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Abstract: Target detection is a widely used application for area surveillance, elder care, and fire
alarms; its purpose is to find a particular object or event in a region of interest. Usually, fixed
observing stations or static sensor nodes are arranged uniformly in the field. However, each part
of the field has a different probability of being intruded upon; if an object suddenly enters an area
with few guardian devices, a loss of detection will occur, and the stations in the safe areas will
waste their energy for a long time without any discovery. Thus, mobile wireless sensor networks
may benefit from adaptation and pertinence in detection. Sensor nodes equipped with wheels are
able to move towards the risk area via an adaptive learning procedure based on Bayesian networks.
Furthermore, a clustering algorithm based on k-means++ and an energy control mechanism is used
to reduce the energy consumption of nodes. The extended Kalman filter and a voting data fusion
method are employed to raise the localization accuracy of the target. The simulation and experimental
results indicate that this new system with adaptive energy-efficient methods is able to achieve better
performance than the traditional ones.
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1. Introduction

Wireless sensor networks (WSNs) involving dozens or even hundreds of sensor nodes powered by
batteries over a large field play an increasingly important role in a wide range of detecting applications,
e.g., environment monitoring, wildlife tracking, battlefield intelligence and area security [1–3]. With the
development of automation, sensor nodes are able to work by themselves without directions from
human being. Thus, they can be spread by planes or vehicles in harsh environments and report
sensory data to the gateway node without men for decision making. Due to the random deployment,
the locations of the nodes under the circumstances are uncertain, but the engineers usually try to
make them roughly uniformly cover the area. Because the geographical condition and the position of
sensoring object are specific in each environment, the locations of sensor nodes should be adjusted
after initialization to acquire optimization. If there are no workers to assist in changing their positions,
mobile nodes with movable equipment are good choices for these unmanned systems.

A mobile wireless sensor network (MWSN) consisting of mobile nodes is suitable to deal with the
intruder detection applications in field and forest, especially under unmanned environments. The main
task of these applications is to detect the presence or absence of a particular target or event in a region
of interest [4]. Nodes Equipped with pyroelectric infrared (PIR) sensors are able to detect entrance
of strangers or animals. The smoke and temperature sensors can be used to alarm fire in forests [5].
Detecting accuracy is an important item in this kind of applications. Because the probability of intrusion
is not equally scattered among different locations in a field, the detecting sensor nodes actually do not
need to cover every point of the scene equally. Thus, an adaptive deployment of a mobile wireless
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sensor network (MWSN) can help the system improve accuracy and reduce energy consumption [6,7].
Figure 1 shows an example of adaptive location adjusting of sensor nodes. To prevent loss of generality,
scene is set in a bounded filed with a main road and two arterial roads. The roads represent the hidden
paths naturally created in the area by geographical factors or animal feeding behaviors, which imply
the key region needed to be focused on in the environment. Generally, most of the scenes contain
this kind of regions which need more attention than other ones. Figure 1a shows the initial positions
of sensor nodes in the intrusion-detecting system based on an MWSN. We assume that most of the
intrusions are from those three roads in the scene. As the adaptive method designed in this work, the
nodes move towards the area with high intrusive risk to build a new arrangement, as Figure 1b shows.
This procedure will lead to a higher sensitivity to the target in the risk area because there will be more
sensor nodes in the region. Based on the gathering, the data fusion algorithm [8–10] can also be further
employed to increase accuracy and robustness.
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Figure 1. (a) Illustration of the initial arrangement of sensor nodes for a detection system; (b) illustration
of the new arrangement of sensor nodes after adaptive learning and movement; and (c) active sensor
nodes after representative nodes are selected for energy savings.

Energy control is another important item in MWSN. Wireless sensor nodes are typically powered
by batteries with limited capacity [11]. The lifetime of a sensor node is the time taken to discharge
its battery below a level sustainable for operation [12]. Without energy harvesting equipment,
energy-efficient techniques are the only way to save energy and prolong the lifetime of sensor nodes.
However, the movement in MWSN will cost additional energy than stationary one. Thus, in this work,
clustering and representative algorithms are introduced to reduce the number of active sensor nodes
to save energy, as Figure 1c shows. Setting a learning threshold is another helpful way for reducing
energy cost. After several rounds of learning and self-adjusting, the sensor nodes can be commanded
to stay still and actually evolved to the stationary ones. This mechanism will help the system to keep a
balance between accuracy and energy cost.

The main contributions of this work are described as follows: (1) a Bayesian network (BN)
is employed to adjust the arrangement of the MWSN adaptively; (2) a data fusion method and a
tracking function based on the extended Kalman filter (EKF) are introduced to improve the robustness
of the system; and (3) energy-efficient methods are designed to reduce the energy consumption.
The remainder of this report is organized as follows. After reviewing related studies in Section 2,
an adaptive learning procedure based on a BN is presented in Section 3. Section 4 shows a data fusion
method based on target tracking. Energy-efficient methods are also presented to prolong the lifetime of
the system. In Section 5, simulations are performed in MATLAB to verify the effects of these algorithms.
Then, experiments are conducted on real-time hardware implemented with the Texas Instruments
CC2530 platform, and the results are presented. Finally, the conclusions are stated in Section 6.
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2. Related Studies

Target detection is certainly one of the most important topics in sensor network research. In a
sensor network, sensor nodes are often deployed in a region of interest to monitor the presence of a
particular target or event [4]. Many technical schemes have been proposed in the literature for target
detection using sensor networks [10–15]. A 2D barrier coverage method, which requires many fewer
sensors than full coverage, is designed to reduce the average power consumption [10]. However, it
cannot detect the targets immediately; it can sense them only before they cross the monitored field.
An acoustic WSN with a specialized fusion center has been developed to detect and track multiple
targets simultaneously [11]. The system is reported to have relatively low computational complexity
and high overall tracking accuracy. A WSN with inexpensive sensor nodes are successfully designed
in [12] for target detection, classification, and tracking. Three specific motion models are established to
classify different target classes, and reliability, energy and sensoring options are also discussed in the
work. However, the system has not taken the hidden regulations of geography under circumstance
into consideration and the sensor nodes in it do not own the ability of movement. There is also work
focusing on the implementation of a detecting and tracking system based on wireless sensor device [13].
Its detailed realization includes hardware, software, system and radio. Probabilistic methods are found
to be taken for event detection or node localization. A deployment algorithm is developed using
potential field to reach maximum coverage of nodes [14]. Probability distribution is also employed
to navigate the sensor nodes towards the location of the alarm [15]. However, these studies have not
noticed the gradually decreasing property of the alarm probability along with the spread and not
taken the hidden regulations of geography into consideration. Due to the power limitation of WSNs,
energy efficiency is taken into consideration. In [16], an energy-efficient distributed multisensor target
detection method is proposed to save energy, and a sleep/wake-up mechanism is presented. When
there are no targets in the detection area, a large number of sensors are put to sleep to reduce the
power consumption. Furthermore, to save energy, a novel intelligent distributed cooperative method
is designed, inspired by the regulating mechanisms of the human hormone system [17]. The algorithm
enables the sensor nodes to self-organize themselves autonomously without a centralized control.
Thus, the transmission load between general nodes and the specialized central node can be reduced.

A clustering approach is another way to improve the efficiency of target detection [18]. A node is
elected as a clusterhead based on its highest residual energy in a zone. The clusterhead is set to be active
for detection, and other nodes may remain in inactive mode to conserve energy. Some researchers
consider the detection task to be an integral model involving location and communication [19]. Thus,
not only the tracking algorithm but also the communication protocol is discussed. Moreover, cameras
are added to the WSN to achieve wide-area video surveillance [20]. In this study, each camera node
uses an adaptive Gaussian mixture model to extract moving targets and an unscented Kalman filter
(KF) to track targets. In addition to a single target or multiple targets in the application environment,
there are certain continuous objects such as forest fires, biochemical materials and mudflows that need
to be detected. Due to their nature and characteristics of changing size and shape, they pose new
challenges for the detection algorithm. A new data structure and method are proposed to solve this
problem [21]. The new data structure reduces the communication cost of the overall algorithm without
compromising the accuracy, and the new method achieves good performance in simulation. All the
methods mentioned above are based on the fixed sensor nodes without moving equipment. Once they
are deployed in the application environment according to the arrangement algorithm, they will operate
until their energy is exhausted. Because the arrangement algorithm does not always obtain optimal
results through early calculations, it is challenging to achieve satisfactory adaptability during target
detection with fixed sensor nodes. Thus, we adopt an MWSN in this research, whose nodes can move
via the motors and wheels with which they are equipped. This change improves the pertinence and
adaptability of the system and is proved to be more advantageous in the experiments below.
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3. Adaptive Learning Procedure

Because of the different geographical structures and path deployment, each place in a scene has a
different chance of being intruded upon. Thus, the sensor nodes of a wireless network do not need
to be uniformly arranged to cover the entire scene, and the entrances with high intrusion probability
require more attention to avoid missed targets or false alarms. A BN is introduced in this work to
acquire the probability of intrusion in each area, and the movement of sensor nodes is based on it.
At the beginning of the system’s operation, all the sensor nodes are deployed according to an initial
arrangement, and they subsequently move after each learning step to achieve optimization.

3.1. Initial Arrangement

There are many ways to set the initial positions for sensor nodes. If the designer does not know
the key points in the area, it is suggested to place the sensor nodes uniformly over the area. In this
work, we provide an advised method for addressing the problem. As shown in Figure 2a, a set of
ellipses marked by a red dotted line is made as a reference line to surround the gateway node at the
center. The parameter Rint is chosen by the designer to indicate the number of ellipses. Then, the
reference lines in the radiation direction are also made according to an equal angle value, which is
decided by the sensor number parameter Dn, n = 1, 2, 3, . . . , where n represents the number of loops.
In the illustration of Figure 2a, D1 is set to 6, which indicates that there are six sensor nodes in the first
loop; the interval angle value is 360/D1 = 60◦. Thus, the reference lines for the first loop marked by the
green dotted line are drawn by the angle interval of 60◦. The sensor nodes of the first loop are placed
at the intersection of the ellipse reference and the radiation reference of the first loop. For the second
loop, D2 is set to 2 × D1, and the reference lines for the second loop marked by the blue dotted lines
are added to the middle position of each interval between two neighboring reference lines of the first
loop. Then, 12 sensor nodes are added to the second loop. According to the same rule, 24 sensor nodes
are arranged for the third loop, as shown in Figure 2a.
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After the arrangement of sensor nodes, the entire area needs to be divided into several pieces for
the learning procedure. The division method can be chosen by the designer of the system. Figure 2b
shows an example of the division in this work. The area is divided into twelve pieces by two concentric
circles and two reference straight lines at 60◦ and 120◦. Then, each piece of the area can be represented
by a node to build a BN for the learning procedure, and an intrusion probability is assigned to each
node to express its possibility of being intruded upon. Following the division, the sensor nodes in
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the region of each piece are set to belong to the piece and will move towards the area with a high
probability of intrusion according to the learning procedure.

3.2. BN and Learning

Due to the uniform arrangement of sensor nodes in the initial step, each area in the field receives
equal attention for intrusion. However, because of the complex environment, the intruder may avoid
detection in the risk area, causing serious consequences if there are not sufficient sensor nodes. If there
are only one or two sensor nodes for an important area, noise in the background may lead to them
making incorrect judgments. Thus, deployment of more sensor nodes for areas of concern and fewer for
peaceful areas may reduce the detection failures and improve the accuracy of the entire system. At the
beginning of operation, without prior knowledge or human assistance, it is difficult for the system to
discover the areas of concern with high intrusion risk. However, after the detection of intrusion, the
system can focus its attention on these areas gradually by the adaptive learning procedure. A BN is a
powerful tool for making probabilistic inferences on complex domains and is especially well suited
for modeling this learning procedure [22,23]. A BN structure is formally composed of nodes and arcs.
The nodes are used to represent random variables, and the arcs represent the influence of one node
on another, which is quantified by their conditional probabilities. For example, an arc from node A
to B shows the conditional dependence of B given A, which can be quantified as P(B|A). The nodes
connected by an arc are called the parent node and child node. A child node may have several parent
nodes, which means it is affected by several factors. In a similar manner, one parent node can have
several child nodes, meaning that this factor may have an influence on several other factors. Thus,
after the structure is confirmed, the BN is able to be fully described by a set of conditional probability
between the nodes.

In this work, the BN is used to model the relationship between area pieces. As shown in Figure 3,
an area piece is presented by an area node according to the division in Figure 2b. Each area node is
assigned a probability value noted by Pi to indicate its possible degree of being intruded upon by a
stranger. Because an intrusive target may enter the surrounding area in the next time interval, when
a target appears in an area piece, the intrusion probability values of its node and the nodes of its
neighboring area pieces should be increased together to improve the guarding capability. Thus, arcs of
the BN are a suitable tool to describe these relationships. First, we can divide all the area pieces into
several levels according to the concentric circles for reference. For example, as shown in Figure 2b,
all the nodes can be divided into three levels from outside to inside. Nodes 9–12 are set to be the first
level, and nodes 5–8 are set to be the second one. Nodes 1–4 compose the third level. Because the
intrusive target approaches the center position gradually under most circumstances, we assume in
our model, without loss of generality, that a target may move between two areas in the same level or
from a low level to a high level from outside to inside, but cannot move from a high level to a low
level. Although the system may miss some situations in which a target enters the concerning area
and leaves by itself after a short period of time under this assumption, this detection failure will not
be dangerous in terms of guarding of the entire area. Thus, this assumption can help us simplify the
system model and conserve calculation resources. As shown in Figure 3, two types of connections
are needed for our BN model: bidirectional connections marked by blue lines and unidirectional
connections marked by green lines. A bidirectional connection indicates that the intrusive target is
able to move from one side to the other freely, while a unidirectional connection allows movement
only from low level to high. The parameters λij and λji in Figure 3 are used to indicate the probability
of the corresponding movement. λij is assigned for the movement from node i to node j. Similarly,
λji represents the probability from node j to node i. For example, as shown in Figure 3, node 9 has
a bidirectional connection with nodes 10 and 12 on its same level, and it also has a unidirectional
connection with nodes 5, 6, and 8 on a higher level. In other words, if an intrusive target already exists
in the area of node 9, the system will estimate its chance of entering the surrounding areas of nodes 10
and 12 or the high level areas of nodes 5, 6, and 8.
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After estimation, P9, which is the probability value of node 9, should be raised to improve the
security according to Equation (1), where Pi denotes the old probability value and Pi’ represents the
new probability value after updating; ∆Pi is an incremental step parameter determined by the user that
indicates the influence level of each intrusion; A larger ∆Pi will increase the influence of an intrusion
but reduce the chance to revise the error by subsequent learning round; θ(x) is a mapping function
for adjusting the accumulative effect of the equation, which is shown in Equation (3), where x is the
intrusion count for this area; and η is an adjustment coefficient for the learning speed assigned by
the user. Additionally, the probability values of the areas surrounding node 9 must be increased as a
precaution according to the arcs of the BN and Equation (2). Equation (2) is similar to Equation (1),
and the extra parameter λij is used to reflect the connection between two neighboring areas. As the
alarm probability decreases during diffusion, the λij should be set gradually lower along with the
increment of distance. In practice, the value of parameter λij for each arc in the BN should be decided
by the user following the application environment. Moreover, Figure 4a illustrates the function graph
of Equation (3), and it was found that the parameter α influences the slope of the curve. A higher α

value leads to sharp variation in early accumulation and the change will be slighter later. However,
a low α value leads to relatively uniform change. It can be assigned by engineers according to the
application environment.
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P′i = Pi + ω · (θ(x)− θ(x− 1)) · ∆Pi (1)

P′j = Pj + ω · (θ(x)− θ(x− 1)) · λij · ∆Pi (2)

θ =
1

1 + e−αx (3)

3.3. Node Movement and Target Detection

After the values of the entire BN are updated, the sensor nodes can move towards the area with
higher intrusion probability. This procedure allows the system to focus attention on the area of concern
and avoid wasting system resources on the safe areas. Figure 5 shows the principle of node movement.
After adaptive learning at each round, the P values for the surrounding eight area pieces are compared
to find the maximum value, Pmax. Then, if the Pi value for the area that contains the sensor node
is lower than Pmax, the sensor node moves towards the area with Pmax according to the reference
route from the node to the center of the destination. For example, in Figure 5, area 4© has the highest
P value, so the sensor node in 9© should move towards the center of area 4© according to the red dotted
reference line. The Pi values are refreshed at each learning round when an intrusion happens. In order
to avoid disorder, if an intrusion happens while there are sensor nodes which are still in moving status,
the Pi values are refreshed but not adopted immediately for execution. The new values are inserted
into a queue according to their sequences. When the movement finishes and the current learning
round is over, the new values are taken to work. Thus, there will be no disorder if Pmax changes while
nodes are still moving towards nodes with older Pmax. Moreover, the Pi values are suggested to be
accurate to two decimal places, and it is rare to meet two same Pmax in the system. When there is
more than one BN node with the same Pmax, the node with lowest serial number will be adopted.
The moving distance is calculated by Equation (4), where t indicates the time count for moving towards
this area piece, ε and β are parameters for adjusting the curve shape of the function, and k and c are
parameters influencing the linear mapping of the equation. At each round of adaptive adjustment, a
sensor node moves towards the destination until the distance D is reached. The intermittent movement
will finally finish when the learning procedure is over. All those constant parameters, ε, β, k and c, in
Equation (4) are used to influence the distance result of sensor node’s movement. They can be put
together to consider. A larger moving distance at one time will lead the sensor node to the target
faster but reduce the chance to revise the erroneous destination by subsequent learning round. Thus,
the setting of these parameters is skillful and should be assigned by experienced engineer before the
system runs according to the real application environment. Moreover, based on Equation (4), along
with the increment of t, the movement distance will decrease gradually for a weakening accumulated
effect of adjustment.

D =

[
ε

1 + e−βt −
ε

1 + e−β(t−1)

]
· [k · (Pmax − Pi) + c] (4)

The entire procedure of adaptive learning in this work is shown in Figure 6. In the first step,
sensor nodes are initially uniformly arranged in the testing area, and the WSN is constructed among
them. In the second step, the testing area is divided into several pieces, and the BN nodes are used
to represent each of them. Then, the adaptive learning procedure is run to adjust the arrangement of
sensing units. Once an intrusion occurs, the probability value of the intruded-on piece of the area be
increased, and the surrounding region will also raise their guard level through a diffusional operation
in the BN. After optimization of the BN, the sensor nodes will move towards the higher risk area to
enhance the security. The system will repeat the learning procedure until it finishes. The learning
end condition can be set following two ways in realization. In the first way, because an intrusion
will trigger a learning round, a fixed intrusion time threshold is indicated by the engineer. If the
intrusion time achieves this value, the learning procedure can be finished automatically. In the second
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way, the ratio of the total sensoring range to the area of the region is set as the threshold for learning
procedure. The total sensoring range is estimated by the nodes’ locations and the detecting range
of them eliminating the duplicate parts. For example, if the ratio threshold is set to 30%, the sensor
nodes will move towards the key region gradually and duplicate their sensoring range until the total
sensoring range only covers 30% of the whole detecting area. Thus, the threshold value in this way
can adjust the balance between accuracy and breadth of detection. The specific values of the threshold
in these two ways should be assigned by the engineer according to the application purpose and the
environmental geography. The value will drastically influence the effect of the algorithm and so the
assignment needs expertise. In the third step, the clustering algorithm and energy control method are
adopted to prolong the lifetime of the system.
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4. Data Fusion and Energy Control

Because there may be several sensor nodes in a common area in the testing region, it is necessary
to employ a data fusion mechanism to negotiate their decision. The mechanism presented here
follows the assumption that the sensor node nearer to the intrusive target has a higher probability
of acquiring accurate results. Thus, they will have more weight in the voting for the final decision.
Before making the decision, a clustering algorithm and target tracking are also needed to provide the
relative information.

4.1. Clustering Algorithm

Due to the adaptive learning procedure mentioned above, the sensor nodes will gather in the key
area with high intrusion probability. This action may directly lead to the redundancy of nodes in the
area, and a decision-making mechanism should also be determined to acquire the final result according
to all the reports from the nodes. Clustering is a good choice for this situation. All the sensor nodes are
divided into several groups according to their positions on the map by the clustering algorithm. Then,
the typical nodes are selected to represent others for energy savings, and the final decision can also be
made through voting inside the cluster.

The k-means algorithm is a well-known partitional clustering algorithm that uses a squared-error-based
optimization approach. In practice, as Equation (5) shows, the algorithm attempts to find a partition
Φ such that the sum of the squared distances between patterns in each cluster and the respective
representative element is minimized [24]:

argmin
Φ

k

∑
i=1

∑
xj∈Ci

‖xj − ri‖2 (5)

where ri denotes the representative of the i-th cluster Ci. Solving a k-means problem is computationally
hard (NP-hard). However, Lloyd proposed efficient heuristics that quickly converge to a local optimum
and are still widely used today [25]. Lloyd’s algorithm begins with k arbitrary centers, which are
usually selected uniformly at random from input patterns. The algorithm then proceeds by alternating
between the assignment and center calculation steps until the process stabilizes. In the assignment
step, each point is assigned to the nearest center chosen before, and each center is recomputed as the
center of mass of all points assigned to it in the center calculation step.

Algorithm 1. Center initialization of the k-means++ algorithm.

Input: a set of objects O
Output: a set of initial centers Ŝ, containing k elements
procedure K-MEANS++ (O, k)

Set all the objects in O as unprocessed, and Ŝ← ∅ ;
Choose an initial center ŝ1 randomly from the dataset, and Ŝ = Ŝ ∪ {ŝ1}
while

∣∣Ŝ∣∣ < k

Choose the next initial center ŝi, selecting ŝi = x ∈ O with probability D(x)2

∑x∈O D(x)2

Ŝ = Ŝ ∪ {ŝi}
end while
return Ŝ

end procedure

In practice, the calculation process will always terminate, and few iterations are usually required,
which makes it much faster than most of its competitors. However, its fast speed and simplicity come at
the price of accuracy. It has been found that the k-means algorithm generates arbitrarily bad clustering
in many natural examples. Thus, a k-means++ method is proposed to improve the technique by
choosing a set of carefully selected initial centers instead of random initialization [26,27]. If we assume
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D(x) to be the distance of a sensor node x to its nearest center that is already selected, the initialization
of k-means++ can be described by Algorithm 1. After its center initialization, k-means++ functions the
same as the standard k-means algorithm to acquire the clusters. When the clusters are determined, the
use of an energy control method is advised to reduce the redundant energy consumption. In this work,
a representative coefficient γ = 1/n, n = 1, 2, . . . 10, is defined to arrange the representatives in a cluster.
If γ = 1/3, one third of the sensor nodes in a cluster will be selected as representatives to work full time,
while the others are put to sleep as reserves. This mechanism can reduce the energy consumption, and
the reserved nodes are used to prolong the lifetime of the system when the representatives’ batteries
are exhausted. Furthermore, in this work, it is suggested that the representatives be uniformly chosen
from the queue according to the distance between the sensor node and cluster center. For example, in
a cluster, nine sensor nodes are sorted as a queue numbered (1–9) according to their distance from the
cluster center. Then, if γ = 1/3, the representatives can be chosen according to the number set {1,4,7},
{2,5,8} or {3,6,9} for uniformity. This mechanism will retain the balance in intrusion detection when
conserving energy. If a representative exhausts its energy, the geographically nearest reserved sensor
node should be activated to replace it and prolong the lifetime of the system.

4.2. Target Tracking

After the clustering of sensor nodes, the position of the intrusive target needs to be known for
the data fusion to follow. Because there is only a localization device on a sensor node but no exact
measurement equipment to acquire the distance from node to target, the location of the target can be
only approximately estimated. To improve the accuracy of estimation, filter tools can be used to reduce
the noise. The KF is a powerful tool that provides a recursive solution through a linear optimal filtering
to estimate systems’ state variables [28]. Due to its low computational cost and good performance,
it has been widely used in digital circumstances. A normal KF adopts a two-step process consisting
of prediction and updating. In the prediction step, the current state variables x̂−k and the a priori
estimate of their covariance P−k are estimated by the filter. Subsequently, the a posteriori estimate
state x̂ along with the a posteriori estimate covariance Pk are refreshed in the updating step based
on the a priori estimates. However, the standard KF can be deployed only in a linear model. If the
system is nonlinear, a linearization process needs to be applied to approximate the system with a linear
time varying (LTV) system at each step. Using this approximation leads to a new filtering tool, the
EKF [29,30]. As shown in Equations (6) and (7), these two stochastic differential equations are used to
describe the nonlinear process.

xk = f (xk−1, uk−1, wk−1) (6)

zk = h(xk, vk) (7)

where xk is the process state at time k; wk represent the excitation noise; vk denotes the observation
noise; and zk and uk represent the observed variable and the control vector at time k, respectively.

An EKF estimation procedure generally includes four steps: initialization, linearization, prediction
and updating. In the initialization step, the values for x̂−k and P−k are initialized for further estimation,
where the symbol ‘ˆ’ denotes the estimation value and the symbol ‘−’ represents the a priori element.
Following initialization, an approximate linear process can be built by the linearization step for the
nonlinear system. Equations (8) and (9) are then introduced to estimate the a priori value of x in the
predication step.

x̂−k = f (x̂k−1, uk−1, 0) (8)

P−k = AkPk−1 AT
k + WkQk−1WT

k (9)

where the symbol x̂−k and P−k denote the estimate of x and the a priori estimate covariance at time
k − 1, given observations up to and including time k − 1, respectively; the notation Ak represents the
state transition model and Qk denotes the covariance of the process noise; and Wk and uk represent the
Jacobian matrix of the process and the control vector at time k, respectively.
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Then, the a posteriori state estimate of x can be refreshed at the update step based on the a priori
estimate according to Equations (10)–(12). The new posteriori state estimate lies between the predicted
and measured states, and it has better estimated uncertainty than either of them. For each round,
the prediction and update steps are repeated to create the new estimate and its covariance, and these
values are applied to the next iteration. Thus, only the last estimate value is required by the EKF to
calculate a new state. The relevant equations are as follows:

Pk = (I − Kk Hk)P−k (10)

Kk = P−k HT
k (HkP−k HT

k + VkRkVT
k )
−1

(11)

x̂k = x̂−k + Kk(zk − h(x̂−k , 0)) (12)

where x̂k represents the a posteriori state estimate; Pk denotes the a posteriori estimate covariance at
time k given observations up to and including time k; Kk represents the Kalman gain at time k; Hk and
Vk denote the Jacobian matrices of the observations for mapping the true states onto the observed
ones; and zk and Rk represent the observation of the true state xk and the covariance of the observation
noise, respectively.

4.3. Data Fusion

Due to the adaptive learning procedure, the mobile nodes gather in the key area with high
intrusion probability, which constitutes a decision-making problem: When several sensor nodes in a
common area acquire different detection results simultaneously, which one will be followed? A data
fusion method needs to be designed to negotiate the reports from each node and make a final decision.
According to the assumption that sensor nodes nearer to the target have a higher probability of
obtaining accurate reports, higher weights are assigned to these nodes in the negotiation procedure.
After the clustering and adaptive moving, the positions of mobile sensor nodes are certain before each
decision. Because there is no distance-measuring equipment, only GPS devices, on the mobile sensor
nodes, it is hard to know the exact position of the intrusive target, but the distance between two sensor
nodes can be calculated. Thus, the coordinate of the sensor node nearest to the target in the map is
considered to indicate the location of the target.

The nearest node is judged according to the last estimated position of the target and the EKF
algorithm. Then, the decision is made based on the cluster of sensor nodes nearest to the intrusive
target, and the voting decision value E can be computed following Equation (16), where k indicates
the number of nodes in the cluster, ωi denotes the voting weight of node i, and Bi is the result report
from node i, which is a Boolean value of either 0 or 1. First, the distance between node i and the node
nearest to the intrusive target is obtained by Equation (13). Then, the distance di is normalized by
Equation (14), where dmax represents the maximum distance from the node nearest to the target in
a common cluster. Finally, the voting weight ωi can be calculated through Equation (15), where a
standard Gaussian distribution is used to map the distance value to a voting weight and µ and σ are
parameters of the distribution, as shown in Figure 4b; δ is an adjustment coefficient assigned by the
user according to the application. We suggest that engineers should choose a suitable δ value to make
sure that the value of voting weight ωi is less than or equal to 1 after adjusting. For example, if the
parameter µ = 0, σ = 0.5, the maximum value of function is 0.8 as shown in Figure 4b. Thus, δ should
be set δ ≤ 1.25 to make ωi ≤ 1. Furthermore, the δ is commonly related to the Ethr value, a small δ is
suggested to work with a low Ethr value. After obtaining the decision value E, the final decision can
be made by a threshold Ethr. If E > Ethr, the cluster is considered to be a finder of an intrusive target;
otherwise, there is no target to be found. Ethr is a decision threshold for data fusion. Its task is to
control the balance between detection rate and accuracy. A higher Ethr value requires more evidence to
prove the entrance of target and will increase the accuracy. However, it may miss some real intrusions
with noise and that will reduce the detection rate. On the contrary, a lower Ethr allows higher detection
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rate with lower accuracy. In conclusion, Ethr value should also be defined by the user according to
the application environment. If the system needs high accuracy, the larger Ethr should be adopted;
otherwise, the smaller one may be suitable. The relevant equations are as follows:

di =

√
(xi − xnearest)

2 + (yi − ynearest)
2 (13)

di−norm = di/dmax (14)

ωi = δ · (1/
√

2πσ)e−
(di−norm−µ)2

2σ2 (15)

E =
k

∑
i=1

ωi · Bi/k (16)

Figure 7 shows an example of the data fusion procedure. After the clustering, Cluster 1 and
Cluster 2 each contain six sensor nodes. The intrusive target moves from position 1 to position 2.
Because there are no distance-measuring devices on any of the sensor nodes, the system cannot obtain
the exact position of the target; it can obtain only the node position nearest to the target. According to
the relative position between the two clusters and the target movement direction estimated by EKF as
mentioned above, node 1 in Cluster 2 is estimated to be the nearest sensor node that may first detect
the target when it has just entered the detection range of Cluster 2. Then, the coordinate of the target is
denoted by the position of node 1, and the data fusion procedure is run following Equations (13)–(16).
Finally, a decision is made via the voting decision value E and its threshold Ethr.
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5. Simulation and Experiments

5.1. Simulation Results and Discussion

To verify the effects of the adaptive target detection (ATD) system, simulation is performed in
MATLAB on a PC with a 3.4-GHz Intel Core CPU and 4 GB of memory. In the simulation, sensor
nodes are uniformly deployed in a 400 m × 400 m rectangular field in the initial step. The field
has four roads from southern, northern, eastern and western directions to the center. There are four
different algorithms involved in the simulation: the 2D 2-barrier (2DB) method [10], collaborative
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target detection (CTD) [4], static target detection (STD) and ATD, which has been introduced in the
current study. The 2DB algorithm has the ability to catch intruders who enter from one side and try to
cross the field, and its rotation mechanism for sensor nodes can help the system conserve energy [10].
CTD uses data fusion to acquire a reliable final decision [4]. In CTD, the sensor nodes report their raw
measurements or binary decisions at a local area to the fusion center, and the center collects the data
reported in consecutive periods to guarantee the quality of the final detection results. STD uses the
initial arrangement of ATD without an adaptive learning procedure, data fusion and energy control.
It reports the intrusion immediately once it detects the intrusive target without negotiation between
nodes. However, ATD should employ the data fusion procedure to improve the accuracy.

The simulations are run in two different modes. The directional intrusion mode allows the targets
to enter the area only from the four directional roads, while the random mode allows the targets to
intrude from a random direction, which is often chosen by a random number generated by a computer
program. For the detection accuracy and energy consumption test, the speed of intruders is set to
10 m/s, the sensing range of nodes is 20 m, and the communication range is set to 100 m. In the initial
step of ATD, the interval parameter Rint is set according to the number of nodes participating in the
simulation. When the number is 200, Rint is set to 3, D2 = 2D1, and D3 = 2D2. If the number is 400, Rint
is set to 4, D2 = 2D1, D3 = 2D2, and D4 = 2D3. If there are 800 sensor nodes involved in the test, Rint is
set to 5, D2 = 2D1, D3 = 2D2, D4 = 2D3, and D5 = 2D4. The BN structure is built by concentric circles and
two reference straight lines at 60◦ and 120◦ following the recommended method as shown in Figure 2b.
The decision threshold Ethr is set to 0.6, and δ = 1.5 and µ = 0 and σ = 0.5 in Equation (15). Furthermore,
the clustering parameter of ATD, γ, is set to 1/3, η = 2, ∆Pi = 0.5 in Equations (1) and (2), α = 0.5 in
Equation (3), and ε = 5, β = 0.5, k = 10, and c = 3 in Equation (4). For the BN structure, the parameter λ

in Figure 3 is set to 1/2n, where n indicates the distance between the corresponding area node and
the area node containing the target. The ATD system is trained 150 times to adjust the position of
the mobile sensor nodes before the detection test. After the training procedure, the nodes cannot be
moved further, and no additional energy costs will be incurred by movement.

Figure 8 shows the simulation results for 100, 200, 400 and 800 sensor nodes in the area in these
two different modes. Three hundred simulation tests are run for each group, and the average results are
calculated for presentation. As shown in Figure 8a, in the directional mode, ATD achieves the highest
detection rate, which means the correct detection without misjudgment in the test. Its advantage is
more easily discerned when the number of sensor nodes is lower due to its aggregation effect of nodes
for the key position. However, this scenario will directly lead to poor performance in random mode,
as shown in Figure 8b, because there are not enough sensor nodes to cover all possible areas. The 2DB
approach exhibits relatively poor performance in these two modes because it allows only one band of
sensors within each grid wake up, with the others going to sleep to conserve energy. 2DB can usually
detect the objects that cross the field, but it is insensitive to irregular motion. However, 2DB involves
less energy consumption than the other methods, as indicated in Figure 9a.

The overall energy consumption simulation results are shown in Figure 9a for 200, 400 and 800
sensor nodes. The total energy used by the system is divided by the number of nodes and running
time to acquire the average energy consumption for each node per hour. It was found that the CTD
and STD methods used more energy than ATD due to the lack of an energy control mechanism, and
the data fusion step of CTD costs additional energy. Figure 9b shows the results of the system response
speed test, in which the intruders enter the area with different speeds. The average detection delay
reflects the real-time ability of the WSN detection system. It can be found that the ATD algorithm
introduced in this study has satisfactory real-time response, which is important for the system to
deal with intrusion. CTD requires slightly more time to complete the negotiation, and 2DB requires a
moment to wake up its sleeping nodes. STD has the lowest reaction time when a target enters at a
speed of 50 m/s due to its direct report without confirmation, which leads to low accuracy in detection.
In summary, according to the simulation results, ATD holds the advantage in intrusion detection for
directional targets, with good performance for reaction speed and energy control. However, it is not
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suitable for an area that can be intruded upon from many random directions. Because there are many
scenarios with only directional paths, such as gardens or playgrounds, ATD can be employed to avoid
wasting system resources on large secure areas with low probability of being intruded upon.Sensors 2017, 17, 1028 14 of 18 
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Several parameters need to be set by the user for ATD, and these can influence the performance
of the algorithms. The simulation is run to evaluate the effect of these parameters, and other
environmental variables are set the same as in the accuracy tests. Figure 10a shows the influence of
different representative coefficients γ in the clustering algorithm. A decrement in γ causes more sensor
nodes to go to sleep to conserve energy. It was found that a low γ value reduces the detection rate of
the system but conserves more energy, prolonging the system’s life. Thus, a suitable γ value should be
chosen by the user according to the main purpose of the system. Figure 10b shows the influence of
another important coefficient, η, in Equations (1) and (2). The test was run with 800 sensor nodes and
the same environmental variables as in the accuracy tests, and the detection rates for directional and
random intrusions were recorded. The learning speed coefficient η affects the probability influence of
an intrusive target towards the area node in the BN network. A high η increases the gathering effort
of the MWSN and increases the ability of the system to react to directional intrusion. However, this
enhancement weakens its detection ability for random intrusions. Thus, the values should also be
assigned by the user according to the application environment.
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5.2. Implementation and Experiments

As shown in Figure 11, to further verify the effect of ATD, the hardware of a WMSN node
was implemented on the Renesas R5F100FCA and TI CC2530 platforms. The R5F100FCA is a 16-bit
microcontroller and is used to drive the detection device and mobile platform. The CC2530 is a Zigbee
(IEEE 802.15.4) system-on-chip (SOC) used to establish the WSN in the detection system. Two PIR
sensors are employed in the hardware to detect intrusive targets from all directions. Moreover, a
GPS module is adopted to acquire the position of the node, and the device can move via a mobile
platform with four wheels driven by DC motors. The experiments were performed in a 200 m × 200 m
rectangular field of a park. In reality, the detection range of the node is more than 20 m, and the
communication range exceeds 100 m. ATD was employed in the experiments with γ = 1/3, η = 2,
and ∆Pi = 0.5 in Equations (1) and (2); α = 0.5 in Equation (3); and ε = 5, β = 0.5, k = 10, and c = 3 in
Equation (4). The decision threshold Ethr was set to 0.6, and δ = 1.5, µ = 0, σ = 0.5 in Equation (15).
The BN structure was initialized following the recommended method. The parameter Rint was set to 3,
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D2 = 2D1, and D3 = 2D2. The speed of intruders was set to 5 m/s, and the numbers of sensor nodes for
three testing groups were set to 28, 42, and 56, respectively. For each group, ATD was trained 50 times
to adjust the positions of the sensor nodes before formal tests. After the training procedure, the nodes
were fixed, and the targets were allowed to enter for detection. The experiments were run twenty
times, and the average detection rate results are shown in Figure 12a. The average energy costs are
recorded and calculated for each node per hour, as shown in Figure 12b. From the experimental results,
it was found that ATD offers better performance than STD due to its adaptive learning procedure and
energy control mechanism. Moreover, ATD is suitable for use under circumstances in which the targets
intrude along several certain pathways.
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6. Conclusions

Security is a basic need in daily life. A detection system for abnormal objects or events in regions of
interest based on electronic technology is able to satisfy this demand. However, because the chance of
being intruded upon is not equal for each region of a certain area, traditional fixed observing stations or
a static sensor network cannot accommodate various application environments well. Static stations or
nodes without any moving equipment cannot adjust their position and are instead arranged manually
before system operation. Thus, after setup, they are likely to miss targets due to unsuitable initial
positions. Mobile WSNs are suitable for this situation and have the ability to improve the adaptation
and capability of the system. The adaptive leaning procedure adopted in this work can lead mobile
sensor nodes to move towards the key area, and the EKF is used to increase the localization accuracy
of targets. Real-time hardware was implemented on the Renesas R5F100LEA MCU platform with a TI
CC2530 Zigbee chip for communication. The simulation and experimental results demonstrate the
improvements achieved by the new system.
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