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Abstract: Metal roof sheathings are widely employed in large-span buildings because of their light
weight, high strength and corrosion resistance. However, their severe working environment may
lead to deformation, leakage and wind-lift, etc. Thus, predicting these damages in advance and
taking maintenance measures accordingly has become important to avoid economic losses and personal
injuries. Conventionally, the health monitoring of metal roofs mainly relies on manual inspection, which
unavoidably compromises the working efficiency and cannot diagnose and predict possible failures in
time. Thus, we proposed a novel damage monitoring scheme implemented by laying bend sensors on
vital points of metal roofs to precisely monitor the deformation in real time. A fast reconstruction model
based on improved Levy-type solution is established to estimate the overall deflection distribution
from the measured data. A standing seam metal roof under wind pressure is modeled as an elastic thin
plate with a uniform load and symmetrical boundaries. The superposition method and Levy solution
are adopted to obtain the analytical model that can converge quickly through simplifying an infinite
series. The truncation error of this model is further analyzed. Simulation and experiments are carried
out. They show that the proposed model is in reasonable agreement with the experimental results.

Keywords: metal roof; fast reconstruction model; bend sensor; elastic thin plate

1. Introduction

Metal roof sheathings are generally assembled from cold-formed steel with insulation,
sound-absorbing insulation and waterproof materials. Due to their advantages of light weight, high
strength, flexible design, unique shape and installation convenience, they are widely employed in
large-span steel-structure buildings such as exhibition buildings, performing arts centers, transportation
hubs, sports stadiums and production plants [1,2]. Figure 1 presents some typical metal roof systems on
large span buildings. As an example, the maximum span of the Guangzhou International Convention
and Exhibition Center is approximately 132.8 m and the covered area is about 500,000 m2.

The main materials of metal roof systems include aluminum-magnesium-manganese (Al-Mn-Mg)
alloy plate, titanium zinc plate and stainless steel with high strength and corrosion resistance. However,
in their complex natural environment metal roof sheathings suffer the effects of wind, rain, snow, wind
loads and thermal changes, leading to structural deformation, material fatigue, loose bolts and other
possible failures. With the attenuation of wind-uplift resistance, the metal roof may be damaged even
if the wind pressure does not exceed the design load [3]. In recent years, with the wide applications of
metal roofs, several accidents were reported. For example, in March 2013, the metal roof of Beijing
International Airport T3 was uplifted by strong winds, and the damaged area was about 200 square
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meters [4]. Figure 2 shows the large-scale broken area on the metal roof. On 18 July 2014, affected by
the typhoon “Vimason”, the metal roof for the stadium of Qiongtai Normal University in HaiKou city
(HaiNan province), suffered serious damage [5].
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[7]. A project ‘Wi-Health’ sponsored by the EC investigated the structural health monitoring based 

on multi-purpose wireless sensors network in which passive acoustic emission (AE) technology was 

combined with active long range ultrasonic (LRU) technology to monitor bridge structures [8]. 

At present, the safety detection of metal roof panels mainly relies on manual inspection, which 

unavoidably compromises the working efficiency and cannot diagnose and predict possible failures 
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Figure 1. The application of metal roof in buildings: (a) Olympic Sports Center of Guiyang;
(b) Beijing-Capital International Airport; (c) The production plant of Hubei Wanmeng CNC combination
machine Limited company; (d) Guangzhou International Convention and Exhibition Center.
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Figure 2. Wind-uplift destruction of metal roofs; (a) Beijing International Airport T3; (b) The metal roof
panels of Beijing International Airport T3 were split by wind.

There is no doubt that the sustainability and resilience of large-scale civil infrastructure are of
the utmost importance as they are closely related to people’s daily lives and social order. In recent
years, some research progresses have been made on construction automation in civil engineering,
intelligent sensing, and structural monitoring and health management [6–10]. La and Lim presented
a mechatronic system design for an autonomous robotic system to inspect and evaluate bridge deck [7].
A project “Wi-Health” sponsored by the EC investigated the structural health monitoring based on
multi-purpose wireless sensors network in which passive acoustic emission (AE) technology was
combined with active long range ultrasonic (LRU) technology to monitor bridge structures [8].

At present, the safety detection of metal roof panels mainly relies on manual inspection, which
unavoidably compromises the working efficiency and cannot diagnose and predict possible failures
in time. Therefore, a real-time monitoring system is desirable to predict and estimate the potential
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serious deformation or damages so as to provide on-condition maintenance. When deformation or
damages occur at the beginning, the deflection status of metal roof plates may change. Thus, the
deflection distribution is a key characteristic and the essential issue of constructing monitoring system
is to choose proper sensors and layout scheme.

When choosing detection technologies, several problems should be considered. For example, the
metal roof system covers a large area, the working environment is complex and the installation space
for measuring sensors is limited. Thus, it is desirable to adopt sensors that are easy to install, low-cost,
and reliable under bad environmental conditions.

There have been many developments in detection approaches for curved surfaces, such as the
three coordinate measuring machine, grating optical fiber [11], LASER-based methods, CT scanning
methods, CCD camera detection methods [12], multimetric data (i.e., acceleration and strain) fusion [9]
and so on. Although these approaches are suitable for some special situations, the characteristics
of sensors such as continuous working hours, convenient installation, low power consumption and
cost should be considered for actual monitoring of a metal roof. Therefore, we chose bend sensors
that can be conveniently pasted on the surface of metal roof panels to detect their local deformation.
Bend sensors [13] are sensitive to deformation based on optical fiber, conductive ink, electronic textiles,
piezoelectric zinc oxide (ZnO) thin films [14], and tailored nanocomposite materials [15]. Bend sensors
have been widely used in different fields, from simple angle measurements to the bending amount of
human body joints [13,16–18] and shape-sensing in mechanical structures [13]. Due to their low-energy
characteristics, bend sensors are suitable for a wide range of monitoring networks. Even so, it is
often impractical in large-span buildings to cover all a roof surface by laying sensors in quantity.
Thus, the deformation estimation from limited measurements is desired for whole roofs. Furthermore
the potential fault prediction can be realized for metal roof systems.

Deformation and stress distribution analysis of metal roofs can be achieved by analytical methods
and numerical simulation methods. Metal roof panels can be modeled as a kind of elastic thin
plate structure and the governing equations are solved with some simplified boundary conditions.
It approach has distinct physical significance but low accuracy due to the structural or boundary
simplifications, which is generally used for the preliminary design and analysis. The primary analytical
methods include the Navier dual-trigonometric series, Levy solution, symplectic geometry, non-linear
solutions and so on. At present, more valuable studies about analytical solutions of thin plate
deformation have been developed considering different load types, structure characteristics and
supporting modes. Nakai [19] presented an analytical method based entirely on elasto-plastic and large
deflection theory to estimate the “critical strength” of various types of thin-walled steel frames. Yang [20]
used the symplectic geometry method in a Hamilton system to derive the theoretical solution for the
elastic cantilever rectangular thin plate. Batista [21] proposed a new analytical solution in the form of
a Fourier series for the bending problem of a corner-supported rectangular thin plate under uniformly
distributed load, in which σ-method was used to speed up the convergence rates. Zhong and Vinesh [22]
adopted nonlinear large deformation theory to solve the bending of elastic thin plates. This method was
valid to analyze nonlinear plates and could be extended to other boundary conditions. Van Gorder [23]
discussed the linearization and construction of perturbation solutions for the Foppl-von Kármán
equations, a set of non-linear partial differential equations describing the large deflections of thin flat
plates. It could simplify the process of inverting the linear operators greatly so as to find the higher
order terms comparing to numerical methods. Segovia [24] presented an approximated analytical
Levy-type solution to analyze the vibration modal of a thin folded elastic structure. Apparently, these
approaches are mostly obtained by extending or improving the abovementioned classical methods
and suitable for some particular sorts of problems. Although sometimes the analytical method can get
only an approximate solution for the elastic thin plate under specific loads and boundary conditions, it
has faster convergence rate than numerical methods. Thus it is a rational choice in view of real-time
estimation and on-line analysis needs.
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When complex boundary conditions and loads have to be considered, numerical simulations
such as finite-difference method and finite-element analysis (FEA) are generally suggested to obtain
a detailed 3D deflection and stress field. For example, Song [25] explored the deflection and stress
characteristics of standing seam metal roof panel under different negative pressure load by FEA
software. Wang [26] applied a cube finite element model to analyze the piezothermoelasticity of
an intelligent thin plate. Zhang [27] introduced numerical manifold method (NMM) to solve thin plate
bending deformation problems. Turevsky [28] introduced an efficient numerical scheme to compute
the topological sensitivity (TS) of arbitrary-shaped features in plate bending. Although numerical
models can describe precisely boundary conditions and plates’ shapes, such as supporting modes,
joints and reinforcing ribs, they are limited to off-line system analysis, design and optimization due to
high computation consumption.

In this paper, we focus on real-time reconstruction of the deflection distribution for metal roof
plates from a limited number of measured data of bend sensors, as the basis of potential fault prediction.
The standing seam metal roof under wind pressure is modeled as a rectangular thin elastic plate. A fast
analytic method based on Levy-type solution and the infinite series simplification is presented and
then the model errors (the error between deflection of metal roof computed by reconstruction model
and exact value) are analyzed. Finally, the corresponding simulations and experiments are conducted
and measured data are compared with analytical solutions on the given detection points. The results
show that the proposed reconstruction model can estimate the deflection distribution of metal plates
in real-time.

2. Fast Reconstruction Model for Deflection Distribution of Metal Roof

2.1. A Fast Reconstruction Model for the Deflection Distribution of Metal Roof

To establish the analytical model of metal roof deformation, a common standing seam metal roof
is taken as an example. The entire metal roof is made up of many single metal roof sheathings locked
together. As shown in Figure 3, two pieces of roof sheathing are assembled on the support. As the effect
of the standing edges and buckling edges (green part in Figure 3), the two sides of y direction which
form occlusal constraints with the metal holders can be seen as simply supported edges. The two sides
in the x direction are equivalent to free edges because of the absence of constraints.

Under the same weather condition, a single block of metal roof suffers a wind uplift equivalent to
a uniform load. Therefore, the entire metal roof can be seen as a rectangular plate with two opposed
simply supported edges and two other free opposed-edges. The control equations can be solved by
external constraints and applied loads.
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Figure 3. Metal roof model and its simplified diagram.

To analyze the deflection of the metal roof based on thin plate bending theory, the Kirchhoff
hypothesis [29] is adopted as follows: (1) the thickness of the plate is much smaller than the horizontal
and vertical dimensions; the density of the structure is constant throughout; (2) before the thin plate



Sensors 2017, 17, 1054 5 of 20

deforms, a straight line is perpendicular to the middle plane. It is still perpendicular to the middle
plane after the thin plate deforms. The points on the middle surface have no horizontal displacement.

2.1.1. Governing Equations for Deflection Deformation of Thin Plate

As shown in Figure 4, we took a hexahedral element in the thin plate whose thickness is d.
Assume that the upper surface is subjected to a uniform load q. Then its stress condition is analyzed.
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From assumption (2), points in the middle have no displacement in the x and y direction, u and
v are non-existent, and the displacements u and v whose distance were z from the middle could be
obtained as:

u = −z
∂w
∂x

, v = −z
∂w
∂y

.

According to the Hooker theorem, we can get the normal stress and shear stress as follows:

σx = − Ez
1− u2 [

∂2w
∂x2 + u

∂2w
∂y2 ], σy = − Ez

1− u2 [
∂2w
∂y2 + u

∂2w
∂x2 ], τxy = −2Gz

∂2w
∂x∂y

and G =
E

2(1 + u)
.

The stress components τzx, τzy are determined by the following two equations:

∂σx

∂x
+

∂τyz

∂y
+

∂τzx

∂z
= 0,

∂σy

∂y
+

∂τzy

∂z
+

∂τxy

∂x
= 0.

As shown in Figure 4, the normal stress and shear stress are linearly distributed in the z direction.
The corresponding bending moments Mx, My, Mxy and shearing forces Qx, Qy can be obtained as:

Mx =
∫ d

2

−d
2

σxzdz =− D(
∂2w
∂x2 + ν

∂2w
∂y2 ) (1)

My =
∫ d

2

−d
2

σyzdz =− D(
∂2w
∂y2 + ν

∂2w
∂x2 ) (2)

Mxy = −
∫ d

2

−d
2

τxyzdz =D(1− ν)
∂2w
∂x∂y

(3)

Qx =
∫ d

2

− d
2

τxzdz = −D(
∂3w
∂x3 + (2− µ)

∂3w
∂x∂y2 ) (4)

Qy =
∫ d

2

− d
2

τyzdz = −D(
∂3w
∂y3 + (2− µ)

∂3w
∂y∂x2 ) (5)
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The governing equations of the bending plate can be obtained based on the force balance as
follows [30]:

∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4 =

q
D

, (6)

where D = Ed3/12(1− µ2) is the flexural rigidity of the plate, E is Young’s modulus of the plate, µ is
Poisson’s ratio, w is the vertical deflection and q is the external uniform load.

As shown in Figure 3, the metal roof can be simplified as a thin plate with two opposite
simply-supported edges, two free edges and subjected to a uniformly distributed load.

The boundary conditions are as follows:

I Free edges (y = 0, y = l): the bending moment and shear force are zero, and formulated as:

D(
∂2w
∂x2 + µ

∂2w
∂y2 ) = 0, D(

∂3w
∂x3 + (2− µ)

∂3w
∂x∂y2 ) = 0.

II Supported Edges (x = 0, x = b): the deflection and bending moment are zero:

D(
∂2w
∂x2 + µ

∂2w
∂y2 ) = 0.

The superposition method is used to solve the above problems. They are treated as the problem
that a rectangular thin plate with the two opposite free sides and the other two opposite sides simply
supported subjected to a uniform load q. The two parts of superposition are taken as follows:

(a) A thin rectangular plate with four sides simply supported, and subjected to uniform load q.
(b) A rectangular plate with two sides x = 0 and x = b seen as simply supported sides, and the other

sides y = 0 and y = l seen as generalized simply supported edges.

2.1.2. Deflection Calculation of Part I

The deflection of this part is assumed as wa(x, y), and the expression of its double triangle series is:

wa(x, y) =
∞

∑
m=1

∞

∑
n=1

αmn sin
mπx

b
sin

nπy
l

, (7)

The double triangle series expansion of the uniform load q is:

q =
∞

∑
m=1

∞

∑
n=1

Amn sin
mπx

b
sin

nπy
l

, (8)

where Amn = 16q
π2 · 1

mn (m, n = 1, 3, 5 . . . ), and Amn = 0 (m and n is even).
Equations (7) and (8) are substituted into Equation (6), then both sides of the equation coefficients

are compared and the final deflection equation is:

wa(x, y) =
16q
π6D

∞

∑
m = 2i + 1

i = 0

1
m5 sin

mπx
b

∞

∑
n = 2j + 1

j = 0

l4

n(n2/m2 + l2/b2)2 sin
nπy

l
. (9)

Equation (9) is double trigonometric series, so to speed up the convergence rate, the sum of
series containing y is calculated, and the Levy-type solution [31] is adopted and Equation (9) can be
rewritten as:
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wa(x, y) =
4qb4

π5D

∞

∑
m = 2j + 1

j = 0

1
m5 gm(x) · fm(y), (10)

where:
gm(x) = sin

mπx
b

, (11)

fm(y) =
[
λm(y−

l
2
)sinhλm(y−

l
2
)− (2 +

λml
2

tanh
λml

2
) cosh λm(y−

l
2
)
] 1

2 cosh(λml/2)
+ 1, (12)

and λm = mπ/b (m = 1, 3, 5 . . . ).
By investigating the convergence rate of the function series, we find that the convergence of the

function series depends mainly on the first item. Take the first term of series, i.e.:

w(1)
a (x, y) =

4qb4

π5D
g1(x) f1(y), (13)

and the remainder is:

Ra =
4qb4

π5D
·

∞

∑
m = 2i + 1

i = 1

1
m5 gm(x) · fm(y). (14)

Refer to Appendix A. It can be proved that:∣∣∣∣∣ Ra

w(1)
a (x, y)

∣∣∣∣∣ << 1, (15)

thus, it is reasonable to take the first term of series to approximate wa so as to decrease computing time.
Thus we get:

w̃a(x, y) = w(1)
a (x, y) =

4qb4

π5D
g1(x) f1(y). (16)

2.1.3. Deflection Calculation of Part II

The deflection of part II is wb.Using the same methods as mentioned in Section 2.1.1 to analyze
the deflection of part II, the following result can be obtained:

wb(x, y) =
qb4

π5D

∞

∑
n = 2j + 1

j = 0

1
n5 gn(x) · hn(y) (17)

where λn = nπ/b and

hn(y) = (a1 + c1λny) · sinhλny + (a2 + c2λny) · cosh λny. (18)

To obtain hn(y), boundary conditions are used to solve the problem:

(1) Moment of the two generalized simply supported edges is zero, i.e., M = 0|y=0,l

(2) Deflection of the two generalized simply supported sides is assumed, i.e., w = α0 sin(βx)|y=0,l ,
and hn(y) can be given:

hn(y) = α0

{
cosh λn l−1

sinhλn l

[
( λn l

sinhλn l −
1

1−µ )sinhλny + λny cosh λny
]
+ 1

1−µ cosh λny− λnysinhλny
}

(19)
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According to the boundary conditions, α0 is calculated:

α0 =
2tanh λn l

2

[
(4− µ)− (1− µ) λn l

2 cosh(λn l/2)

]
(1− µ)2(cosh λnl − 1)( 3+µ

1−µ −
λn l

sinhλn l )
. (20)

The first term of Equation (12) is represented as:

w(1)
b (x, y) =

qb4

π5D
h1(y) · g1(x), (21)

and the remainder is:

Rb =
qb4

π5D
·

∞

∑
n = 2j + 1

j = 1

1
n5 gn(x) · hn(y). (22)

It can be proved that (Appendix A): ∣∣∣∣∣ Rb

w(1)
b (x, y)

∣∣∣∣∣ << 1. (23)

Then the estimated formula is obtained as:

w̃b(x, y) = w(1)
b (x, y) =

qb4

π5D
h1(y) · g1(x). (24)

Superimposing the deflection of two parts gives the deflection of the coordinate (x, y) on
metal roof:

w(x, y) = wa(x, y) + wb(x, y) =
qb4

π5D

∞

∑
m = 2i + 1

i = 0

1
m5 gm(x) · [4 fm(y) + hm(y)]. (25)

Take the first term of series as the estimated deflection of the metal roof, i.e.:

w̃(x, y) = w(1)(x, y) = q · g1(x) · b4

π5D
(4 f1(y) + h1(y)). (26)

When the uniform load q is unknown, the deflection of installation location (x0, y0) can be
measured by a bend sensor, and the value is w0(x0, y0). Substituting w0(x0, y0) and (x, y) into
Equation (26) yields the deflection of any point on the metal-roof:

w̃(w0, x, y) =
w0(x0, y0)

g1(x0) ·
(

4 f1(y0) + h1(y0)
) · g(x)1 ·

(
4 f1(y) + h1(y)

)
. (27)

2.2. Analysis of Model Error

Based on the above analysis, the exact deflection of point (x, y) on a metal roof is represented in
Equation (25) and the estimated value is in Equation (26). The remainder is:

R = Ra + Rb =
qb4

π5D

∞

∑
m = 2i + 1

i = 1

1
m5 gm(x) ·

[
4 fm(y) + hm(y)

]
. (28)
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The relative error between w(x, y) and w̃(x, y) is:

ε =

∣∣∣∣ R
w(x, y)

∣∣∣∣. (29)

According to Equations (11), (12), (19), (23) and (27), to calculate the value of ε, the value of
x, y, l, b should be determined. We choose 65/400 straight side whipstitch plate type roof panel [32] for
experiment. Its properties are shown in Table 1.

Table 1. Material properties of 65/400 standing seam metal roof.

Material Length l
(mm)

Width b
(mm)

Thickness d
(mm) Poisson Ratio Young Modulus (Pa)

E (N/m2)

AA3004 Al-Mg-Mn alloy 1700 400 1 0.3 7 × 1010

The value scope of x is 0~400 mm, the value scope of y is 0~1700 mm and l/b = 17/4. According
to Equations (15) and (23), we can obtain:

ε =

∣∣∣∣ Ra + Rb
wa(x, y) + wb(x, y)

∣∣∣∣ ≈ ∣∣∣∣ Ra + Rb
w̃a(x, y) + w̃b(x, y)

∣∣∣∣ ≤ ∣∣∣∣ Ra

w̃a(x, y)

∣∣∣∣+ ∣∣∣∣ Rb
w̃b(x, y)

∣∣∣∣. (30)

According to Figure A5 and Equation (A9) of Appendix B, it can be obtained that the value of∣∣∣∣ Rb

w(1)
b (x,y)

∣∣∣∣ is approximately 0. And according to Equation (A8), the maximum relative error is:

ε ≤
∣∣∣∣ Ra

w̃a(x, y)

∣∣∣∣+ ∣∣∣∣ Rb
w̃b(x, y)

∣∣∣∣ ≈ ∣∣∣(7 ∗ ζ(3)
)

/8− 1
∣∣∣+ ∣∣∣∣π4

48
− 2
∣∣∣∣× 10−7 ≈ 0.0518. (31)

3. Simulations and Experiments

In order to verify the proposed fast reconstruction model of deflection distribution for metal
roofs, the corresponding simulations and experiments are carried out and discussed in this section.
Firstly, we performed a real value simulation (using the practical size and properties of metal roof
sheathings). We simulated the deflection distributions of a metal roof panel under uniform load by
using the proposed analytical method and the FEA method. The results and computation time are
analyzed to validate the accuracy and rapidity of the fast reconstruction model. Next, an experimental
standing seam metal roof platform is set up according to the metal roofs used in practical engineering
applications and the bend sensors are calibrated. Finally, a series of experiments are designed and
implemented to verify the practicability of online monitoring scheme of metal roof deformation based
on bend sensors and the fast reconstruction model.

3.1. Simulation and Discussions

In the real-size simulation experiments, the 65/400 straight side whipstitch plate type roof panel
is selected as test sample and its properties are shown in Table 1. The mathematical software MATLAB
2012 is used to compute the reconstruction model of this metal roof panel in which 20 × 85 points
(
⇀
x ×⇀

y ) are picked uniformly on the whole metal roof panel for deflection calculation. Meanwhile, we
use the FEA software COMSOL 5.3b (COMSOL Inc, Stockholm, Sweden) to simulate the deflection
distribution of metal roof panels which were meshed into 64 thousand elements on the same computer.

We use software MATLAB and COMSOL to simulate the deformation of metal roof panel with
loads from 0~3000 Pa in steps of 200 Pa. When the equivalent uniform load q imposed on metal panel
is 3000 Pa [33], Figure 5 shows the simulation results of the FEA model in COMSOL and the fast
reconstruction model in MATLAB. It can be seen that the deflection distributions are roughly consistent
in both sets of results. Furthermore, we take the COMSOL data of picked points (five lines and eleven



Sensors 2017, 17, 1054 10 of 20

rows of points on the plate, i.e., black points in Figure 5a) as the reference base to examine the relative
error of the analytical model. Figure 6 shows deflection under different loads in the x direction (y = 0.85 m),
and Figure 7 shows deflection under different loads in y direction (x = 0.18 m, avoid the location of the
stiffeners). From Figures 6 and 7, it can be seen that the results of reconstruction model are consistent
with the simulation results in COMSOL. The error data are shown in Figure 8. The absolute error
is mm-level, and maximum relative errors occur on the stiffener locations where the stiffeners are
modeled in COMSOL simulation but simplified through assumptions in the analytical model. We are
more interested in the maximum deflection and the deflection at the boundaries. The maximum error
on these key positions is about 2 mm and percentage error is 2% where our applicable percentage error
is 5%, so the fast analytical model is applicable to deflection calculations of metal roof panel.

In the same hardware platform, the calculation time of MATLAB is about 20 ms, whereas that
of COMSOL is approximately 30 min. Obviously, the fast reconstruction model saves computer
hardware resources and takes less time to compute the metal roof deflection with comparable precision.
Moreover, according to the measured circuit design features and sampling period we have known that
the general time of collecting and transmitting data is about 15 ms, thus the fast reconstruction model
based on measured data can meet the requirements of real-time monitoring.
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3.2. Experimental Platform

In order to facilitate the experiment, a piece of Al-Mg-Mn metal roof panel is incised to set up
experimental platform. The experimental platform is structured with 65/400 type (Al-Mg-Mn alloy)
standing seam plate, bracket, bend sensor, ultrasonic module, Zigbee module and power module, as
shown in Figure 9. The reference point of the bend sensor is M and its coordinate is (250, 70) (mm).
The given measurement points of the ultrasonic module are A(200, 75), B(150, 75), C(350, 50) (mm)

on the metal plate. The ultrasonic module is fixed on the bracket, whose upside is against the given
points. The measured deflections of all sensors are transmitted by Zigbee modules, to PC for further
analysis. The material properties of standing seam metal roof are given in Table 2.

We adopted the FS-L-0112-103-ST flex sensor (Spectra System, Salt Lake, UT, USA) in the
experiment [13]. It is cheap, easy to integrate and requires no complicated signal processing. According
to the manual, its continuous power rating is 0.50 W; its life cycle is more than one million uses; the
sensitivity can be adjusted by circuit design [34].
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Table 2. Material properties of standing seam metal roof.

Roof Material
Lock Edge Free Edge Thickness Poisson Ratio Young’s Modulus

l (mm) b (mm) d (mm) µ E (N/m2)

AA3004 Al-Mg-Mn alloy 150 400 1 0.3 7 × 1010

The resistance changes with the bending status. Additionally, the working temperature range
of the sensor is wide and not affected by the humidity. It can adapt to the complex and changeable
situation of the temperature and humidity on the top of buildings. As shown in Figure 9, the bend
sensor is stuck on the underside of the metal-roof plate. The bending status of the sensor changes with
any deformation of the metal roof, which leads to a corresponding resistance change.

The bend sensor is calibrated on the experimental platform firstly. In the calibration experiments,
we apply uniformly negative loads on the metal roof to make the deflection of the measuring point vary
from 0 to 90 mm. Every deflection state lasts 60 s and the resistances of the flex sensor are measured
with 1 Hz sampling frequency, but only stable values are recorded as calibration data after filtering.
Then we use the data to fit deflection-resistance curve as shown in Figure 10 and the relationship of
deflection-resistance value is assumed as:

w(r) = a0 × r5 + a1 × r4 + a2 × r3 + a3 × r2 + a4 × r. (32)

The coefficients are given as:

a0 = −0.02125, a1 = 1.091, a2 = −20.83, a3 = 176.3, a4 = −557.2

When the deflection measured by bend sensor is 50 mm, 40 × 30 points (
⇀
x × ⇀

y ) on the
experimental metal roof are taken to calculate their deflections according to Equation (22), and the
deflection distribution of entire metal roof is plotted as shown in Figure 11.
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3.3. Experimental Results and Discussion

Imposed stepped reverse loads on the metal roof make the deflection of point M measured by the
bend sensor change from 0 to 60 mm in 10 mm steps, approximately. Simultaneously, we report the
deflections of points A, B and C from ultrasonic sensors. Substituting the measured values of the M
point into Equation (22) we can get the theoretical deflection values of points A, B and C. The measured
and estimated values of points A, B and C are summarized in Table 3.

The relationships between theoretical and measured values of points A, B and C are shown as
Figure 12, where wt − A, wt − B and wt − C represent the theoretical value of points A, B and C;
wm − A, wm − B and wm − C represent the measured values at points A, B and C.

From Table 3 and Figure 12, the estimated deflections calculated by the reconstruction model
agree well with the measured data on the whole. The maximum relative error (7.1%) occurs at point A
which is on the metal roof stiffener; this is because the stiffener can increase the strength of the plate
and reduce the deformation of the metal roof. Additionally, in lines A and B, there is a slight difference
between the measured data and theoretical calculation at higher deflection values. The possible reason
is that the bend deformation of the metal roof panel may be out of the elastic deformation range at
higher deflection values in the actual experiments. Meanwhile, the bend deformation is assumed
elastic in the whole deformation process in the reconstruction model. Its effect can be neglected since
the difference is small and not significant for damage estimation.
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Table 3. Comparison of measured and theoretical values of deflection of metal roof.

Measured Points Deflection (mm) Max Relative Error (%)

M 0 9.6 22.3 31.5 40.7 53.5 59.6

A
TV 0 10.4 24.1 34.1 42.7 57.9 64.5

7.1%
MV 0 10.2 22.5 33.0 42.0 54.6 62.0

B
TV 0 9.6 22.3 31.5 40.7 53.5 59.6

3.6%
MV 0 9.3 21.5 32.7 42.1 53.8 57.5

C
TV 0 3.9 9.2 13.0 20.1 22.0 24.6

5.3%
TV 0 3.8 8.9 12.5 19.1 21.5 23.9

Note: TV represents theoretical value; and MV represents measured value.
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1. According to Equations (8) and (9), we can get that:
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∣∣∣∣∣ Ra

w(1)
a (x, y)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∞
∑

m = 2i + 1
i = 1

1
m5 gm(x) · fm(y)

g1(x) f1(y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A1)

According to Equations (6) and (7), to calculate the value of
∣∣∣∣ Ra

w(1)
a (x,y)

∣∣∣∣, the value of x, y, b, l should

be given. Obviously, the value range of x is from 0 to b, and the value range of y is from 0 to l. In actual
use, the width of standing seam metal roof panel is 300 mm~500 mm, and the max length is up to
15,000 mm. Therefore, 1 < l/b < 50 and here we consider extreme situation in order to compute
maximum truncation error, i.e., l/b = 1. Define Gm(x) = 1

m

∣∣∣ gm(x)
g1(x)

∣∣∣ and Fm(y) = 1
2m

∣∣∣ fm(y)
f1(y)

∣∣∣. The value
curves of Gm(x) for m = 3, 5, 7, 9 are shown as Figure A1.
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From Figure A1, we can infer that:

Gm(x) =
1
m
·
∣∣∣∣ gm(x)

g1(x)

∣∣∣∣ = 1
m

∣∣∣∣ sin mπx
b

sin πx
b

∣∣∣∣ ≤ 1(m = 2i + 1 and i = 1, 2, · · ·∞). (A2)

The value of Fm(y) is shown in Figure A2.
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and it can be obtained that:

Fm(y) =
1

2m

∣∣∣∣ fm(y)
f1(y)

∣∣∣∣ ≤ 0.75. (A3)

So that:

∣∣∣∣ Ra

w(1)
a (x,y)

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∞
∑

m = 2i + 1
i = 1

1
m5 gm(x)· fm(y)

g1(x) f1(y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
∞
∑

m = 2i + 1
i = 1

2
m3 Gm(x) · Fm(y)

∣∣∣∣∣∣∣∣∣∣∣
<

∣∣∣∣∣∣∣∣∣∣∣
∞
∑

m = 2i + 1
i = 1

1.5
m3

∣∣∣∣∣∣∣∣∣∣∣
=
∣∣∣ 21×ζ(3)

16 − 3
2

∣∣∣ ≈ 0.0777 << 1, (A4)

where ζ(3) is three-order Riemann function.
2. According to Equation (14) and defining Hn(y) =

∣∣∣ hn(y)
h1(y)

∣∣∣, Figure A3 shows the value of Hn(y)
with different n, it can be seen that the value of Hn(y) tends to zero rapidly as n increases. Thus:

Hn(y) =
∣∣∣∣hn(y)

h1(y)

∣∣∣∣ << 1. (A5)
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∣∣∣∣ Rb

w(1)
b (x,y)

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∞
∑

n = 2j + 1
j = 1

1
n5 gn(x)·hn(y)

g1(x) f1(y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
∞
∑

n = 2j + 1
j = 1

1
n4 Gn(x) · Hn(y)

∣∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣∣∣
∞
∑

n = 2j + 1
j = 1

1
n4 · Hn(y)

∣∣∣∣∣∣∣∣∣∣∣
=
∣∣∣π4

96 − 1
∣∣∣ · |Hn(y)| << 1 (A6)

Appendix B

We chose a 65/400 straight side whipstitch plate type roof panel as analysis object. Its properties
are listed in Table 1. The value range of x is from 0 to 0.4 m, the value range of y is from 0 to 1.7 m, and
l/b = 17/4. According to Equation (A1), it can be obtained when Gm(x) ≤ 1.

The value of Fm(y) is shown as Figure A4.
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and it can be obtained that:

Fm(y) =
1

2m

∣∣∣∣ fm(y)
f1(y)

∣∣∣∣ ≤ 0.5, (A7)

so that:

∣∣∣∣ Ra

w(1)
a (x,y)

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∞
∑

m = 2i + 1
i = 1

1
m5 gm(x)· fm(y)

g1(x) f1(y)
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=
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<
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∑

m = 2i + 1
i = 1

1
m3

∣∣∣∣∣∣∣∣∣∣∣
=
∣∣∣ 7∗ζ(3)

8 − 1
∣∣∣ ≈ 0.0518. (A8)

The value of Hn(y) is shown as Figure A5.
According to Equations (A2) and (A3), and Figure A5, it can be obtained that:
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w(1)
b (x,y)
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n = 2j + 1
j = 1

1
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∞
∑

n = 2j + 1
j = 1

1
n4 Gn(x) · Hn(y)

∣∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣∣∣
∞
∑
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j = 1

1
n4 · Hn(y)
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≤
∣∣∣π4

48 − 2
∣∣∣× 10−7 (A9)
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