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Abstract: Inspired by the exceptional flight ability of birds and insects, a bio-inspired neural adaptive
flight control structure of a small unmanned aerial vehicle was presented. Eight pressure sensors were
elaborately installed in the leading-edge area of the forward wing. A back propagation neural network
was trained to predict the aerodynamic moment based on pressure measurements. The network
model was trained, validated, and tested. An adaptive controller was designed based on a radial
basis function neural network. The new adaptive laws guaranteed the boundedness of the adaptive
parameters. The closed-loop stability was analyzed via Lyapunov theory. The simulation results
demonstrated the robustness of the bio-inspired flight control system when subjected to measurement
noise, parametric uncertainties, and external disturbance.
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1. Introduction

With the development of science and technology, unmanned aerial vehicles (UAVs) are becoming
increasingly popular in business and daily life. Although small unmanned aerial vehicles (SUAVs)
provide a new perspective of social life in areas such as agriculture [1], industry [2], public security [3],
package delivery [4,5], as well as entertainment and media [6], as a multipurpose tool its potentiality
has not been fully tapped—the flight safety of SUAVs being one of the main constraints. The complexity
of the aerodynamics of the atmospheric boundary layer increases rapidly with decreasing altitude.
The flow field changes frequently because of changeable weather conditions and complex interactions
between ground objects. Turbulence intensities near the ground can reach >40% and >15% in suburban
and urban environments, respectively [7–9]. Severe turbulence can degrade the flight safety of SUAVs
particularly in complex urban environments, which leads to their limited application. Traditional
attitude control systems of SUAVs based on the low-cost and rough IMUs (inertial measurement units)
and actuators can barely maintain flight stability.

However, birds and insects found commonly in everyday life demonstrate excellent flight skills.
SUAVs, birds, and insects largely fly at low Reynolds number, where nonlinearity and separation
occur [10]. It seems that problems caused by low Reynolds numbers do not bring a great deal of
distress to flying animals. Previous research has revealed that flying living beings have the ability
to sense the flow information around them [11–14]. Feathers in the wings of birds have a sensing
mechanism to measure airspeed and to detect stall and separation [12]. The mechanosensory feather
system of a bird can greatly reduce reaction time, and is advantageous for rapid maneuvering. It is still
unknown how the avian brain processes signals generated from thousands of mechanoreceptors [13].
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Inspired by the mechanism, interesting studies have been published which try to use flow
information to enhance flight safety. Sergio et al. modified two SUAV platforms, one equipped with
12 strain gauge sensors and the other with an array of pressure sensors. Experimental results verified
that force sensing and flow sensing offered advantages beyond IMUs [15]. Shen et al. proposed an
algorithm to estimate the aerodynamic forces based on airflow measurement and designed a robust
sliding mode controller. The simulation results demonstrated an enhanced performance of the control
framework [16]. Mohamed et al. took a closer look at the interrelation between atmospheric turbulence
and wing surface pressure variations. Wind tunnel experiments revealed that a high correlation
appeared in the wing leading-edge region, making this a better choice of where to place pressure
sensors [17]. Pressure sensors were also used to augment roll motion stability [18].

In order to enhance the flight stability of flying vehicles under parametric uncertainties
and external disturbances, scholars and researchers have proposed numerous model-based
control strategies [19,20]. Adaptive control and robust control are popular tools to deal with
uncertainties [21,22], among which the global approximation attribute of the neural network (NN)
is attracting scholars’ interest [23–26]. Zeghlache et al. [24] designed a fault-tolerant NN controller
based on a faulty octorotor aerial vehicle model, which showed perfect tracking performance despite a
rotor failure. The radial basis function neural network (RBF NN) was exploited to estimate external
disturbances [23] and uncertain terms [26]. In [25], the authors incorporated a higher-order NN in a
discrete backstepping scheme.

In this paper, a bio-inspired flight control framework is studied, where pressure sensors
are integrated into the framework. The rest of the paper is organized as follows: in Section 2,
the configuration of the pressure sensors of the test-model SUAV is presented, a back propagation
neural network (BP NN) model is trained, validated, and tested, and a modified control-oriented
model is proposed. The neural adaptive controller design and stability analysis are presented in
Section 3. Finally, the simulation results and conclusions are shown in Sections 4 and 5, respectively.

2. Airflow Sensor System and Modeling

2.1. Pressure Sensor Configuration

Flying animals such as birds and insects have abundant mechanoreceptors in the wings and
head to perceive airflow information around their bodies [12,27]. The anatomical features of pigeons
demonstrate that about 70% of all the Herbst corpuscles are situated in the leading-edge region of
the alula, and 30% are around the caudal band, yet there are few in the middle [11]. The density
distribution of the Herbst corpuscles indicates where to measure the airflow information [13]. In order
to obtain the flow field information around the SUAV, pressure sensors were selected and embedded in
the front of the main wing. Previous research was also inclined to detect the airflow in the leading-edge
area [15,17,18].

A tandem-wing SUAV prototype named XZD-I was chosen as the model plane with which to
conduct the experiments. Its wingspan was 1.2 m, its gross mass was 4 kg, and the designed trim
velocity was 25 m/s (shown in Figure 1). Considering the sensor wiring and dimensional limitation,
only eight sensors were installed in the front wing. Nos. 1–4 were in the middle of the left wing,
Nos. 5–8 in the middle of right wing, symmetrically. Nos. 1–2 and 5–6 were placed on the upper wing
surface, while Nos. 3–4 and 7–8 were on the lower wing surface (refer to Table 1 and Figure 1).

Table 1. Pressure sensor location in the front wing.

Pressure Sensor Chordwise (x/Chord) Spanwise (y/Span)

P1, P5 0.05 1/4, 3/4
P2, P6 0.35 1/4, 3/4
P3, P7 0.1 1/4, 3/4
P4, P8 0.35 1/4, 3/4
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Figure 1. Small unmanned aerial vehicle (SUAV) model and pressure sensor configuration: (a) the 
XZD-I SUAV; (b) positions of the center of gravity (c.g.) and aerodynamic center (a.c.); (c) top view of 
the SUAV; (d) site of the sensors in the airfoil section. 
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Figure 1. Small unmanned aerial vehicle (SUAV) model and pressure sensor configuration: (a) the
XZD-I SUAV; (b) positions of the center of gravity (c.g.) and aerodynamic center (a.c.); (c) top view of
the SUAV; (d) site of the sensors in the airfoil section.

2.2. Pitching Moment Prediction

Inspired by young birds learning to fly, a BP NN was introduced to build the complicated
relationship between the pressure sensor measurements and the aerodynamic moment.

2.2.1. BP NN Modeling

A BP NN usually contains an input layer, an output layer, and one or more hidden layers. A BP NN
of one hidden layer with enough neuron nodes can approximate any nonlinear function. The number
of input and output layer nodes of the BP NN is related to the practical application. In this work, a
BP NN with a three-layer structure was adopted. The input layer had eight nodes and the output
layer had one node. The number of hidden nodes was calculated according to: nhd =

√
nin + nout + m,

where nhd is the number of hidden layer nodes, nin is the number of input layer nodes, nout is the
number of output layer nodes, and m is a constant between 1 and 10.

After several rounds of training experiments, it was better to increase the number of hidden layer
nodes to ten. The BP NN was built and trained in MATLAB® software. The tansig transfer function
was assigned to the hidden layer, and the purelin function to the output layer.

The network is shown in Figure 2. Eight pressure sensors’ outputs (P1–P8) were inputted to the
eight input layer nodes. MNN was the pitching moment estimation output, and M̃ = M−MNN was
defined as the NN prediction error.
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Figure 2. The back propagation neural network (BP NN) structure.

2.2.2. Sample Preparation

In order to train the network, training and testing samples were constructed using the basic
computational data of the SUAV model. The basic aerodynamic data were calculated in a widely
used CFD code—CFL3D. The range of the attack angle α was chosen as −6◦ to 12◦, which was an
acceptable attitude envelope. Table 2 shows a representative aerodynamic data with a sampling rate
of 2◦. Because of the symmetry of the SUAV, the computational pressure outputs of sensors P5–P8
were nearly equal to P1–P4, respectively. Therefore, columns P5–P8 in the table were omitted for
conciseness. Each line in Table 2 was a sample. α was the sample index. P1–P8 were the eight network
inputs. M was the target.

Table 2. Computational aerodynamic data samples: sampling rate of 2◦.

α (◦) P1 (Pa) P2 (Pa) P3 (Pa) P4 (Pa) P5–P8 M (Nm)

−6 101,539 101,333 100,734 101,172 . . . −2.80
−4 101,471 101,297 101,013 101,195 . . . −2.78
−2 101,382 101,259 101,105 101,233 . . . −2.74
0 101,275 101,218 101,191 101,269 . . . −2.55
2 101,154 101,177 101,273 101,305 . . . −2.26
4 101,018 101,136 101,348 101,339 . . . −2.11
6 100,870 101,094 101,417 101,372 . . . −2.02
8 100,714 101,052 101,478 101,403 . . . −1.93

10 100,557 101,010 101,531 101,433 . . . −1.81
12 100,414 100,969 101,578 101,461 . . . −1.54

Figure 3 shows the computational sample data set. The computational sample set consisted
of 37 groups of sampling data where the sample index α array was [−6 −5.5 −5 −4.5···11.5 12].
To improve the prediction accuracy of the network on noisy measurements, white noise was added
to the computational data sample set. Ninety-nine noisy sample sets were randomly generated by
adding normally distributed random numbers to the computational sample set. The random numbers
were from a normal distribution with a mean of 0 and standard deviation 15, which simulated the
measurement accuracy of ±15 Pa.

The 100 sample sets (1 computational sample set and 99 noisy sample sets) served as network
training inputs. The first 1–60 sample sets were the training sets, the following 61–80 sets were the
validation sets, and the last 81–100 sets were the test sets.
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Figure 3. The computational data (sampling rate of 0.5◦): (a) eight sensors’ measurements; (b) target
data of pitching moments.

2.2.3. Training and Testing the BP NN

Once the network and the sample sets were ready, the MATLAB® Neural Network Toolbox was
employed to train the network. The training function was the trainlm function. The maximal iteration
times were 1000, the target error goal was 5× 10−5, and the performance function was mean squared
error (MSE). The remaining training parameters were the default values.

The training results are shown in Figure 4. The best training performance was 7.76 × 10−5.
It seems that the training performance failed to achieve the target error goal, but it was still
good. The regressions of the training set, validation set, and test set were 0.99975, 0.99971, and
0.99967, respectively.

In order to test the prediction accuracy of the network, 36 samples of noisy data were chosen
for the experiment. A new set of aerodynamic data between sampling intervals was recalculated in
CFL3D to test the performance. Table 3 shows the index of the test samples.

Table 3. The index of 36 test samples.

α (1–10◦) −5.58 −5.10 −4.98 −4.39 −3.56 −3.16 −2.69 −2.10 −1.61 −1.43
α (11–20◦) −0.55 −0.01 0.12 0.93 1.16 1.64 2.27 2.69 3.07 3.74
α (21–30◦) 4.40 4.78 5.27 5.62 6.46 6.88 7.08 7.73 8.31 8.54
α (31–36◦) 9.11 9.63 10.13 10.71 11.13 11.94 × × × ×

The test results are shown in Figure 5. The prediction values and the measured values matched
well. The prediction errors were between±1.5%, which showed the high accuracy of the BP NN model
for the pitching moment prediction.
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2.3. Control-Oriented Modeling

The longitudinal static instability of the XZD-I SUAV places greater demands on the attitude
controller design. In this paper, the pitching channel stabilization was taken as the example to illustrate
the bio-inspired control architecture. The typical method of modeling the pitching moment is to
linearize CM(α, δe) as C0

M + Cα
M · α + Cδe

M · δe, where C∗M are aerodynamic coefficients, α is the angle of
attack, and δe is the elevator angular deflection. Nevertheless, the pitching moment of the SUAV is
nonlinear about α and δe, depicted in Figure 3. The typical model will cause a large modeling error,
which results in a large control gain and a low stability margin.

The flow field around the leading-edge area is less affected by the deflection of the trailing edge
flap for a wing of infinite span [28]. It is reasonable that pressure sensors P1–P8 in the leading-edge
domain can be exploited to estimate the basic aerodynamic forces (zero flap angle). In order to take
full advantage of the airflow information, we present a modified model of the pitching moment.

Modified pitching moment model

The pitching moment is given as follows:

CM(α, δe) = CM(α)|δe=0 + Cδe
M(α, δe) · δe + ∆CM, (1)

where CM(α)|δe=0 = CM(α, δe = 0) can be estimated through pressure information, and ∆CM is the
modeling error. The longitudinal kinetic equations can be written as:

.
θ = q

Iyy ·
.
q = M(α)|δe=0 + Mδe(α, δe) · δe + ∆M + DT

(2)

where Iyy is the moment of inertia, θ is pitch angle, q is pitch angular rate, M = qSre f Lre f CM is the
pitching moment, and DT is the external disturbance torque.

During the trim flight condition, an assumption is made on flight path angle that γ ≈ 0. Hence,
the longitudinal angle equation θ = α + γ becomes θ ≈ α. The angle of attack can be replaced by the
pitch angle θ for a short period during a trim flight.

Define x1 = θ, x2 = q. The longitudinal kinetic Equation (2) can be rewritten as a more general
strict feedback form: .

x1 = f1(x1) + g1(x1) · x2
.
x2 = f2(x1, x2) + g2(x1, x2) · u + d2

(3)

where f1 = 0, g1 = 1, f2 = (M(α)|δe=0 + ∆M)/Iyy, g2 = Mδe(α, δe)/Iyy, d2 = DT/Iyy. M(α)|δe=0 =

M̂N + M̃, where M̂N is the BP NN output MNN and M̃ is the estimation error. Considering the
uncertainties and external perturbation, Equation (3) becomes:

.
x1 = f1 + g1 · x2
.
x2 = f2N + g2 · u + d

(4)

where f2N = M̂N/Iyy, d =
(

M̃ + ∆M + DT

)
/Iyy.

Assumption 1. There exist constants g
2

and g2 such that 0 < g
2
≤ g2 ≤ g2. External disturbance torque DT

is assumed to be bounded and change slowly.

The control goal is to synthesize a bounded control signal u to drive the actual pitch angle x1(t)
to the desired angular trajectory x1d(t) as closely as possible, in spite of model uncertainties and
external disturbance.
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3. Neural Adaptive Controller

3.1. RBF NN

To achieve the control goal, neural network and adaptive approximation approaches were applied.
It was proved that RBF NN has the ability of universal approximation [29,30]. A commonly used
Gaussian function RBF NN is simply described as [20]:

yNN = ωTh(x), (5)

where ω ∈ Rl is weight vector, l is the number of hidden layer nodes, and h(x) =

[h1(x), h2(x), · · · hl(x)]T ∈ Rl is the basis function vector. The Gaussian function hi(x) has the form:

hi(x) = exp

(
−‖x− µi‖2

σ2
i

)
, (6)

where µi is the ith center vector of the receptive field, and σi is the ith width of the Gaussian function.

3.2. Controller Design

The synthetic controller was designed via a backstepping structure.
Define the tracking error as:

z1 = x1 − x1d. (7)

Following the backstepping design schemes, select Lyapunov function V1 as:

V1 =
1
2

z2
1. (8)

The derivative of V1 along the trajectories of system (4) is:

.
V1 = z1( f1 + g1x2 − x1d). (9)

Taking x2 as the virtual control to stabilize the subsystem
.
x1 = f1 + g1 · x2 (where f1 = 0, g1 = 1),

an alternative desired virtual control value x2d is selected as:

x2d = −c1z1 +
.
x1d, (10)

where c1 > 0 is the control gain of the first subsystem. Defining z2 = x2 − x2d and substituting z2 into
Equation (9), yields:

.
V1 = −c1z2

1 + z1z2. (11)

If x2 follows the track of x2d closely, indicating that z2 ≈ 0, V1 will exponentially decay. Define a
Lyapunov function V2 as:

V2 =
1
2

z2
2. (12)

In view of Equations (4), (11), and (12), the derivative of V1 + V2 is:

.
V1 +

.
V2 = −c1z2

1 + z2
(
z1 + f2N + g2u + d + c1

.
z1 −

..
x1d
)
. (13)

Since g2 and d are unknown, the task is to design an adaptive controller u and update laws
.
ĝ2

and
.
d̂, satisfying 0 < g

2
< ĝ2 < g2. We design the adaptive control law:

u =
1
ĝ2

(
− f2N +

..
x1d − z1 − c1

.
z1 − c2z2 − d̂

)
, (14)
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where ĝ2 and d̂ are the estimations of g2 and d, respectively. c2 > 0 is the control gain of the second
subsystem. The update law

.
ĝ2 has the form:

.
ĝ2 = proj.(ηz2u− ησ|z2|(ĝ2 − g2N)), (15)

where η > 0, σ is a small positive value, and g2N is the nominal value of g2. proj.(χ) is the projection
modification defined as follows:

proj.(χ) =


0, Case− I : if ĝ2 ≥ g2 and χ ≥ 0

0, Case− II : if ĝ2 ≤ g2 and χ ≤ 0

χ, Case− III : otherwise

(16)

Note that the projection process ensures g
2
≤ ĝ2 ≤ g2, provided that ĝ2(t0) ∈

[
g

2
, g2

]
, which

guarantees non-singularity of the control law u over the considered flight envelope. The composite
uncertainty d is approximated by RBF NN:

d = d∗ + εd

d∗ = ω∗T · h

d̂ = ω̂T · h

(17)

where d∗ is the ideal approximation of RBF NN with a finite number of hidden layer nodes, ω∗ is the
ideal output layer weights vector (‖ω∗‖2

2 ≤ ωM, ωM is a positive constant [20]), h is the output vector
of the hidden layer, d̂ is the updated estimation, ω̂ is the updated output layer weights vector, and εd is
the approximation error (|εd| ≤ εM, εM > 0 denotes the supremum of the approximation error [20,31]).
The adaptive law of ω̂ is designed as:

.
ω̂ = γz2h− γν|z2|ω̂, (18)

where γ and ν are designed positive parameters.

Remark 1. The desired pitch signal θd is filtered by a second-order pre-filter (refer to Figure 6). x1d,
.
x1d, and

..
x1d are generated by the pre-filter. The parameters of the pre-filter were chosen as ω f = 4 and ς f = 0.9.
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3.3. Stability Analysis

Define Lyapunov function candidates Vg and Vd:

Vg =
1

2η
g̃2

2 < obj/ >, Vd =
1

2γ
ω̃Tω̃, (19)

where g̃2 = g2 − ĝ2 and ω̃ = ω∗ − ω̂.
Define V = V1 + V2 + Vg + Vd, thus the derivative of V along the trajectory of the system (4) is:

.
V =

.
V1 +

.
V2 +

.
Vg +

.
Vd

= −c1z2
1 − c2z2

2 + z2ω̃Th + z2εd + z2ug̃2 +
1
η g̃2

(
−

.
ĝ2

)
+ 1

γ ω̃T
(
−

.
ω̂
)

= −c1z2
1 − c2z2

2 +
1
η g̃2

(
ηz2u−

.
ĝ2

)
+ 1

γ ω̃T
(

γz2h−
.

ω̂
)
+ z2εd

(20)

Substituting (15), (16), and (18) into (20),
.

V can be rewritten as:

.
V = −c1z2

1︸ ︷︷ ︸
1

−(c2z2
2 − z2εd)

︸ ︷︷ ︸
2

+ ν|z2|ω̃Tω̂

︸ ︷︷ ︸
3

+


g̃2z2u, Case− I

g̃2z2u, Case− II

σ|z2|g̃2(g2 − g2N), Case− III︸ ︷︷ ︸
4

(21)

Step 1: Considering the second term on the right-hand side of Equation (21), we have:

−(c2z2
2 − z2εd) = − 1

2 c2z2
2 −

c2
2

(
z2 − εd

c2

)2
+

ε2
d

2c2

≤ − 1
2 c2z2

2 +
ε2

d
2c2

≤ − 1
2 c2z2

2 +
ε2

M
2c2

(22)

Step 2: As to the third term, the following inequation can be obtained:

ν|z2|ω̃Tω̂ = ν|z2|ω̃T(ω∗ − ω̃)

= −ν|z2|ω̃Tω̃ + ν|z2|ω̃Tω∗

≤ −ν|z2|‖ω̃‖2
2 + ν|z2|‖ω̃‖2‖ω∗‖2

≤ − 1
2 ν|z2|‖ω̃‖2

2 +
1
2 ν|z2|‖ω∗‖2

2

≤ − 1
2 ν|z2|‖ω̃‖2

2 +
1
2 ν|z2|ωM

(23)

Step 3: The fourth term is a piecewise function of three segments (Case-I, -II, -III). For Case-III,
we have:

σ|z2|g̃2(g2 − g2N)

= σ|z2|g̃2(−g̃2 + g2 − g2N)

= σ|z2|
{
− 1

2 g̃2
2 −

1
2

[
g̃2

2 − 2g̃2(g2 − g2N) + (g2 − g2N)
2
]
+ 1

2 (g2 − g2N)
2
}

≤ − 1
2 σ|z2|g̃2

2 +
1
2 σ|z2|(g2 − g2N)

2

(24)
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For Case-I: if ĝ2 ≥ g2 and ηz2u− ησ|z2|(ĝ2 − g2N) ≥ 0, we know the following inequations:

ĝ2 ≥ g2 ≥ g2N

ĝ2 ≥ g2 ≥ g2

z2u ≥ 0

g̃2 ≤ 0

g̃2z2u ≤ 0

(25)

For Case-II, it is similar to that of Case-I. It is easy to prove that Inequation (25) still holds.
Note that if ĝ2(t0) ∈

[
g

2
, g2

]
, g

2
≤ ĝ2 ≤ g2 is guaranteed by the projection operator [20].

Step 4: Case-III
Combining (21), (22), (23), and (24), we have:

.
V ≤ −c1z2

1 −
1
2 c2z2

2 +
ε2

M
2c2
− 1

2 ν|z2|‖ω̃‖2
2 +

1
2 ν|z2|ωM

− 1
2 σ|z2|g̃2

2 +
1
2 σ|z2|(g2 − g2N)

2
(26)

If |z2| = 0, Equation (26) can be reduced to:

.
V ≤ −c1z2

1 +
ε2

M
2c2

. (27)

According to LaSalle’s invariance principle, z1 is bounded. If ĝ2(t0) and ω̂(t0) are bounded,
ĝ2 and ω̂ are bounded.

If |z2| 6= 0, Equation (26) can be rewritten as the following form:

.
V ≤ −cV + ρ, (28)

where
c = min

(
c1,

c2

2
,

ν

2
|z2|,

σ

2
|z2|
)

,

ρ =
ε2

M
2c2

+
ν

2
|z2|ωM +

σ

2
|z2|(g2 − g2N)

2.

Therefore, V converges exponentially until V(z1, z2, ĝ2, ω̂) ≤ ρ/c [32].
Case-I and Case-II:
Combining (21), (22), (23), and (25), we have:

.
V ≤ −c1z2

1 −
1
2

c2z2
2 +

ε2
M

2c2
− 1

2
ν|z2|‖ω̃‖2

2 +
1
2

ν|z2|ωM. (29)

Similar to Case-III, the boundedness of all closed-loop signals and errors could still hold.
Conclusion: Considering the system (4), control law (14), and adaptive laws (15) and (18) under

Assumption 1, all signals of the closed-loop system ((4), (14), (15), and (18)) are bounded.

Remark 2. The steady state tracking error [z1, z2] can be arbitrarily small by increasing the control gain (c1, c2)

and elaborately choosing the design value of l, γ, ν, η, and σ [33].
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4. Simulation and Discussion

In this section, the derived bio-inspired neural adaptive control (BNAC) structure was tested
by simulation in MATLAB®. Figure 7 shows the block diagram of the system. In order to verify
its performance and effectiveness, the closed-loop system—while suffering external disturbance,
measurement noise, and parametric uncertainties—was simulated to track a pre-filtered 5◦ step
command. Four representative simulation cases were presented. The initial states were set as:
V0 = 25 m/s, θ0 = 0◦. The number of RBF NN hidden layer nodes was chosen as five. The design
parameters were designed as: γ = 12, η = 6, ν = 0.05, σ = 0.05, c1 = 20, and c2 = 20, respectively.
The actuator was modeled as a second-order system with a damping ratio of 0.8 and a natural frequency
of 72. The external disturbance torque with an amplitude of 0.5 Nm was assumed to occur at 10 s.
The gyro outputs were assumed to be polluted by white noise with mean of 0 and 0, and standard
deviation of 0.21 ◦/s and 0.62 ◦/s2, respectively. The pressure sensors were selected with 95% accuracy
of±15 Pa. Pressure measurements were filtered by low-pass filters with a time constant of 0.08 s.
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For demonstrative purposes, the BNAC was compared with the basic backstepping controller and
a widely used cascaded PID controller. The control gains c1 and c2 of the compared basic backstepping
controller were the same as BNAC. The PID controller had a classical structure of two loops—a pitching
rate inner loop and a pitch angle outer loop. On the basis of the frequency response of the SUAV and
the actuator, the inner-loop system was tuned to a cut-off frequency of 15 and a phase margin of 60◦.
The outer loop was tuned to a cut-off frequency of 10 and a phase margin of 83◦. The PID parameters
are shown in Table 4.

Table 4. The PID controller parameters.

Inner Loop PID Outer Loop PID

Kp Ki Kd Kp Ki Kd
0.12 1.1 0.0034 6.0 9.4 0.47

Figure 8 shows the control performance of the nominal model when no measurement noise was
assumed. From time = 0 s to time = 10 s, the transient responses of the basic backstepping controller
and BNAC were satisfactory. The PID controller overshot by about 10%. The pitch angles soon became
stable. The tracking error of BNAC quickly converged to zero, while the PID required 2 s. There was a
steady state error of the backstepping controller. To test the disturbance rejection performance of the
controllers, the external disturbance torque was injected into the model between 10 and 20 s. BNAC
could still maintain a good tracking performance when the external disturbance occurred. Because
of the integrator, the PID controller withstood the disturbance and the output finally approached the
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command signal. It can be concluded that the BNAC performed better than the backstepping and PID
controller under external disturbances, as shown in Figure 8b.

The tracking performances with respect to measurement noise are shown in Figure 9.
The backstepping controller had the worst robustness and anti-noise ability. The PID controller
had a good anti-noise performance but the worst transient performance, although the PID controller
had the advantage of being cheaper and easier to implement.

Figures 10 and 11 demonstrate the robustness with respect to parametric uncertainties. For the
sake of performance comparison, only three kinds of uncertain parameters were considered: reference
area Sre f , moment of inertia Iyy, and air density ρair. The maximum values of the additive uncertainties
were taken as follows:∣∣∣∣∆Sre f /Sre f

∣∣∣∣ ≤ 0.06,
∣∣∣∣∆Iyy/Iyy

∣∣∣∣ ≤ 0.05,
∣∣∣∣∆ρair/ρair

∣∣∣∣ ≤ 0.1.

Figure 10 clearly shows that the BNAC structure had a good performance and exhibited robustness
when subjected to parametric uncertainties and external disturbance. Figure 11 demonstrates the
exceptional quality of the proposed BNAC system to accurately track command when measurement
noise, parametric uncertainties, and external disturbances occurred.
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error; (c) elevator deflection; (d) RBF NN weights. BNAC: bio-inspired neural adaptive control. (BNAC:
bio-inspired neural adaptive control, PID: proportion integration differentiation)
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5. Conclusions

This paper proposes a bio-inspired neural adaptive SUAV control system. Pressure sensors were
embedded in the forward wing surface to sense the airflow around the vehicle. The sensor locations
elaborately designed. A BP NN was used to estimate the aerodynamic moment based on the pressure
information. The SUAV’s aerodynamic model was modified to match the control system. To make
full use of the estimation, a robust neural adaptive controller was proposed, based on a RBF NN.
The closed-loop stability was analyzed via Lyapunov theory. The derived robust adaptive controller
was tested by simulation. The simulation results showed a good performance of the proposed SUAV
control system to accurately track command when measurement noise, parametric uncertainties, and
external disturbance occurred. Future works will focus on: (1) improving the estimator performance,
(2) expanding the controller to 3-axis attitude, and (3) implementing flight experiments.
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Abbreviations

The following abbreviations are used in this manuscript:

SUAV small unmanned aerial vehicle
UAV unmanned aerial vehicle
IMU inertial measurement unit
BP back propagation
RBF radial basis function
NN neural network
CFD computational fluid dynamics
BNAC bio-inspired neural adaptive control
PID proportion integration differentiation
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