

3.2. Solution

It is reasonable to assume that the source strength is independent of its location, and hence
π(η) = π(Q0)π(r0). Let us adopt for π(Q0) a gamma distribution, with the shape parameter κ0 and
the scale parameter ϑ0:

π(Q0) = G(Q0; κ0, ϑ0) =
Q(κ0−1)

0 e−Q0/ϑ0

ϑκ0
0 Γ(κ0)

. (9)

Note that for suitably chosen hyperparameters κ0 and ϑ0, the support of this prior can cover a large
span of possible values of Q0.

The conjugate prior of the Poisson distribution is the gamma distribution [28]. Therefore, the
posterior p(Q0|r0, z1:k) is also a gamma distribution, p(Q0|r0, z1:k) = G(Q0; κk, ϑk), with parameters κk
and ϑk expressed analytically as a function of r0 and z1:k as follows (see Appendix A):
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κk = κ0 +
N

∑
i=1

k

∑
j=1

zi
j, (10)

ϑk =
ϑ0

1 + ϑ0
N
∑

i=1

k
∑

j=1
ρr0(r

i
j)

. (11)

where ρr0(r
i
k) = t0 Rη(ri

k)/Q0, that is:

ρr0(r
i
k) =

t0

ln
(

λ
a

) exp

[
(X0 − xi

k)U
2D

]
· K0

(
di

k(r0)

λ

)
. (12)

It remains to compute the posterior PDF p(r0|z1:k):

p(r0|z1:k) =
g(z1:k|r0)π(r0)∫
g(z1:k|r0)π(r0)dr0

. (13)

Compared to (7), which is a three-dimensional PDF, the posterior in (13) is two-dimensional.
This dimension reduction improves the accuracy of the numerical solution. After a few lines of
mathematical derivations one can show that the analytic expression for the likelihood function
g(z1:k|r0), which features in (13), is given by (see Appendix A):

g(z1:k|r0) =ϑ
∑N

i=1 ∑k
j=1 zi

j
0

Γ

(
κ0 +

N
∑

i=1

k
∑

j=1
zi

j

)
Γ(η0)

·
N

∏
i=1

k

∏
j=1

[ρr0(r
i
j)]

zi
j

zi
j!

. (14)

A plethora of techniques is available for the numerical computation of (13), from grid-based
numerical integration methods to Monte Carlo methods (e.g. the Markov Chain Monte Carlo,
importance sampling and population Monte Carlo). We choose a Monte Carlo method which, for a
given π(r0) and z1:k, approximates the posterior PDF p(r0|z1:k) by a random sample {r(m)

0,k }1≤m≤M
as follows:

p(r0|z1:k) ≈ pM(r0|z1:k) =
1
M

M

∑
m=1

δ(r0 − r(m)
0,k ).

Here δ(r0 − r(m)
0,k ) denotes the delta-Dirac mass located at r(m)

0,k . As the size of the sample M→ ∞, the
moments of pM(r0|z1:k) converge almost surely to the moments of p(r0|z1:k). An advantage of the
Monte Carlo method over the grid-based (deterministic) integration is that the former positions its
integration points (i.e., samples) in the regions of high probability [29].

The basic steps in estimation of p(η|z1:k) expressed by (8) are summarised in Algorithm 1.
The expected a posteriori point estimates of the source location and its strength can be computed
from the output

{(
r(m)

0,k , κk, ϑ
(m)
k

)}
1≤m≤M

as follows:

r̂0 =
1
M

M

∑
m=1

r(m)
0,k (15)

Q̂0 =
1
M

M

∑
m=1

κk · ϑ
(m)
k (16)
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Algorithm 1 Estimation of p(η|z1:k)

1: Input: π(r0), κ0, ϑ0, z1:k, M

2: Estimate p(r0|z1:k) by a random sample {r(m)
0,k }1≤m≤M

3: Compute κk, Equation (10)

4: Compute ϑ
(m)
k using r(m)

0,k , Equation (11); m = 1, . . . , M

5: Output:
{(

r(m)
0,k , κk, ϑ

(m)
k

)}
1≤m≤M

Finally, the Monte Carlo method which estimates p(r0|z1:k) in line 2 of Algorithm 1, was
implemented using iterated importance sampling with progressive correction (IIS-PC) [30]. Full details
of the implementation are given in [31]. A desirable property of importance sampling is to
draw samples from an importance density that result in sample weights with a minimal variance.
The question is how to design this importance density. The key idea behind IIS-PC is to achieve the
goal of drawing samples with a minimal variance in a sequential manner, by constructing a sequence
of target distributions from which to draw samples. The first target distribution is the prior, while
every subsequent target distribution should increasingly resemble the posterior. A target distribution
which can be used in this context at iteration s = 1, . . . , H of the IIS-PC is:

ps(r0|z1:k) ∝ [g(z1:k|r0)]
Γs π(r0), (17)

where g(z1:k|r0) is given by (14), Γs = ∑s
v=1 γv with γv ∈ (0, 1] and ΓH = 1. Note that Γs is an

increasing function of s, upper bounded by one. As a consequence, the intermediate likelihood is
broader than the true likelihood, particularly in the early stages (for small s). Thus, the sequence of
target distributions in (17) gradually introduces the correction imposed by the measurement zk on
the prior π(r0). To derive any benefits from IIS-PC, it is required after each stage to remove the lowly
weighted members of the sample and diversify the remaining ones. Lowly weighted members are
removed by resampling [27], while diversification of the remaining samples is performed by Markov
transitions whose stationary distribution is the target distribution ps(r0|z1:k). The outcome is a diverse
sample located in the region of the parameter space where the intermediate likelihood has non-zero
values. The choice of correction factors γ1, · · · , γH , as well as the number of iterations H are design
parameters. Further details can be found in [31].

4. Robot Formation Control

Suppose at time tk−1 the robotic platforms have processed all available measurements included in
the vector z1:k−1 and estimated the posterior PDF p(η|z1:k−1) using the method described in Section 3.
Let A ⊂ R2 denote a designated search area, which includes the source location r0. The key aspect
of search is, for each robotic platform of the formation, to decide autonomously where to move next
within A in order to acquire a new concentration measurement at tk, denoted zk = [z1

k , z2
k , . . . , zN

k ]ᵀ.
An autonomous multi-robot search can be formulated as a partially-observed Markov decision

process (POMDP) [32]. The elements of a POMDP include an information state, the space of admissible
actions (controls) and a reward function. The information state, adopting the Bayesian framework
for estimation of source parameters, is the posterior PDF p(η|z1:k−1). Current knowledge about the
source position and strength is fully specified by this density. A decision in the context of search is the
selection of a control vector uk ∈ Uk, where Uk is the space of admissible actions. Finally, the reward
function maps each admissible action into a non-negative real number, which represents a measure of
the action’s expected information gain. An optimal strategy selects, at each time, the action with the
highest reward. Admissible actions can be formed with one or multiple steps ahead. According to
the motion model introduced in Section 2.1, the space of admissible actions Uk is continuous with
four dimensions: Vk, Ωk, ξk and Tk. In order to reduce the computational complexity of the numerical
optimisation, we discretise Uk and consider only myopic (one step ahead) control.
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If V, O, S and T denote the sets of possible discrete-values of Vk, Ωk, ξk and Tk, respectively, then
Uk is the Cartesian product V×O× S× T. The myopic selection of the control vector at time tk is
expressed as:

uk = arg max
v∈Uk

E
{
D
(

p(η|z1:k−1), zk(v)
)}

(18)

where D
(

p(η|z1:k−1), zk(v)
)

is the reward function. Note that the reward function depends on the
future measurement zk(v), assuming the control vector v ∈ Uk has been applied. In reality, this
future measurement is not available (the decision has to be made at time tk−1), and therefore the
expectation operator E with respect to the prior measurement PDF features in (18). Previous studies of
search strategies [16,23] found that the reward function measuring the information gain as the entropy
reduction, results in the most efficient search. However, the earlier work neglected that, while traveling,
robots incur certain cost. Assuming α is the cost of travel per unit distance, we adopt the following
specification for the expected reward function:

E
{
D
(

p(η|z1:k−1), zk(v)
)}

=[
Hk−1 −E{Hk

(
zk(v)

)
}
]

e−α sk(v) (19)

where sk(v) = VkTk ≥ 0 is the travelled distance under action v, Hk−1 is the current entropy (based on
z1:k−1), i.e.,

Hk−1 = −
∫

p(η|z1:k−1) ln p(η|z1:k−1)dη, (20)

Hk(zk(v)) is the future entropy (after applying the control v):

Hk(zk(v)) = −
∫

p(η|z1:k−1, zk(v)) ln p(η|z1:k−1, zk(v))dη. (21)

and E{Hk
(
zk(v)

)
} is its expected value, with respect to the probability mass function

P{zk|z1:k−1} =
∫
`(zk|η) p(η|z1:k−1)dη:

E{Hk
(
zk(v)

)
} = ∑

zk

P{zk|z1:k−1} · Hk
(
zk(v)

)
. (22)

The exponential term, e−α sk(v), in (19) incorporates the cost of travel, penalising longer travel distances.
The computation of entropy Hk−1 in (20) is carried out as follows. Recall that p(η|z1:k−1)

is approximated by a random sample {(r(m)
0,k−1, κk−1, ϑ

(m)
k−1)}1≤m≤M. From this representation,

one can compute a random sample {η(m)
k−1}1≤m≤M, with uniform weights 1/M, where η

(m)
k−1 =

[(r(m)
0,k−1)

ᵀ, Q(m)
0,k−1]

ᵀ and Q(m)
0,k−1 ∼ G(Q0; κk−1, ϑ

(m)
k−1), for m = 1, . . . , M. Then p(η|z1:k−1) ≈

1
M ∑M

m=1 δ(η− η
(m)
k−1), which leads to the approximation Hk−1 ≈ − 1

M ln 1
M .

The computational expense of exact computation of E{Hk
(
zk(v)

)
} grows exponentially with

N because the sum in (22) is N-dimensional: it requires consideration of all possible combinations
of measurement outcomes from N platforms. Hence we resort to a Monte Carlo approximation.
For a command vector v ∈ Uk, first we draw a random sample {z(j)

k }1≤j≤J from P{zk|z1:k−1} using

the following procedure. We randomly select a sample η∗k−1 from {η(m)
k−1}1≤m≤M, and then draw N

times from the likelihood `(zk|η∗k−1). By repeating this procedure S times, J = SN samples of the

measurement outcomes from N platforms {z(j)
k }1≤j≤J are created. Then (22) is simply approximated

as: E{Hk
(
zk(v)

)
} = 1

J ∑J
j=1 Hk

(
z(j)

k (v)
)
.

The search algorithm needs to decide when to stop the search and report its final estimates of
source parameters, denoted r̂0 and Q̂0. The termination criterion is based on the spatial spread of the
random sample {r(m)

0,k }1≤k≤M, computed as the trace of its sample covariance matrix. When this spread
is below a certain threshold, denoted v, the search is terminated.
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The key assumption of the replicated centralised fusion architecture is that the same input data
(measurements z1:k and the corresponding locations r1:k) are available to all robotic platforms for data
fusion (parameter estimation and robot motion control). However, this assumption is not sufficient.
As the Monte Carlo method plays a role in the data fusion, we must also ensure that the same
pseudo-random generators, using the same seed, are running on each individual platform. In this
way all platforms reach the same decision on the motion control vector uk and subsequently apply the
motion model described in Section 2.1, knowing their own identification number i in the formation.

5. Numerical Results

5.1. Illustrative Run

First we illustrate a typical run of the multi-robot search algorithm using the following parameters
(all physical quantities are in arbitrary units (a. u.)):

• True source parameters: X0 = −150, Y0 = 150, Q0 = 4;
• Search area A = 500× 500 and number of platforms N = 5;
• Motion model parameters: rmin = 1, rmax = 100, δ = 0.25, V = {1}, O = {−5,−2.5, 0, 2.5, 5},

S = {1, 2, 4, 8}, T = {0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256}, and based on (1), the initial scale is
ξ0 = 2;

• Measurement model parameters: a = 1, D = 1, τ = 250, U = 0.25, t0 = 1;
• Algorithm parameters: κ0 = 3, ϑ0 = 5.2, M = 1000, π(r0) is the uniform distribution over the

search area A, J = M, the cost of travel α = 0.01, termination threshold v = 6.25.

The initial position of the centroid of the formation was at (200,−250). The results of a typical
run are shown in Figure 2. Figure 2a shows the search area, the paths of the multi-robot formation
at k = 2 and the source location at (X0, Y0) with the contour plot of the corresponding mean rate Rη

of (3). The random samples {r(m)
0,k }1≤k≤M, approximating the posterior p(r0|z1:k), are shown as brown

dots. Note that the search area is more than ten times bigger than the area where the source can be
sensed. Consequently, the measurements z1:k are initially zero vectors for a long time; on this occasion
for k = 1, · · · , 32. At k = 33 the first non-zero measurement is recorded by one of the sensors, resulting
in the posterior PDF p(r0|z1:k=33), approximated by the sample {r(m)

0,k=33}1≤k≤M shown in Figure 2b.
This figure also shows the search paths of the formation until the first detection. The search continues
until k = 48, when the termination criterion is reached. The source parameter estimates at this stage
are r̂0 = (−151.45, 149.98) and Q̂0 = 4.3. The posterior PDF of Q0 at k = 48 is shown in Figure 2c.
Note the narrow distribution of this posterior compared to the prior π(Q0). The total search time of
this run was 2092 a.u.
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Figure 2. Cont.
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Figure 2. An illustrative run of the multi-robot search algorithm. Figures (a) and (b) show the search

area, the paths of N = 5 platforms, and the Monte Carlo samples (brown coloured dots) {r(m)
0,k }1≤m≤M

at k = 2 and k = 33, respectively. The true source location is indicated by a pink asterisk. The contours
of the mean plume are plotted with blue lines. Figure (c) shows the prior probability density function
(PDF) π(Q0) (red dashed line), the posterior PDF p(Q0|r0, z1:k) at k = 48 (green solid line), and the
true value of Q0 = 4 (blue asterisk).

5.2. Monte Carlo runs

In order to understand the performance characteristics of the search algorithm, 200 Monte Carlo
runs were performed of various scenarios. Unless otherwise specified, the parameters used were the
same as specified in Section 5.1, but with the bigger search area, A = 750× 750.
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Figure 3. Mean search time when varying the number of platforms, N, from 1 to 10. The error bars
show the 95% confidence interval for the estimate of the mean.
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Figure 3 shows the mean search time when varying the number of platforms, N, from 1 to
10. Both the source location and initial centroid position were drawn at random from the uniform
distribution over the search area. There is initially a significant decrease in the mean search time
as platforms are added, but this eventually levels off. Even with a large number of platforms the
formation still needs to get quite close to the source before there is a significant probability of a non-zero
detection on any of the sensors, so the search time becomes dominated by the time spent exploring the
area before that detection.
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Figure 4. Mean search time for N = 5 platforms when varying the side length of the search area from
200 to 1000. The error bars show the 95% confidence interval for the estimate of the mean.

Figure 4 shows the mean search time when varying the side length of the search area in the range
[200, 1000]. The search was performed using N = 5 platforms and both the source location and initial
centroid position were again drawn at random from the uniform distribution over the search area.
Over this range of side lengths, the mean search time is approximately linear in the area searched.
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Figure 5. Histograms of robot formation displacements, as chosen by the search algorithm. The travel
cost per unit distance was α = 0.01 and α = 0.02.

Figure 5 shows the effect of travel cost on the formation displacements chosen by the search
algorithm. The travel cost α, was increased from 0.01 to 0.02 and the results are shown for 1 and
5 search platforms. In accordance with intuition, increasing the travel cost results in a shift of the
histogram towards smaller displacements. Another interesting observation can be made from Figure 5:
the histograms clearly has two peaks. One corresponds to the short movements, while the other peak
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corresponds to the long “jumps” of 32 or more units in length. This appears to be very similar to
the displacement patterns of foraging animals [2,33,34]. They too typically combine the phases of
long non-sensing displacement, with short sensing (and reactive) search phases. This strategy is often
referred to as intermittent search.
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Figure 6. Q-Q plot of the search times for (a) N = 1 and (b) N = 5, versus the inverse Gaussian
distribution with parameters fitted using maximum likelihood estimation. The source location was
fixed at [187.5, 187.5] and the initial centroid position at [187.5,−187.5]. The green lines show 95%
confidence bands [35].

Figure 6 shows a Q-Q plot with 95% confidence intervals [35], comparing the empirical PDF
of the search times (for N = 1 and N = 5 robotic platforms) with a fitted inverse Gaussian
distribution. The match between the empirical and the proposed theoretical PDF can be accepted
with 95% confidence, if the confidence limits, shown as green lines in Figure 6, do not cross the
red dashed line. The empirical search time samples were obtained with the source location fixed
at (X0, Y0) = (187.5, 187.5) and the initial robot formation centroid at [187.5,−187.5]. As found in
our previous work [23], the search time for a single search platform is well modelled by an inverse
Gaussian. The model, however, does not hold as strongly for N = 5 searching platforms, especially for
shorter search times.

In all Monte Carlo runs of the proposed autonomous multi-robot search, the hazardous source
was found and localised with accuracy determined by the termination criterion. In particular, the RMS
localisation error was found to roughly correspond to

√
v = 2.5 a.u.

5.3. Experimental Results

The search algorithm was also evaluated on an experimental data set, collected by COANDA
Research & Development Corporation using their large recirculating water channel. The source was
releasing fluorescein dye at a constant rate from a narrow tube. The data is a sequence of 340 frames of
instantaneous concentration field measurements in the vertical plane, sampled every 10/23 s. The size
of each frame is 49× 98 pixels, where each pixel corresponds to a square area of 2.935× 2.935 mm2.
The sequence of frames, in the form of a video, is included in the supplementary material; the actual
dataset can be obtained from the authors on request.

The frames from this experimental dataset were scaled by a factor of 3 using bicubic scaling and
placed in the top left corner of a 500× 500 search area. The simulated measurements from the previous
section were replaced with the rounded integer taken from the closest spatial and temporal sample
from the experimental dataset.
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Figure 7. An illustrative run of the multi-robot search algorithm on the experimental dataset using
N = 5 platforms. (a–d) show the positions and trajectories of the platforms at times k = 0, 10, 20 and
30, respectively. The plume from the experimental dataset can be seen in the top left of the search area,
with darker areas representing higher concentrations.

Figure 7 shows an illustrative run of the search algorithm on the experimental dataset at times
k = 0, 10, 20 and 30. The algorithm terminated, reporting the location of the source, just after the last
frame shown, at k = 32.
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Figure 8. Experimental data: Q-Q plot of the search times for (a) N = 1 and (b) N = 5 versus the
inverse Gaussian distribution with parameters fitted using maximum likelihood estimation. The source
was placed as shown in Figure 7 and initial centroid position was fixed at [125,−125]. The green lines
show 95% confidence bands [35].
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Figure 8 shows a Q-Q plot of 200 samples of the search times for N = 1 and N = 5 search platforms
versus a fitted inverse Gaussian distribution, with the initial formation centroid position fixed at
[125,−125]. As found for the simulated plume in Figure 6, and in our previous work [23], the search
times for the experimental plume can be accurately modelled by an inverse Gaussian distribution.

6. Summary

The paper proposed an algorithm for autonomous search for an emitting source of hazardous
material transported through the environment by a turbulent flow. The search was designed for a
group of robots connected in a network with all-to-all communication.

The source parameter estimation was carried out in the Bayesian framework: the posterior density
of source strength, conditioned on the source location, was carried out analytically. The posterior
density of source location, on the other hand, was computed numerically, using a Monte Carlo method.
The source parameter estimation, carried out in this manner, overcomes the problems encountered
in previous implementations, such as the assumption that the source strength is known in using the
grid-based estimation, or the depletion of particles, when the particle filter is applied.

The robots are moving in a controllable formation, with control parameters including the linear
and angular velocity, the travel time and the scale of formation. The reward function for choosing the
robot formation control vector was selected as the entropy reduction, with the built-in travel cost.

Numerical results, using both simulated and real data, demonstrate reliable performance: the
success rate in finding the source is 100%, with localisation accuracy determined by the termination
criterion. Furthermore, the analysis of the algorithm reveals: (1) a diminishing return on increasing
the number of platforms in formation; (2) a linear growth of the mean search time with the search
area; (3) an increase in the cost of travel resulting in shorter formation displacements; (4) the search
displacements are in accordance with the intermittent search strategy; and (5) the PDF of search time
for a single searcher is well-modelled by the inverse Gaussian distribution.

There are many avenues for future work. For example, one could explore distributed, rather
than centralised, source parameter estimation and robot control. This could take into account a more
realistic communication network with limited bandwidth and time delays. The implicit assumption in
the presented work was that the search area is an open field. The search in an area with obstacles and
known map would be another complementary future research direction: it would require a different
dispersion model, and modifications of the parameter estimation and robot control algorithms. Finally,
the search in an area with obstacles and an unknown map would require robots to be equipped
with appropriate ranging sensors for localisation and mapping. Carrying out autonomously and
simultaneously three functions: search, localisation and mapping, is the ultimate goal of this research.
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Abbreviations

The following abbreviations are used in this manuscript:

i robotic platform index
θi

k ith robot pose at discrete-time k
η parameter vector of emitting source
Q0 emitting source strength (release rate)
r0 emitting source location, (X0, Y0)

ᵀ

z1:k the complete measurement vector
r1:k platform/sensor locations corresponding to z1:k
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p(η|z1:k) posterior density of η at discrete-time k
uk the control vector at time k
κk, ϑk parameters of Gamma distribution at k
α travel cost per unit distance
U average windspeed
D diffusivity
τ average particle lifetime
N number of robotic platforms
M number of Monte Carlo samples

Appendix A. Mathematical Derivations

In proving Equations (10) and (11), we will use two properties of gamma distribution:

1. If random variable X ∼ G(υ, ϕ), then for any constant c > 0, the random variable cX ∼ G(υ, cϕ).
2. Suppose the prior distribution of random variable Y is G(υ, ϕ). Let n be a sample from the

Poisson distributed likelihood function with parameter Y. Then, the posterior distribution of Y is
G(υ + n, ϕ

1+ϕ ).

Let us consider first only the concentration measurement taken by a one platform, i.e., N = 1,
at time k = 1, that is a single measurement z1

1. This measurement was collected at the position r1
1.

The likelihood function of this measurement is `(z1
1|η) = P(z1

1; Q0ρr0(r
1
1)).

Recall that the prior distribution of Q0 is G(κ0, ϑ0). Using property 1 of gamma distribution, the
prior density of random variable Q0ρr0(r

1
1) is G(κ0, ρr0(r

1
1)ϑ0). Using property 2 of gamma distribution,

after collecting measurement z1
1, the posterior distribution of random variable Q0ρr0(r

1
1)|r0, z1

1 can

be expressed as G
(

κ0 + z1
1,

ρr0 (r
1
1)ϑ0

1+ρr0 (r
1
1)ϑ0

)
. Finally, using again property 1, the posterior distribution

of Q0|r0, z1
1 is given by G

(
κ0 + z1

1, ϑ0
1+ρr0 (r

1
1)ϑ0

)
. This proves (10) and (11) for N = 1 and k = 1.

By repeating the sequence of update steps using multiple platforms N > 1 over time j = 1, 2, . . . , k,
it can be shown that (10) and (11) holds for any N and any k.

Next we prove (14). Note that according to Bayes rule, the posterior distribution of signal strength
is given by:

p(Q0|z1:k, r0) =
`(z1:k|Q0, r0)π(Q0)

g(z1:k|r0)
. (A1)

Then we have:

g(z1:k|r0) =
`(z1:k|Q0, r0)π(Q0)

p(Q0|z1:k, r0)
(A2)

=

G(Q0; κ0, ϑ0)
N
∏
i=1

k
∏
j=1
P(zi

j; Q0ρr0(r
i
j))

G(Q0; κk, ϑk)

(A3)

where κk and ϑk are given by (10) and (11), respectively. Upon the substitution of expressions
for Gamma and Poisson distributions in (A3), one can show that Q0 term cancels out, leading to
Equation (14).

References

1. Kendall, R.J.; Presley, S.M.; Austin, G.P.; Smith, P.N. (Eds.) Advances in Biological and Chemical Terrorism
Countermeasures; CRC Press: Boca Raton, FL, USA, 2008.

2. Shlesinger, M.F. Mathematical physics: Search research. Nature 2006, 443, 281–282.



Sensors 2017, 17, 918 16 of 17

3. Röck, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 2008,
108, 705–725.

4. Giannoukos, S.; Brkic, B.; Taylor, S.; Marshall, A.; Verbeck, G.F. Chemical sniffing instrumentation for
security applications. Chem. Rev. 2016, 116, 8146–8172.

5. Ishida, H.; Wada, Y.; Matsukura, H. Chemical sensing in robotic applications: A review. IEEE Sens. J. 2012,
12, 3163–3173.

6. Kowadlo, G.; Russell, R.A. Robot odor localization: A taxonomy and survey. Int. J. Robot. Res. 2008,
27, 869–894.

7. Morse, T.M.; Lockery, S.R.; Ferrée, T.C. Robust spatial navigation in a robot inspired by chemotaxis in
Caenorhabditis elegans. Adapt. Behav. 1998, 6, 393–410.

8. Marques, L.; Nunes, U.; de Almeida, A.T. Olfaction-based mobile robot navigation. Thin Solid Films 2002,
418, 51–58.

9. Li, W.; Farrell, J.A.; Pang, S.; Arrieta, R.M. Moth-inspired chemical plume tracing on an autonomous
underwater vehicle. IEEE Trans. Robot. 2006, 22, 292–307.

10. Russell, R.A.; Bab-Hadiashar, A.; Shepherd, R.L.; Wallace, G.G. A comparison of reactive robot chemotaxis
algorithms. Robot. Auton. Syst. 2003, 45, 83–97.

11. Masson, J.B. Olfactory searches with limited space perception. Proc. Natl. Acad. Sci. USA 2013,
110, 11261–11266.

12. Azuma, S.I.; Sakar, M.S.; Pappas, G.J. Stochastic Source Seeking by Mobile Robots. IEEE Trans. Autom. Control
2012, 57, 2308–2321.

13. Liu, S.J.; Krstic, M. Stochastic Averaging and Stochastic Extremum Seeking; Springer Science & Business Media:
Berlin, Germany, 2012.

14. Li, S.; Kong, R.; Guo, Y. Cooperative distributed source seeking by multiple robots: Algorithms and
experiments. IEEE/ASME Trans. Mechatron. 2014, 19, 1810–1820.

15. Vergassola, M.; Villermaux, E.; Shraiman, B.I. ‘Infotaxis’ as a strategy for searching without gradients. Nature
2007, 445, 406–409.

16. Masson, J.B.; Bailly-Bachet, M.; Vergassola, M. Chasing information to search in random environments.
J. Phys. A Math. Theor. 2009, 42, 434009.

17. Moraud, E.M.; Martinez, D. Effectiveness and robustness of robot infotaxis for searching in dilute conditions.
Front. Neurorobot. 2010, 4, 1–8.

18. Barbieri, C.; Cocco, S.; Monasson, R. On the trajectories and performance of Infotaxis, an information-based
greedy search algorithm. Europhys. Lett. 2011, 94, 20005.

19. Hein, A.M.; McKinley, S.A. Sensing and decision-making in random search. Proc. Natl. Acad. Sci. USA 2012,
94, 12070–12074.

20. Voges, N.; Chaffiol, A.; Lucas, P.; Martinez, D. Reactive Searching and Infotaxis in Odor Source Localization.
PLoS Comput. Biol. 2014, 10, e1003861.

21. Ristic, B.; Skvortsov, A.; Walker, A. Autonomous Search for a Diffusive Source in an Unknown Structured
Environment. Entropy 2014, 16, 789–813.

22. Hajieghrary, H.; Tomas, A.F.; Hsieh, M.A. An information theoretic source seeking strategy for plume
tracking in 3D turbulent fields. In Proceedings of the 2015 IEEE International Symposium on Safety, Security,
and Rescue Robotics (SSRR), West Lafayette, IN, USA, 18–20 October 2015; pp. 1–8.

23. Ristic, B.; Skvortsov, A.; Gunatilaka, A. A study of cognitive strategies for an autonomous search. Inf. Fusion
2016, 28, 1–9.

24. Hajieghrary, H.; Hsieh, M.A.; Schwartz, I.B. Multi-agent search for source localization in a turbulent medium.
Phys. Lett. A 2016, 380, 1698–1705.

25. Kramer, S.C.; Sorenson, H.W. Recursive Bayesian estimation using piece-wise constant approximations.
Automatica 1988, 24, 789–801.

26. Bayat, B.; Crasta, N.; Li, H.; Ijspeert, A. Optimal Search Strategies for Pollutant Source Localization.
In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Daejeon, Korea, 9–14 October 2016; pp. 1801–1807.

27. Ristic, B.; Arulampalam, S.; Gordon, N. Beyond the Kalman Filter: Particle Filters for Tracking Applications;
Artech House: Norwood, MA, USA, 2004.



Sensors 2017, 17, 918 17 of 17

28. Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis, 3rd ed.; CRC Press: Boca Raton, FL,
USA, 2003.

29. Robert, C.P.; Casella, G. Monte Carlo Statistical Methods, 2nd ed.; Springer: Berlin, Germany, 2004.
30. Musso, C.; Oudjane, N.; LeGland, F. Improving regularised particle filters. In Sequential Monte Carlo

Methods in Practice; Doucet, A., DeFreitas, N., Gordon, N.J., Eds.; Springer New York: Berlin, Germany, 2001;
Chapter 12.

31. Morelande, M.R.; Ristic, B. Radiological source detection and localisation using Bayesian techniques.
IEEE Trans. Signal Process. 2009, 57, 4220–4231.

32. Chong, E.K.P.; Kreucher, C.; Hero, A.O. POMDP approximation using simulation and heuristics.
In Foundations and Applications of Sensor Management; Springer: Berlin, Germany, 2008; Chapter 8.

33. Lomholt, M.A.; Tal, K.; Metzler, R.; Joseph, K. Lévy strategies in intermittent search processes are
advantageous. Proc. Natl. Acad. Sci. USA 2008, 105, 11055–11059.

34. Bénichou, O.; Loverdo, C.; Moreau, M.; Voituriez, R. Intermittent search strategies. Rev. Mod. Phys. 2011,
83, 81.

35. Nair, V.N. QQ plots with confidence bands for comparing several populations. Scand. J. Stat. 1982, 193–200.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mathematical Models
	Robot Motion Model
	Measurement Model

	Source Parameter Estimation
	Problem Specification
	Solution

	Robot Formation Control
	Numerical Results
	Illustrative Run
	Monte Carlo runs
	Experimental Results

	Summary
	Mathematical Derivations

