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Abstract: High accuracy target recognition and tracking systems using a single sensor or a passive
multisensor set are susceptible to external interferences and exhibit environmental dependencies.
These difficulties stem mainly from limitations to the available imaging frequency bands, and
a general lack of coherent diversity of the available target-related data. This paper proposes an active
multimodal sensor system for target recognition and tracking, consisting of a visible, an infrared, and
a hyperspectral sensor. The system makes full use of its multisensor information collection abilities;
furthermore, it can actively control different sensors to collect additional data, according to the needs
of the real-time target recognition and tracking processes. This level of integration between hardware
collection control and data processing is experimentally shown to effectively improve the accuracy
and robustness of the target recognition and tracking system.
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1. Introduction

With the rapid development of image processing and computer vision, visual object recognition
and tracking techniques have been widely used in the military, aerospace, scientific exploration,
astronomical observation, and video surveillance fields; over the years, it has also become a hot
research topic in the fields of automatic control, computer vision, and pattern recognition. In most
target recognition and tracking systems, data collection and processing are completely separated tasks;
sensors are only used to collect data, and the data processing system is only used to process the collected
sensor data. As a result of that separation, if data are found to be incomplete or ambiguous during
processing and there are no available supplementary data to mitigate those deficiencies, the accuracy
and robustness of the recognition and tracking processes may be insufficient for the desired applications.
For example, to recognize and track a ship in a commercial harbor for traffic management of the harbor,
the ship is a point-like target when it is far away, and furthermore, it may be blocked by other
ship or be effected by complicated weather conditions. To overcome the incomplete or ambiguous
data problem, some active multimodal sensor systems have been proposed. Cho et al. proposed a
multisensor system for moving object detection and tracking in an urban driving environment. Radar,
LIDAR, and vision sensors were used. The system could actively control all the sensors to collect or
supplement target information and effectively detect and track target movement. The system obtained
good performance results in actual driving conditions [1]. Tran et al. presented a target detection
system with two PTZ (Pan Tilt Zoom) cameras. They used a simple image coordinate transformation to
control the cameras. A wide-view camera was first used to perform target detection in real life scenes,
potentially detecting several targets. The narrow-view camera was then cued (through the mentioned
coordinate transformation) to actively collect high-resolution images of the targets whose resolution
was lower than the defined threshold. The accuracy of the overall target detection system was thus
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much improved [2]. Cui et al. also proposed a binocular system using two PTZ cameras. A master
camera tracked moving objects at low resolution and provided positional information to the slave
camera. To solve the camera collaboration problem, planar geometric constraints were exploited; the
slave camera was actively pointed towards the object at high resolution, and tracked it dynamically [3].
Considering that a PTZ camera tracking system can rotate and zoom in and out to keep the interesting
object within its field of view, many investigations have focused on the study of active systems to
overcome the drawbacks of static systems, which cannot acquire sufficient data of the regions of
interest [4–6]. Qu et al. integrated a PTZ camera, a mirror, and a pan-tilt unit with a laser Doppler
vibrometer (LDV), thus forming a multimodal sensing system to automate remote voice detection.
Based on video analysis and triangulation of the target, LDV laser beam, and PTZ camera, the system
could automatically select the best reflective surfaces, and actively point and focus the laser beam
to the selected surfaces. This process can improve the LDV performance and efficiency in automatic
remote hearing applications [7]. The above mentioned research works are good examples of how
the combination of multimodal hardware data collection and software data processing can not only
improve the accuracy of recognition and tracking systems, but also expand the target recognition and
tracking range and increase system’s flexibility.

However, in the maritime surveillance field, hardware data collection and software data
processing are two completely separate and independent parts [8–14]. Most of these literatures
only use software data processing algorithms to improve the vessels’s detection rate and tracking
rate and hardware sensor is just a data collection tool. For example, Szpak et al. used a background
subtraction method and employ a real-time approximation of level-set-based curve evolution to
demarcate the outline of moving vessels in the ocean [8]. Sullivan et al. detected vessels by an
edge-enhanced spatiotemporal optimal trade-off maximum average correlation height filter [9].
Makantasis et al. designed a visual attention method that exploits low-level image features with
an online adaptable neural network tracker, without making any assumptions about environmental or
visual conditions [10]. The NATO Undersea Research Centre exploited an Automatic Identification
System (AIS) for maritime surveillance using the distributed multi hypothesis tracking based on
Kalman-filtering [11]. Makantasis et al. presented a vision-based system for maritime surveillance
adopted an appearance-based approach to create visual attention maps that represent the probability
of a target being present in the scene [12].Tran et al. applied dynamic fusion technique on background
subtraction and saliency detection results for boat detection [13]. Teutsch et al. used support vector
machines (SVMs) to distinguish between three object classes: clutter, irrelevant objects and suspicious
boats, and obtain a rate of 97% correct classifications [14]. In summary, all of these literatures directly
used the data collected form the sensor and applied mature algorithms such as SVMs to improve
the target detection rate and tracking rate, and did not consider the interaction with the sensor
to supplement the data and eliminate ambiguous judgments, to improve the detection rate and
recognition rate.

In this paper, an active multimodal sensor system for target recognition and tracking is proposed
and discussed. Different from passive multi-modal sensor system whose main task is collection data
and transfer data to data processing software, the active multi-modal system is able to adjust sensors’
attitude to get supplementary information during data processing. Different modal sensors will be
commanded to collect supplementary data from the target in order to eliminate ambiguous recognition
and tracking judgments because of flawed data; this helps to confirm the results, improve the overall
accuracy, and increase the robustness of the system.

The active multimodal sensor system consists of a visible sensor, an infrared sensor,
and a hyperspectral sensor, working together to improve the target recognition and tracking accuracy.
The visible image provides high contrast and rich details, but its performance degrades severely
under dark conditions. The infrared image has strong anti-interference capabilities and is highly
convenient for target recognition, but it has low resolution and low contrast. The hyperspectral data
contains information concerning the target surface material, but only one slit image can be obtained at
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a time. The system proposed control actively the slit of the hyperspectral sensor to aiming the target,
thus collecting more accurate and comprehensive information pertaining to the target, and improving
the accuracy of target recognition and tracking.

This paper makes two main contributions. First, we propose an active multi-modal sensor
recognition and tracking system, in which the hardware data collection and software data processing
can interact with each other. During data collection, the data processing algorithm will cue and control
the sensors to optimize the target data acquisition (controlling the hyperspectral sensor to aiming the
target). During data processing, different modal sensors will be commanded to collect supplementary
information from the target, according to the requirements of the data processing system; this helps to
confirm the recognition and tracking results, improve the overall accuracy, and increase the robustness
of the system. Second, we used a hyperspectral sensor and a hyperspectral-data based recognition
algorithm for the target recognition and target tracking. The spectrum of the target depends only on its
composition and is not sensitive to the environment. Hence, the accuracy of a recognition and tracking
method based on the spectrum is higher than that of methods based on images. In particular, when the
target is far away and shape information is not available (the target is like a point, only a few or a few
tens of pixels in size), the hyperspectral data can still be used to recognize and track it. The system
proposed in this paper can recognize and track targets in challenging conditions, e.g., when there are
two targets with the same shape in the scene, when the tracked target has been lost, or even when the
wrong target is being tracked. The system is able to detect these situations in real time and go back
to tracking the correct target. The situations mentioned above can be probed in the supplementary
material “Active Multimodal Sensor System for Target Recognition and Tracking.mp4”.To the best of
our knowledge, this is the first time to propose an active multimodal sensor system consists of a visible
sensor, an infrared sensor, and a hyperspectral sensor, working together to improve the maritime target
recognition and tracking accuracy.

The rest of this paper is organized as follows: Section 2 introduces the hardware components of
the active multimodal recognition and tracking system, the key system characteristics, and the overall
system workflow. In Section 3, several methods for multisensor information fusion are presented
and discussed. In Section 4, a process and the constituent methods for multimodal target recognition
is proposed. In Section 5, a process and the constituent methods for multimodal target tracking is
proposed. In Section 6, experimental comparisons and validations are presented. Section 7 concludes
the paper.

2. Conceptual System Design

Figure 1a shows a schematic view of the system. It consists of a visible sensor, an infrared sensor,
a hyperspectral sensor, a rotator (located below the hyperspectral sensor), and a pan-tilt platform.
The three vision sensors are fixed on the platform (visible light on the left, hyperspectral on the
middle, and infrared on the right). A one-dimensional rotator is placed below the hyperspectral
sensor, to allow it to perform two-dimensional scanning imaging. The sensors can be moved in two
dimensions, with pan and tilt motions, so that the target can be locked in the image center of one
of the sensors for accurate target recognition and tracking. A photograph of the experimental setup
is shown in Figure 1b. The selected visible sensor is an acA1920-155uc camera produced by Basler
(Ahrensburg, Germany), with a full frame resolution of 1920 × 1200, a full frame rate of 155 frames per
second (fps), and a focal length of 16 mm. The used infrared sensor is an A615 camera produced by
FLIR (Nashua, NH, USA), with a full frame resolution of 640 × 480, a full frame rate of 50 fps, and
a focal length of 24.5 mm. The chosen hyperspectral sensor is a Hyperspec VNIR-N imaging sensor
produced by HeadWall (Bolton, MA, USA), with a slit width of 25 µm and a working wavelength
range of 380–1000 nm divided into 250 bands. The detector is a Falcon 285 camera, produced by Raptor
Photonics (Milbrook, Northern Ireland), with a full frame resolution of 1004 × 1002, a full frame rate of
30 fps, and a focal length of 12 mm. In addition, in order to ensure the synchronization of the images
from different sensors and consider high frame rate compatible with low frame rate, the update rate of
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three sensor is set to the same value of 30 fps and the software multithread synchronization mode is
used to synchronous collect data. In the future, to make sure strictly synchronization collection, the
hardware synchronization mode could be used.

Thermal HyperSpectral Visible

Rotator

Rotator

Rotator

(b)

Thermal

HyperSpectral

Visible

(a)

Figure 1. Multimodal sensor system: (a) System configuration; (b) Experimental setup.

The proposed system workflow includes four main functional components (see Figure 2): target
data collection, multimodal image fusion, multimodal target recognition, and multimodal target
tracking. The target data collection module is used to collect visible, infrared, and hyperspectral data of
the target, using the above three sensors. Multimodal optical images (visible and infrared images) are
fused in the multimodal image fusion module, and at the same time the distance between the target and
the system can be calculated by triangulation between the visible sensor, the infrared sensor, and the
target. The multimodal target recognition module is used to identify the existing target; the module
performs target recognition based on the optical images (visible, infrared, and visible-infrared-fused)
and hyperspectral data. Because of the hyperspectral sensor’s imaging mode (only one slit image can
be obtained at a time), it is necessary to drive the rotator below the sensor to make the imaging beam
point at the target; therefore, the spatial parameters obtained by the multimodal image fusion module
are needed here. Having done that, the system can collect accurate hyperspectral data of the target
and perform a further confirmation by hyperspectral recognition. The multimodal target tracking
module is used to track the detected target. This module cooperates with the data collection, fusion,
and recognition modules. In particular, the data collection module will be called to actively collect
visible or infrared images and target hyperspectral data whenever the target tracking module needs
supplementary data. With this supplementary data, the system can obtain further confirmation on
the target’s nature (true or false), and ensure tracking accuracy and robustness. When the target is
lost, the multimodal recognition module will also be called, to re-recognize the true tracking target in
full view, thus helping the tracking module recover the true target track. The above-described overall
workflow ensures the robustness and anti-interference resilience of the system tracking capabilities.

From the above description of the recognition and tracking system workflow, we can conclude
that the active multimodal recognition and tracking system proposed in this paper is a closed loop
system, which combines and merges together the hardware collection control and software data
processing. The key characteristics of this system are: fast matching of the visible and infrared images,
and a resulting fast cueing of the hyperspectral sensor’s imaging beam (extended line of the lens
optical axis) from the target; active target recognition with collaborative multimodal sensors; finally,
active target tracking with collaborative multimodal sensor control and data collection. Once the visible
sensor is completely disabled, we will not be able to get information on the target distance, and the
system will not be able to operate in active mode; at this point, the infrared sensor will still operate
and the system will go into the monitoring mode, which is further explained later, when describing
the multimodal tracking process.
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Figure 2. System workflow.

3. Multimodal Image Fusion

Fusing the data collected by the three sensors is a challenging task, because the data collected by
the visible and infrared sensors are quite different in the quantity and position of feature points both
on the target and in the background. In addition, the fact that only one slit image can be obtained from
the hyperspectral sensor at any given time is also a challenge. In this paper, a priori information on the
fixed relative position among the three sensors is used. The intrinsic parameters of all three sensors
and the extrinsic parameters of the sensor set are first calibrated by both monocular and stereo camera
calibration procedures. The visible and infrared images are then rectified using the stereo calibration
results, so that the pixel rows of the visible and infrared cameras are exactly aligned with each other
before the image matching process. Having done that, we can search the relative feature points only
on the epipolar lines, and thus accelerate the multimodal matching process, finally completing the
multimodal image fusion.

3.1. Camera Calibration

The calibration flow for the three sensors consists of two steps. The first step is to collect target
images with all three sensors. Jean-Yves Bouguet’s method is then used for monocular camera
calibration [15], and the intrinsic parameters of each sensor are calculated. The results of the calibration
performed on the experimental system are shown in Table 1. Extrinsic calibration is carried out one
and the results is shown in Table 2, are in full compliance with the physical installation parameters of
the three sensors.

Table 1. Intrinsic parameters.

Parameters Visible Sensor Infrared Sensor Hyperspectral Sensor

Focal Length (pixel) X 2800.8796 1451.5284 1556.703
Y 2791.2893 1451.4501 1508.542

Principal point(pixel) X 884.0507 312.1185 292.368
Y 640.0548 253.799 198.586

Radial distortion first-order –0.12848 –0.09549 –0.63794
second-order 0.08027 1.44284 1.59121

Tangential distortion first-order 0.00062 0.00127 –0.00242
second-order –0.01071 –0.00171 0.00694
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Table 2. Extrinsic parameters.

Parameters Visible & Infrared Infrared & Hyperspectral

Rotation Matrix(mm)
0.99984 –0.01252 0.01256 0.99981 0.00591 0.01807
0.01253 0.99992 0.00061 –0.00601 0.99996 0.00616

0.01255 –0.00077 0.99992 –0.01804 –0.00627 0.99981
Translation Vector(mm) –321.4846 –1.0623 5.0289 –188.04000 –0.42570 3.05072

3.2. Image Fusion of the Visible and Infrared Images

The workflow of the fusion process for the visible and infrared image pairs is shown in Figure 3a.
The 3D reconstruction algorithm [16] of binocular stereo vision modal is adopted in this paper. As a first
step, the infrared image’s resolution is extended to be same as visible image by pixel interpolation
method. Second, both images undergo stereo rectification; after extracting keypoints from a visible
rectified image, then searching the corresponding points on the epipolar lines from a rectified infrared
image, the disparity of the two images can then be calculated according to these matched keypoints
pairs. Considering that the color red is related with heat, the image fusion is to make target object
more obvious to detect and tracking. The fused image is then obtained by replacing the red channel
intensity of the visible image with the gray value of the corresponding point of the infrared image (see
Figure 3b). The distance to the target is calculated by triangulation between the visible sensor, infrared
sensor, and target, based on the essential disparity of the visible and infrared image pair.

b

Infrared Image Visible Image

Stereo 

Rectification

Infrared ImageVisible Image

Stereo 

Rectification

Pre-Processing Pre-Processing

Feature 

Matching 

Image Fusion

Disparity

Calculating

(a)

Figure 3. Fusion of the visible and infrared images: (a) Workflow; (b) Fused image.
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3.3. Image Fusion of the Hyperspectral and Infrared Images

Using the extrinsic parameters (R and T) for the three sensors presented in Section 3.1 and
the disparity between the visible and infrared image pairs calculated as discussed in Section 3.2,
the distance to the target can be obtained by [17]

z =
fvis × Bvis−IR

∆x
(1)

where fvis is the focal length of the visible sensor (calculated in Section 3.1), ∆x is the disparity between
the visible and infrared images calculated by the image matching process, and Bvis−IR is the baseline
distance between the visible and infrared sensors. The values of fvis and Bvis−IR were presented in
Subsection III-A. The distance z between target and system can thus be calculated using Equation (1).
Taking into account that the visible sensor may be affected by weather effects such as fog and lead
to lower accuracy, the hyperspectral sensor will be mapped to the IR sensor. Based on the geometry
relation between the hyperspectral sensor, target, and infrared sensor (see Figure 4), the rotation angle
∆θ of the hyperspectral sensor can be calculated as follows:

∆θ = a tan(
O1O2 − ∆l

z
) (2)

In (2), O1O2 is the baseline distance Bhyper−IR, a is the coefficient of pangle conversion into radian,
z is the distance between target and system calculated by (1), and ∆l is the horizontal distance between
the optical center of the infrared sensor and the target, which can be calculated by

∆l =
d · z
fin f

(3)

Here d is the pixel distance between the target and the image center of the infrared sensor, z is
calculated by (1), and fin f is the focal length of the infrared sensor, presented in Section 3.1. The system
will then use the rotator installed below the hyperspectral sensor to perform a rotation of ∆θ, thus
aligning the imaging slit of the hyperspectral sensor with the target; the target’s hyperspectral data
collection can then start. In addition, the center of the infrared sensor will be locked on the target
when tracking. To ensure that the correct target data is being collected, the hyperspectral and infrared
sensors should be bound by imposing that ∆l = 0. Finally, the hyperspectral and infrared images are
fused while tracking.

Hyperspectral Sensor Infrared Sensor

Target

Imaging 

plane

qD

IR-HyspecB

Z

lD

1O
2O

Target 

Plane

Center of the 

Infrared Sensor

Visible Sensor

Figure 4. Fusion of the hyperspectral sensor image.
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4. Multimodal Target Recognition

The visible image, infrared image, visible-infrared fused image, and hyperspectral data all contain
information concerning the reflectance distribution, emissivity distribution, and target surface material.
All the above information can be used in the multimodal recognition process. In this paper, after
image feature and hyperspectral database establish, the recognition based on optical data is performed
firstly. Considering low success ratio of recognition based on optical data, we must use further
information of the target. In order to collected target’s hyperspectral data, the hyperspectral sensor
will be rotated ∆θ to point at the targets, the hyperspectral data from target will be processed to choose
the true target-the one that is most similar to the modal target in the hyperspectral database-and flag it.
With the above process, the multimodal sensor system actively controls the sensors to collect reflectance,
emissivity, and surface material related information, and identify the most accurate target step by
step, with improved target recognition accuracy. The overall block diagram of the multimodal target
recognition phase is shown in Figure 5. The workflow includes the following two steps: establishment
of a target model database, and real-time target recognition.

PREPARATION

RECOGNITION

Optical Image 

Template

Feature Point 

Extraction

Real-time Image 

Visible,Infrared,Fused

Image 

Recognition

Tracking

Feature Point 

Description

Image feature 
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Image Feature Database

Hyperspectral Database

Hyperspectral of 

Target and background
Pre-processing Training

Hyperspectral

Template

Hyperspectral Data
Hyperspectral 

Recognition

+
Suspected Targets

+

True and false

Targets

Figure 5. Multimodal target recognition.

Step1: Before target recognition, the template target databases must be created. In this
study, both a feature database (containing visible, infrared, and fused image derived
information) and a hyperspectral database are used. The feature database creation
process is shown in Figure 5. First, quantities of visible and infrared target image pairs
are collected, and the methods discussed in Section 3 are used to obtain fused images and
supplementary data. After that, feature point extraction and description is carried out
for those three kinds of images. Finally, the feature point descriptors of each target are
saved to the image feature database. The hyperspectral database creation process is also
shown in Figure 5. A large number of hyperspectral data of the target and background
are first collected, and representative data of both are extracted, to be used as standard
hyperspectral data. Filtering and denoising are executed next. The obtained data are
labeled according to which class they belong to: target or background. A support vector
machine (SVM) algorithm is then used and trained with the standard hyperspectral data,
and the obtained results are fed into the hyperspectral database [18]. The SVM algorithm
is supervised learning model with associated learning algorithms that analyze data used
for classification and regression analysis. Given a set of training data, each marked as
belonging to one or the other of two categories, an SVM training algorithm builds a model
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that assigns new examples to one category or the other, making it a non-probabilistic
binary linear classifier.

Step2: The workflow of the real-time multimodal target recognition step includes two
recognition phases, as shown in Figure 5: a pre-recognition phase, based on optical
imaging, and a further recognition phase, based on hyperspectral data. The optical data
is utilized to do preliminary recognition, but the recognition based on optical data relies
on the target appearance. In the case of similar target interference, the recognition success
rate is rather low, so we take advantage of the hyperspectral data to do further recognition
that would increase recognition success rate. These will be further described below.

4.1. Optical-Image Based Recognition

To ensure the image target recognition accuracy and decrease the recognition delay, a feature
detection algorithm with adaptive scale selection is presented in this paper, which uses information
content quantization in the scale space representation. The algorithm is based on scale-invariant feature
points matching method which generally includes three steps: feature extraction, feature description,
and feature matching [19]. The feature detection algorithm in this paper is shown in Figure 6. The full
detection process consists of five steps:

1. The template image and the real-time image are processed to construct a pyramid scale space with
same methodwhich use the features from the accelerated segment test (FAST) algorithm to extract
feature points [20]. The number of FAST feature points is adopted as the image information
contents in scale space. For each location on the circle with a radius of r pixels, the pixel q at this
position relative to p, denoted by p→ q, can be classified to one of the three states: darker, similar
and brighter.

Sp→q =


d, I(q) ≤ I(p)− εd (darker)

s, I(p)− εd ≤ I(q) ≤ I(p) + εd (similar)

b, I(p) + εd ≤ I(q) (brighter)

(4)

For any discrete image I, I(q) is the gray value of each pixel on the circle and I(p) is the gray
value of candidate point p, εd is a gray threshold. The FAST detector classifies the candidate point
p as a corner if there exists a set of N contiguous pixels in the circle which are all brighter than the
intensity of the candidate pixel I(p) plus a threshold εd, or all darker than I(p)− εd. N is set to
larger than a setting threshold n (n is chosen to be 12).

Let P be the set of FAST keypoints extracted from the discrete image I :

P = {p ∈ P | N ≥ n} (5)

Then, the information content of the discrete image I can be defined as E = |P|, where |P|
indicates the number of elements in the set P.

2. The appropriate pyramid scale parameters are determined by the differences in information
contents. The information content of L(x, y, σ(o, s)) is descripted by in fs, then the difference
between two adjacent Gaussian images can be expressed as di f f _in fs.

di f f _in fs = in fs − in fs+1 s ∈ [0, S− 2] (6)

where the SIFT scheme is referenced to build a pyramid including O octaves, and each octave
is divided into S intervals. Each Gaussian image in the scale space of an input image I(x, y) is
defined as L(x, y, σ(o, s)); σ is the absolute scale parameter.
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3. The binary robust invariant scalable keypoints (BRISK) algorithm is used to obtain descriptors of
the feature points extracted in the previous step [21].

4. Feature point matching is performed on the constructed scale-adaptive pyramid, and the
RANdom SAmple Consensus (RANSAC) algorithm proposed by Fischler and Bolles is used for
removal of false matching points [22].

5. The pyramid level is controlled by thresholding the number of matching pairs (i.e., stop matching
and constructing when the number of matching pairs reaches the threshold). For a given
initial grayscale image I, the Gaussian image in the pyramid is expressed as L(x, y, σ(o, s)) with
o ∈ [0, O− 1], s ∈ [0, S− 1]. The initial image is L(x, y, σ(0, 0)) = I. For the remaining octaves,
the Gaussian image at the first level of each octave L(x, y, σ(o, 0)) must be down-sampled by
a factor of 2 from the Gaussian image L(x, y, σ(o− 1, S− 1)) in the previous octave. The number
of octaves is determined by the minimum number of pixels in the top-level smoothed image in
the pyramid. For an initial grayscale image I with a size of width× height pixels, the minimum
number at the top level is 2n, n ∈ [0, log2 min(width, height)− 1]. The number of octaves O can
be computed by Equation (7):

O = log2 min(width, height)− n (7)

If the target does not match the current template, a new template in the database is used to
match the target, and the above five steps are repeated. Unlike conventional algorithms that
match the feature points on a complete pyramid, here a simultaneous, joint construction and
matching strategy is used: the pyramid construction will end as soon as an adequate number
of correct matching pairs has been obtained. Not only does this allow for lower computational
costs, but also the problem of the images becoming increasingly rough from bottom to top-which
results from the quantitative processing of the pyramid-can be avoided.

Template 

Image
Real-time
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Constructing Pyramid

Extracting Feature Points             

Constructing Pyramid

Extracting Feature Points             

Feature Points Description

 By BRISK

Matching & Removal False 

Points By RANSAC
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End

Change 
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Yes
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 Computing Scale Parameters

Figure 6. Optical-image based target recognition.
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In principle, our method not only extracts feature points with lower time cost, but also maintain
scale invariance. BRISK descriptor could further lower time cost, and also maintains the rotation
invariance properties. In summary, our method is more suitable for real-time optical recognition of
sea target.

4.2. Hyperspectral-Data Based Recognition

To refine the pre-recognition obtained by optical imaging, the suspected targets undergo a second
recognition phase (hyperspectral-data based), as previously discussed. A supervised classification
method is adopted for recognition of the obtained hyperspectral data. To get the templates, first we
artificially select the region of interest on the pre-shot hyperspectral image; then we extract the data
from the region and divide them into target and non-target data; finally, we process them using
an SVM machine-learning method to generate the hyperspectral templates. In practical application,
hyperspectral sensor’s imaging beam is pointed at target to get spectral data automatically. According
to the hyperspectral templates and real-time targets’ spectral information, the SVM is also used
to recognize and classify suspected targets which is based on hyperspectral-data. Specifically,
14,870 hyperspectral data points are used here to train the SVM. The hyperspectral data is then
filtered and denoised.

5. Multimodal Target Tracking

In this paper, the multimodal information collected by the visible, infrared, and hyperspectral
sensors is comprehensively utilized. Multimodal information is collected and actively supplemented
during tracking. Optical image recognition and hyperspectral confirmation are included into the
tracking process, to ensure that the true target is being tracked. Our approach can also find and recover
the true target when the target is lost or when it is found that a false target is being tracked, by using
the multimodal recognition module. The multimodal target tracking method proposed in this paper
can resist a variety of interference sources and achieve long-time continuous tracking. The multimodal
target tracking workflow is shown in Figure 7.

Data Collection Data Processing
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Figure 7. Multimodal target tracking.
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The multimodal target tracking includes two modules: data collection and data processing.
Data collection and data processing work together to track target. Multimodal information could
be collected and actively supplemented during target tracking. First, the multi-modal system starts
with collecting data, and then the multi-modal target recognition block identifies the target and
target’s position in image. After a target judgement, if there is target existing in field of the view,
the image with the initial recognition box will be sent to the tracking procedure, and the target will
be locked to the center of the infrared sensor. If not, the system will enter a monitoring mode. In this
mode, the system will detect targets coming into view at any moment. If the target is detected,
the multimodal recognition and tracking processes will be restarted. Once the tracking procedure
starts executing, the parameters of tracking parameters will be initialized by the data from recognition
box, and next frame tracking will be initiated with these parameters. After tracking parameters
initialization, a tracking algorithm that presents a framework for adaptive visual object tracking,
based on the structured output prediction (Struck) proposed by Hare et al., is used here for target
tracking [23], and the tracking starts proceeding. Concurrently, the system will get position parameter
from fusion image of the visible sensor and inferred sensor and control the hyperspectral sensor to
collect the target’s hyperspectral data. The recognition based on hyperspectral data is used to confirm
that the tracked target is the true one. If the target is indeed the true one, the next frame will be sent to
the tracking module for processing. If not, the multimodal target recognition module will be restarted
to detect and recognize suspected targets in the whole image again, and the so-obtained suspected
targets will be sent to the hyperspectral recognition module. Once the new is classified as true target,
its position will be sent to the tracking module again, which will then reinitialize tracking parameters
and restart tracking. If not, the process will repeat. In this way, data collection can be control at any
time to capture supplementary image or hyperspectral data for target tracking task, which increase the
accuracy and robustness of the tracking processes.

It is worth noting, the Struck tracking algorithm need set tracker searching radius artificially,
the parameter is lower, the time cost is higher, but the accuracy of algorithm is higher, a suitable value
could be set according to application requirement and a few of tests.

6. Experiments

To test the reliability and accuracy of the proposed recognition and tracking system,
an experimental platform was built. The sensor description and arrangement has already been
introduced in Section 2.

In this study, we conducted three different types of experiments: laboratory simulations,
comparisons between algorithms, and realistic experiments.

For the simulation experiments, the experimental targets were two scaled-down ship models.
The size of both models was 315 × 78 × 65 mm3. A heating device was used to heat the models from
30 to 150 ◦C. In addition, different surface materials were used for the two models. The experimental
system could control the movement of the experimental targets,with both three-dimensional
translational motions and two-dimensional rotational motions. Active target recognition and tracking
was performed while the targets were moving.

We also performed comparisons between selected state-of-the-art algorithms and our algorithm,
using simulated data, a standard dataset, and realistic data. The standard dataset (Crowds, Panda,
and Sylvester) used to test tracking algorithm in this paper has included the ground truth data, so we
could compare the ground truth data with tracking trajectory of the proposed method to evaluate
tracking algorithm directly. The ground truth of the realistic data is marked artificially by ourselves,
and then we compare the ground truth data marked artificially with tracking trajectory of the proposed
method to evaluate the algorithm.

Finally, a series of realistic experiments were conducted in the port. The targets were the real
ships sailing in the port, the distance between the target and the system was between 0.5 and 10 miles,
and the experiments were conducted from 0.5 h before sunrise until 1 h after sunset.
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Using the above described experimental setup, we performed a number of experiments,
recognizing and tracking different numbers of targets in different states, using the single sensor mode,
the multimodal sensor passive mode (the sensors were fixed, data collection and data processing
are separated tasks), and the multimodal sensor active mode(data collection and data processing are
cooperated) proposed in this paper, to verify the accuracy of recognition and tracking. The system
software was implemented in VS2010, which runs on an Intel(R) Core(TM) 3.4 GHz CPU with 4 GB
of RAM.

6.1. Target Recognition Algorithm Comparison

The standard Mikolajczyk dataset [24] was used to evaluate our method and other algorithms
in terms of four types of distortions, namely changes in the viewpoint, different light conditions,
blur, and JPEG compression. Five image pairs with increasing amount of distortion were used.
The parameters in the detectors were the same as in the experiments above.

As shown in Figure 8, all the four algorithms proved to be robust against blur, with our adaptive
multiscale feature detection algorithm and ASIFT [25] producing more effective matches than SIFT [26]
and FAST [20]. Under different conditions of light, all the algorithms tend to be robust as well.
When the viewpoint changes, both SIFT and FAST have limited robustness while our method and
ASIFT showed high performance. SIFT also has difficulty in dealing with changes in compression,
while the other three methods are very robust and found sufficient correct matches. ASIFT performed
well through all the database tests, even though our method exhibited greater robustness and yielded
more valid matches with limited numbers and scale-uniform feature points.

(a) (b)

(c) (d)

Figure 8. Number of correct matches achieved by our method, SIFT, FAST, and ASIFT under
four types of distortions in the standard Mikolajczyk database. (a) Blur. (b) Light. (c) Viewpoint.
(d) JPEG compression.
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To summarize, experiments were conducted to show that our method can simultaneously adapt
to changes in location, scale, illumination, and viewpoint, and can generate large numbers of features
that densely cover the images over a large range of these variations. Our approach significantly
improves the results in the presence of environmental changes and can be thus very useful for
various applications.

6.2. Target Recognition Experiments

To test the accuracy of the active multimodal recognition, first, we placed the two ship models
in the system’s field of view. The models were precisely identical, but there were slight differences
in surface color (not distinguishable with the visible sensor). Several temperature combinations
for the pair of models were tested, including the following temperature pairs: [25 ◦C (unheated),
25 ◦C], [25 ◦C, 75 ◦C], [75 ◦C, 25 ◦C], [75 ◦C, 75 ◦C], [25 ◦C, 150 ◦C], [150 ◦C, 25 ◦C], [75 ◦C, 150 ◦C],
[150 ◦C, 75 ◦C], [150 ◦C, 150 ◦C]. We specified a priori one of the ship models as the true target.
The image feature database and hyperspectral database were created, based on different angles and
different distance views of the two targets. Having completed that, the recognition performance under
different temperature conditions was evaluated in single sensor mode (for both the visible and infrared
sensors), multimodal sensor passive mode, and multimodal sensor active mode (the mode proposed
in this paper).

Then, in order to investigate the application of the multimodal system, we conducted a series of
experiments in the port. The process was exactly the same as before: Prior to the field experiment,
feature and hyperspectral databases of cargo ships were created, based on different angles and distance
views of the targets. Then, the recognition performance was evaluated in single sensor, multimodal
sensor passive, and multimodal sensor mode at different times throughout a day.

The obtained results are shown in Figures 9 and 10. In these figures, a red cross near the ship
model identifies it as the true target, whereas a green cross positively identifies it as a false target.
From this figure, we can see that targets could be detected using single sensor mode or multimodal
sensor passive mode, but the true target could not be recognized because two target have same
shape and color. On the other hand, the multimodal sensor active mode was capable of not only
detecting the targets, but also identifying the true target because the active mode can control the slit
of the hyperspectral sensor to aiming the target and capture the hyperspectrum data of the target
for recognition.

We also made a comparative analysis of the target recognition accuracy for the three modes
and different algorithms (SIFT, FAST, and ASIFT), to obtain an objective quantitative evaluation.
Target recognition has many different evaluation indexes [27,28]; in this paper, the ratio of successful
recognition results to the total test instances was considered, and is defined here as the recognition
rate (RR)

RR =
Ss

A
× 100% (8)

where A is the total number of experiments and Ss is the number of successful real-time recognitions
(when the overlapping area of the recognition box and the ground truth is greater than 80%). Erroneous
classification of false targets as being the true target is palways considered a recognition error, no matter
how much overlapping area the recognition box exhibits.
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a1 a2

b1 b2 b3

c1 c2 (c3)

a3

Figure 9. Indoor recognition results: Labels 1 to 3 correspond to the infrared, visible, and fused images,
respectively. (a1–a3) Single sensor mode; (b1–b3) Multimodal sensor passive mode; (c2–c3) Multimodal
sensor active mode.

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

Figure 10. Outdoor recognition results: Labels 1 to 3 correspond to the infrared, visible, and fused
images, respectively. (a–c) indicates a gradual increase in visibility.

Table 3 shows the recognition rate results for the three recognition modes. As can be seen,
single sensor recognition is affected by the targets in the scene, and has a very low recognition
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rate. The multimodal sensor passive mode (using the above four algorithms and calculating the
average) exhibits a low recognition performance, because the data collected by the hyperspectral
sensor is not always reliable. Using the multimodal sensor active mode (with our proposed algorithm),
however, allows for a proper and effective collection of the target’s reflectance distribution, emissivity
distribution, and surface material information, and a very high recognition rate can therefore
be achieved.

Table 3. Recognition rate.

Source
Single Sensor (Average)

MSP MSAProposed SIFT FAST ASIFT

STT 91.3% 87.1% 52.3% 74.8% 93.4% 95.1%
STF 11.8% 9.1% 4.5% 5% 20.5% 95.2%
MT 51.1% 46.4% 32.7% 30.5% 55.6% 93.8%

Average 51.4% 47.5% 29.8% 36.8% 56.5% 94.7%
Average time cost(ms) 288 419 227 2987 —- —-

MSP: Multimodal sensors (passive); MSA: Multimodal sensors (active); STT: Single
target (true); STF: Single target (false); MT: Multiple target.

6.3. Target Tracking Algorithm Comparison

In order to verify the effectiveness of the algorithm, we selected three representative sequences
of images for the standard dataset (Crowds, Panda, and Sylvester), the indoor simulation (Indoor1,
Indoor2, and Indoor3) and the outdoor sea experiment (Harbor1, Harbor2, and Harbor3). In addition,
the algorithm used in this paper is compared with three popular algorithms, namely the CT [29],
BSBT [30], and SemiT [31] algorithms. We used the parameters recommended by the original algorithm
to carry out the index analysis, and got the average performance as the final performance index.
In terms of algorithm comparison, we followed the standard presented in Section 6.2. The comparison
results are shown in Tables 4 and 5 and Figures 11 and 12. Table 4 lists the average position error of
each algorithm involved in comparing different image sequences.

Crowds Panda Sylvester

Indoor1 Indoor2 Indoor3

Harbor1 Harbor2 Harbor3

Figure 11. Tracking success rates for different algorithms (Red line-Struck, green-BSBT, black-CT,
blue-SemiT).
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(a)Panda(#1,#200,#500,#800)

(b)Indoor1(#1,#78,#134,#215)

(c)Harbor1(#1,#30,#60,#80)

Figure 12. Screenshots of some tracking results.

Table 4. Average center location error (in pixels).

Sequence Algorithm

CT BSBT SemiT Struck (GPU)

Panda (1000 fp) 69 80 70 13
Crowds (346 fp) 66 6 5 10

Sylvester (1343 fp) 52 76 71 31
Indoor1 (269 fp) 28 25 13 7
Indoor2 (239 fp) 40 29 15 6
Indoor3 (230 fp) 9 31 15 28
Harbor1 (172 fp) 37 8 10 4
Harbor2 (86 fp) 5 3 3 4

Harbor3 (147 fp) 19 3 5 2

Average FPS 34.7 4.5 5.1 42

The bolded figures mean better.

Table 5. Success rate (%).

Sequence Algorithm

CT BSBT SemiT Struck (GPU)

Panda (1000 fp) 19 25 30 100
Crowds (346 fp) 7 15 10 77

Sylvester (1343 fp) 32 50 49 86
Indoor1 (269 fp) 100 99 87 98
Indoor2 (239 fp) 96 81 95 99
Indoor3 (230 fp) 36 80 79 99
Harbor1 (172 fp) 19 54 51 98
Harbor2 (86 fp) 100 97 98 100

Harbor3 (147 fp) 28 98 97 99

The bolded figures mean better.
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To quantify the performance of the tracking algorithm, the tracking success rate [32] is used as
an objective tracking accuracy evaluation index. The underlying success measure is

S =
‖rt

⋂
ra‖

‖rt
⋃

ra‖
× 100% (9)

where rt is the real-time tracking box, ra is the ground truth, and the
⋂

and
⋃

operators represent
the intersection and union of the two boxes; the operator represents the number of elements in the
corresponding region. The tracking algorithm performance is then measured by calculating the
percentage of frames with overlapping rates S over a given threshold t0, in a tracking image sequence.
The higher the index, the better the performance of the tracking algorithm (t0 is taken as 50% in
this paper).

As can be seen, the algorithm we used (Struck) had a good performance. Since the average
center position error only reflects the difference in the Euclidean distance between the real frame and
the center of the tracking frame, it is not very effective to measure the performance of the tracking
algorithm when dealing with targets of different scales. The tracking success rate is an analysis of
the overlap ratio between the two frames, which can reflect the adaptability of the tracking algorithm
to the change of scale due to target movement, and the tracking time also has been added to Table 4.
Table 5, shows the tracking success rate of the algorithm when the overlap ratio is more than 50%
of the given threshold. It can be seen from the analysis of the table that the algorithm used in this
paper produced better results than the others for the nine sequences of pictures involved in the test.
The success rate curves for the four algorithms and screenshots of some tracking results are given in
Figures 11 and 12. It can be seen from the figures that the performance of the algorithm we used is far
superior to that of the other algorithms.

6.4. Multimodal Target Tracking Experiments

To test the accuracy and performance of the active multimodal tracking mode, we placed the
two ship models in the system’s field of view. As mentioned above, the models were precisely
identical, but there were slight differences in surface color (not distinguishable with the visible sensor).
Both models were heated to 150 ◦C. We specified one of the ship models as the true target a priori.
The image feature and hyperspectral databases were created, with several different distances and view
angles. Several different types of motions were used for the models, including linear uniform and
sinusoidal types of motion, and the three previously discussed sensor modes (single sensor mode,
multimodal sensor passive mode, and multimodal sensor active mode, all using the Struck algorithm)
were used to verify tracking performance.

The results obtained for the three sensor modes are shown in Figures 13–15. As can be seen in
Figure 13, when the target was tracked in single sensor mode, the initially acquired target was likely to
be the wrong one, which resulted in the continuous tracking of the false target. In addition, when the
tracked target was lost or blocked, the sensor could not re acquire the true target. A slightly different
situation can be observed in Figure 14, for the multimodal sensor passive mode; in this case, the initial
tracking accuracy was slightly improved, and the possibility of directly tracking the false target was
reduced. When the target was lost or blocked, the system could occasionally find the real target to
continue tracking, by using the three available images (infrared, visible, and fused). However, target
re-acquisition was fortuitous and not reliable, because the target surface material information collected
by hyperspectral imaging was not being effectively utilized. Finally, when tracking was performed in
the multimodal sensor active mode, the system could reliably find and track the true target and recover
from target losps or blocking situations. This can be seen in Figure 15; the red cross is used again to
identify the true target in this figure, whereas the green cross represents a positive identification of
a false target. A tracking success rate is also defined when the system does not track the target because
only the false target is visible.
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Figure 13. Tracking results for the single sensor mode (#xx designates the frame number). (a) Infrared
images; (b) Visible images.

Figure 14. Tracking results for the multimodal sensor passive mode; the hyperspectral sensor is
horizontally aligned with the infrared sensor, and with no rotation (#xx designates the frame number).
(a) Infrared + hyperspectral; (b) Visible + hyperspectral; (c) Fused + hyperspectral.

.#124 #135 #215 #267

#312 #486 #526 #557

Figure 15. Tracking results for the multimodal sensor active mode (#xx designates the frame number).
(The infrared image center-starting point of yellow line-is centered on the target).

Table 6 shows the tracking success rates for the three kinds of operation modes. We can see that
the single sensor mode has very low success rates. Some improvement in the success rate can be
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obtained by using the multimodal sensor passive mode, but this is not a stable configuration; only
when the slit of the hyperspectral sensor is pointing at the target is the tracking success rate higher.
However, very high success rates-which are always high and stable-can be obtained by using the
multimodal sensor active mode to track the target because the slit of the hyperspectral sensor is control
to pointing at the target always. In addition, from the large number of performed experiments we
verified that the success rate of the single sensor and multisensor passive mode will considerably
decrease when dealing with long tracking times (and decrease further as the tracking time increases),
and that the system is prone to lose the target in those conditions. In active mode, on the other hand,
very high success rates can also be achieved in those situations.

Table 6. Tracking success rates.

Source Average of Single Sensor Multimodal Sensors Multimodal Sensors
Passive Active

Scene1 (True target only) (1247 fp) 72.3% 74.3% 91.2%
Scene2 (False target only) (1756 fp) 5.3% 17.6% 43.5%

Scene3 (Two Targets) (1357 fp) 35.2% 45.2% 85.6%
Scene4 (Two Targets) (1519 fp) 56.4% 59.4% 84.2%
Scene5 (Two Targets) (1823 fp) 45.8% 52.3% 87.5%

Average (Except Scene2) 52.43% 57.80% 87.13%
Total Average 43.00% 49.76% 78.40%

The bolded figures mean better.

7. Conclusions

In this paper, we proposed an active multimodal sensor recognition and tracking system,
consisting of a visible sensor, an infrared sensor, and a hyperspectral sensor working together to
improve the target recognition and tracking accuracy. First, the system recognizes and tracks targets
not only by passively combining the data collected by the three imaging sensors, but also by actively
cueing and controlling the sensors to optimize target data collection. Second, a hyperspectral-data
based recognition algorithm is used in the target recognition and target tracking process. The proposed
approach solves the problems of external interference susceptibility and environmental dependence
existing in single sensor or in general passive multimodal recognition and tracking systems. The data
collected by the visible, infrared, and hyperspectral sensors are first fused using stereo calibration and
FAST feature matching. Having done that, the multisensor information is fully utilized, and the sensors
are controlled to actively collect additional, supplementary target information. The target recognition
and tracking algorithms are carefully combined with the sensor data collection, so that the sensors
can be accurately controlled to collect additional target data during the recognition or tracking phases,
as often as needed, to further ensure accuracy and robustness. This type of solution, combining the
hardware collection control and the data processing is shown to be capable of effectively improving the
accuracy of target recognition and tracking systems, and also improve the anti-interference capabilities
of these systems; as such, this approach may open a new technical path for target recognition and
tracking systems development.
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Abbreviations

The following abbreviations are used in this manuscript:

PTZ Pan Tilt Zoom
LDV laser Doppler vibrometer
RANSAC RANdom SAmple Consensus
STT Single target (true)
STF Single target (false)
MSP Multimodal sensors (passive)
MSA Multimodal sensors (active)
MT Multiple target
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