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Abstract: With the widespread use of the Global Positioning System, indoor positioning technology
has attracted increasing attention. Many systems with distinct deployment costs and positioning
accuracies have been developed over the past decade for indoor positioning. The method that is
based on received signal strength (RSS) is the most widely used. However, manually measuring RSS
signal values to build a fingerprint database is costly and time-consuming, and it is impractical
in a dynamic environment with a large positioning area. In this study, we propose an indoor
positioning system that is based on the deep Gaussian process regression (DGPR) model. This model
is a nonparametric model and it only needs to measure part of the reference points, thus reducing
the time and cost required for data collection. The model converts the RSS values into four types
of characterizing values as input data and then predicts the position coordinates using DGPR.
Finally, after reinforcement learning, the position coordinates are optimized. The authors conducted
several experiments on a simulated environment by MATLAB and physical environments at Tianjin
University. The experiments examined different environments, different kernels, and positioning
accuracy. The results showed that the proposed method could not only retain the positioning accuracy,
but also save the computation time that is required for location estimation.

Keywords: location estimation; RSS fingerprinting; deep gaussian process; reinforcement learning

1. Introduction

With the continual development of information technology and smart phones worldwide,
the Global Positioning System (GPS) is being used increasingly in daily life. Although GPS can
accurately and reliably locate signals in indoor environments, it cannot penetrate thick walls and
cannot be used effectively indoors. Therefore, indoor positioning requires further study.

In recent years, many indoor positioning technologies have been proposed, such as Radio
Frequency, Infrared, Ultrasound, Optical, and Magnetic Field Strength with the relevant positioning
calculation mechanism [1]. The main types of indoor positioning algorithmic mechanisms are
triangulation location and fingerprint positioning. Received signal strength (RSS)-based location
fingerprinting is one of the most popular methods in indoor positioning [2]. RSS location fingerprints
are a unique set of RSS signal values for each location. An RSS fingerprinting database is initially
created for mapping the relationships between each physical location and its unique RSS fingerprint.
The RSS fingerprint of the device location is matched to the information in the RSS fingerprint database,
and then the location of the most similar entry to the sample is chosen as the estimated location [3].
This method has two phases: offline training phase and online position estimation phase. The offline
training phase measures the positioning environment, collects signal strength values of each position
in the target positioning area, and finally saves the collected data to establish a fingerprint database.
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The online position estimation stage matches the received real-time signal strength values with the
fingerprint database established in the offline stage during positioning [4].

The main problem in RSS-based fingerprint recognition is that RSS values of any location can be
affected easily by factors, such as multiple paths, shadow effects, and crowd interference. This means
that RSS values that are measured at the same location at different times may show differences [4,5].
The RSS fingerprint that was obtained at different times may not match the previous fingerprint stored
in the database, leading to incorrect estimation results. In other words, the data in the fingerprint
database is actually static data, and the real-time positioning value is dynamic data. When we measure
RSS fingerprint samples at the test position, the localization algorithm may match an incorrect
estimated location from the static database [3,5]. Although the matching fingerprint data appears
to be the most likely data in the fingerprint database, the corresponding physical location of the
fingerprint may be very far from the physical location corresponding to the correct fingerprint data.
Therefore, before repositioning, finding the fingerprints of each position in the entire positioning area
once again enables very accurate positioning. However, doing so is costly and time-consuming when
the positioning area is very large. In particular, it is impractical to continually update the fingerprint
database in an area where the interference continues to change [6].

Gaussian process regression (GPR) can solve the abovementioned problem of high costs in
offline measurement data. In this approach, the calibration effort and costs of building the RSS
signature map are reduced by using the model signal strength that was obtained using an advanced
Gaussian process (GP), and the problems faced with the RSS signature map are solved in the online
phase [7]. GP is a nonparametric model that is completely characterized by its average function and
covariance matrix [8]. Some studies have used a GP to generate a fingerprint database in the offline
phase [7]. Farid et al. (2013) demonstrated how to use a GP to generate likelihoods at locations for
which no calibration data were available, and they proved that Gaussian regression could be applied
successfully to various localization problems [9]. Fernando Seco et al. (2010) proposed the use of
an observation model that is based on GP nonparametric regression to represent the RSS distribution
of the specific environment of each RFID tag [10]. Aravecchia et al. (2014) proposed the use of GP to
interpolate the signal vector received in the offline stage to estimate the device position during the
test [11]. These studies have proved that GPR is a viable means of improving positioning accuracy and
reducing the cost of collecting fingerprinting data. Furthermore, Bisio et al. (2017) defined two-folded
methods to solve the location problem. First, a Gaussian Process (GP) is used during the training
(offline) phase of an indoor positioning algorithm to generate the fingerprint database. Furthermore,
during the positioning (online) phase, and a smart algorithm used for reducing the computation effort
for positioning calculation [12]. On the contrary, when considering indoor dynamic surveying data for
this purpose, the Gaussian process regression based radio-map construction method exploiting both
realistic and virtual indoor dynamic surveying data is proposed and evaluated in [13]. The results
show that this method can obtain not only high accuracy but also high availability in the indoor service
area, even though the realistic indoor surveying data is rare. Seco et al. (2010) present a Bayesian
method for an indoor RFID location system that uses an observation Gaussian processes nonparametric
regression model to represent the environment-specific RSS distributions for the individual RFID
tags [10].

Yiu et al. (2015) used GPR for RSS indication (RSSI) prediction to solve indoor location problems [14].
First, they took partial measurements from the area of interest. They then used the Firefly algorithm
to train and categorize the prior results derived using GPR. The trained results were used to build
a refined fingerprinting database for the entire area of interest. The experiment showed that the GPR
model could achieve a satisfactory result in predicting the RSS of an area with no prior measures.
However, according to [10], the ability to expand the GPR model is restricted by the need to rebuild
the fingerprinting database; in addition, the flexibility in the computation of the GPR models was
limited in their study [7]. In [7], Liu et al. (2016) improved the GPR system and proposed the GPRP
system. In GPRP, the GP prior distribution was used for regression and for predicting the RSS at
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locations with no prior measurements, and the naive Bayes algorithm was used to derive the obtained
conditional Gaussian probability. It overcame previous shortcomings and it precluded the need to
establish a fingerprint database. When compared with Yiu’s method, the calculation was simplified,
thereby saving time and cost, and the positioning results were more accurate. However, in the
prediction, the values of position information x and y need to be calculated separately (the probability
interval of both x and y needs to be found, and then, naive Bayes is used to select the most possible
position information in the interval), and GPRP cannot directly draw (x,y) as the positioning process
is cumbersome. Therefore, to directly obtain the x and y values and further improve the positioning
accuracy, in our study, the authors used a model that was based on the deep Gaussian process
regression (DGPR) model to perform positioning through mobile phone on both simulated and
physical environments.

The remainder of this manuscript is organized as follows. Section 2 reviews related studies on
the properties of RSSI for signal transmission and defines GP and DGP. Section 3 describes the DGPR
measurement system used in the current study and describes the data analysis method. Section 4
discusses the experiments that were performed in the simulated and real environments. Finally,
Section 5 presents the conclusions of this study and provides recommendations for future research.

2. Preliminaries

2.1. RSS Fingerprint

The core concept of RSS-based location fingerprinting is that each location has a unique set of
signal values, and when the system starts up, the mobile device receives the system’s unique RSS
value. Then, the device searches the fingerprint database and identifies the most similar value to the
system-unique RSS value of the estimated position [15]. When compared with traditional triangulation
techniques, the RSS fingerprinting method does not necessitate knowledge of the location of the
base station before measurement, and it is unnecessary to accurately synchronize and establish the
propagation model of the indoor environment. In addition, RSS fingerprinting has very high accuracy,
and therefore, it is widely used in various indoor positioning systems. Currently, two problems affect
indoor positioning that are based on RSS signals. (1) The fingerprint database established at each
location in the target positioning area is acquired during the offline training phase, and this database
needs to be updated constantly over time with changes in the environment. (2) The positioning accuracy
varies with the dynamic environment [6]. As mentioned, RSS is vulnerable to issues, such as multiple
paths, shadow effects, and people’s actions. As the location environment changes, radio signals
transmitted from APs to the mobile devices are affected to varying degrees, and the positioning
accuracy decreases.

During signal propagation, as the propagation distance increases and environmental interference
occurs, the signal strength weakens and attenuates. The wall attenuation factor (WAF) model can
describe the slow fading and attenuation of RSS signals in the indoor environment. The WAF is used
to predict the signal propagation when the wall is the main obstacle [6]. The formula for this model is
as follows:

p(d) = p(d0)− 10× n× log
(

d
d0

)
−
{

NW ×WAF NW < C
C×WAF NW ≥ C

(1)

Here, n represents the signal attenuation rate as the distance increases; d is the distance between
the base station AP and the signal transmitting end, p(d0) is the signal strength at reference distance d0,
WAF is the wall attenuation factor, and NW is the number of walls between the measurement point and
the base station. The constant C is the number of wall tolerances that the attenuation factor affects the
signal’s worth. In other words, when NW is greater than or equal to C, the attenuation factor no longer
affects the signal strength. The signal value of the measurement point is obtained using the WAF
model, and the position corresponding to the RSS subset that matches the value that is most similar to
the value is retrieved in the fingerprint database as the estimated position. The K-nearest neighbor
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algorithm is the most commonly used matching method. We can use the simplest Euclidean distance
to determine the location of the nearest neighbor. The Euclidean distance is calculated, as follows:

Eucdist(S, R) =
√

∑n
i=1(s− ri)

2. (2)

Here, S is the RSS value of the measurement location and R, the RSS value closest to S in the
fingerprint database, n denotes the number of data.

2.2. Gaussian Process Regression

The GPR is a new machine-learning method that is based on Bayesian theory and statistical
learning theory. It provides a flexible framework for probabilistic regression, and it is widely used
to solve high-dimension, small-sample, or nonlinear regression problems [7]. GP is a set of joint
Gaussian distributions for any finite number of random variables [16]. The GP estimates Gaussian
distributions over functions based on training data [17], the results can be seen as linear combinations
over kernel functions centered on the training observations, which highlights the capability of GP
to model arbitrary smooth functions. The GP is fully specified by a mean function and a covariance
function, such as {

m(x) = E[ f (x)]
k(x|x′) = E[( f (x)−m(x))( f (x′)−m(x′))]

(3)

where m(x) is the mean function, k(x|x′) is the covariance function, x and x′ ∈ R are random variables.
The GP equation is f (x) ∼ gp(m(x), k(x, x′)). For simplification, the mean function is usually set to
zero in the data preprocessing stage [7].

The GP aims to model the following noisy process [11]:

y = f (x) + ε (4)

where x ∈ Rd is the input vector; f (x) is the function value; and, y is the observed value of f (x)
affected by noise ε, and ε ∼ N

(
0, σ2).

According to the formula of GP, the prior distribution of observed values y is

y ∼ N
(

0, K(X, X) + σ2
n In

)
(5)

where K(X, X) is a n× n symmetric positive definite covariance matrix, and In is an n-dimensional unit
matrix. Because the key assumption in GP modeling is that the data can be represented as a sample
from a multivariate Gaussian distribution, we can infer the joint prior distribution of observation y
and prediction f∗, as follows: [

y
f∗

]
∼ N

(
0,

[
K + σ2

n In KT
∗

K∗ k∗∗

])
(6)

where K denotes the covariance function, K∗ = Kx∗, X is covariance matrix between the test point x∗
and the input X of the training set, T indicates matrix transposition, K = K(X, X) and k∗∗ = k(x∗, x∗)
are the covariance matrix of test point itself. Then, we can calculate the posterior distribution of the
forecast value f∗ as

P( f∗|X, y, x∗) ∼ N
(

f ∗, cov( f∗)
)

(7)

where
f ∗ = k∗

[
K + σ2

n In

]−1
y (8)

cov( f∗) = k∗∗ − k∗ ×
[
K + σ2

n In

]−1
KT
∗ (9)
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Note that µ̂∗ = f ∗ and σ̂2
f∗ = cov( f∗) are the mean and variance of the prediction value f∗,

respectively [16].

2.3. Gaussian Process Regression

The DGP is a deep network in which each layer uses the GP for modeling; it enables a deep
probabilistic nonparametric approach to flexibly tackle complex machine-learning problems with
sound quantification of uncertainty [18]. DGPs are multilayer hierarchical generalizations of GPs
and they are formally equivalent to neural networks with multiple, infinitely wide hidden layers [19].
DGPs retain useful properties of GPs, such as nonparametric modeling power and well-calibrated
predictive uncertainty estimates [19], it can also overcome the limitations of single-layer GPs that
can only represent a restricted class of functions [20]. DGPs are richer models than standard
GPs, just as deep networks are richer than generalized linear models. In contrast to models with
highly parameterized kernels, DGPs learn a representation hierarchy nonparametrically with very
few hyperparameters to optimize [21]. The deep model seems to have structural advantages that
can improve the quality of learning in complicated data sets that are associated with abstract
information [22].

The DGP architecture corresponds to a graphical model with three types of nodes, as shown in
Figure 1, leaf nodes Y, parent latent node Z, and intermediate latent spaces. The nodes at each level are
both the output of the previous layer and the input of the next layer. Leaf node Y is the measurement
point, and Y ∈ RN×D. The intermediate latent node is Xh ∈ RN×Qh , where h = 1, 2, · · · , H− 1, and H
is the number of hidden layers and the parent latent node is Z = XH ∈ RN×Qz .
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A DGP is generated, as follows:

Ynd = f Y
d (X1) + εY

nd, d = 1, · · · , D
...

XH−1nq = f XH−1
q (Zn) + ε

XH−1
nd , q = 1, · · · , Q, Zn ∈ RQz

(10)

where ε is Gaussian with variance σ2
ε , d and q are the numbers of intermediate layers of the deep model,

D and Q ∈ N∗, f XH−1
q (.) is the GP function of X in H-1th layer, and XH−1nq is the observed value of

data xn in the H-1th layer. As mentioned, the intermediate node is involved in two GPs, playing the
role of an input and an output, respectively. As shown in Figure 1, node X1 participates in the two
GPs of input f X1 ∼ gp

(
0, KX1

)
and output f Y ∼ gp

(
0, KY). According to the solution process of GPR,

the posterior distribution of a DGP is

p(Y) =
∫

X,Z
p(Y|X1)p(X1|X2) · · · p(XH−1|Z)p(Z) (11)

Suppose that we have a training set comprising N D-dimensional inputs xn and observation pair
(xn, yn). The probabilistic representation of a DGP comprising L layers is [19]

p( fl |θl) = gp( fl ; 0, Kl), l = 1, · · · , L (12)

p
(

hl

∣∣∣ fl , hl−1, σ2
l

)
= ∏

n
N
(

hl,n; fl(hl−1,n), σ2
l

)
, hl,n = xn, hL,n = yn (13)
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p
(

y
∣∣∣ fL, hL−1, σ2

L

)
= ∏

n
N
(

yn; fL(hL−1,n), σ2
L

)
(14)

where hl,n is a hidden layer and fl , the function of each hidden layer.

3. System Design

3.1. System Overview

Yiu et al. used a trained GPR model to estimate the signature map of an area [14]. For optimizing
hyperparameters in GPR, they proposed that the signature map should be rebuilt; however, inefficient
computations restricted the flexibility of the Gaussian model. Thus, Liu et al. proposed the GPRP
system for solving this problem [7]. Although the fingerprint database reconstruction problem was
solved, the positioning process is complicated and the position coordinates (x,y) cannot be obtained
directly. Therefore, in our study, we used DGPR to reduce the complexity of the indoor positioning
system. While maintaining the flexibility of the GP model, we could also overcome the limitations of
single-layer GP and further improve the positioning accuracy. Figure 2 shows the proposed system
framework and then compares it with those of Yiu et al. method and the Liu et al. method.
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Figure 2. Comparison of frameworks of Deep Gaussian Process Regression Model (DGPR) method
and methods.

All three methods were used to create a discrete and partial RSS fingerprinting database in
the testing area. Accordingly, we derived and tested several GP models for system computation.
The different GP models had distinct distribution functions and hyperparameters. However, Yiu et al.
proposed a method that is based on categorized and GP algorithms and finished with the rebuilding
of the RSS fingerprinting database [14]. As described in the previous section, recreating the fingerprint
database is costly and time-consuming. The GPRP method that was proposed by Liu et al. used the
naive Bayes method to select all predicted locations from the GP models; thus, the computations
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were simplified and made less time-consuming. However, as shown in Figure 2, the method that was
proposed by Liu et al. cannot directly obtain the target position through GPR [7]. Each regression
result does not provide a specific value; instead, it provides a probability region. Then, the target
location is selected based on naive Bayes. To further simplify the positioning process and improve the
positioning accuracy, we propose the DGPR model. In Figure 2, the solid line indicates the training
phase and the dashed line indicates the testing phase. FLi was derived as the final estimated location
for each method. In this figure, we tried to illustrate the fewer computation steps that are needed in
our method.

3.2. The Improved Deep Gaussian Process Regression Model (DGPR)

The DGPR model is divided into three parts, as shown in Figure 3, data normalization, Gaussian
process regression, and reinforcement.
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In our method, first, an offline RSS fingerprinting database must be built. We assume that the
testing area has M reference points in locations Lr(r ∈ {1, 2, · · · , M}). In the sampling phase, we collect
the RSS value at the rth reference point of N APs from 1 to j times, that is (N is the number of APs),

APr = {apr,1, apr,2, · · · , apr,N} (15)

where

apr,h = Mo

(
j

∑
i=1

api
r,h

)
(16)

Mo(.) is the mod function used to derive the remainder of the division. In Equation (16),
this function computes the multiple RSS signal values that were received from the base station h
at the r location into one value, and the divisor is j, which is the number of RSS that measured at the
position r, and the dividend is the sum of RSS signal strength values. According to our experiences,
because of the influence of multipath of the signal, the mod function can get rid of the unstable values
than the other computation methods [7]. api

r,N represents the RSS signal value that was measured by
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the j-th time of the N-th AP at the r-th reference point (N is the number of APs); apr,1 denotes the signal
strength of the first base station received at the r-th reference point; by contrast, APr is the filtering set
of signal strength received at the rth reference point.

When we attempt to predict the unknown position at the input of RSS values, we obtain a series
of RSS values AP∗, as follows:

AP∗ = {ap∗,1, ap∗,2, · · · , ap∗,N} (17)

Because of the noises in our environment, we can coincide with the regression problem as
L(AP∗) = f (AP∗) + v for simplification. The latent function f (.) describes the relationship between
the RSS and spatial coordinates. v denotes the physical noise; this value follows a Gaussian distribution.
Thus far, we have obtained the input data of the model AP∗. Next, the input data AP∗ is provided to
the DGPR model that we have proposed for positioning.

3.2.1. Data Normalization

The first layer in the DGPR model is data normalization, and this model mainly uses four
characterizing values of the signal for regression prediction: kurtosis (kurt), skewness (skew), mean,
and standard deviation (std). These characterizing values are described herein. The positioning data
based on the RSS positioning method is single, mainly because this method only provides RSS values.
To add more different types of data while improving the positioning accuracy, we extracted multiple
features from the collected RSS data and used RSS feature values as data sources [23].

1. Mean is the average value, where N is the number of APs, ap∗,i is used to represent the value of
RSS in the i-th APs. Thus, the mean RSS value for all the APs, AP∗ is listed, as follows,

AP∗ =
1
N

N

∑
i=1

ap∗,i, (18)

2. Standard deviation is derived from RSS data AP∗.

std =

√√√√ 1
N

N

∑
i=1

(ap∗,i −mean)2, n = 1, 2, · · · , N (19)

3. Kurt is used to describe the peak-to-peak characterizing values of the probability density
distribution curve at averaging. It is expressed as

k =
1
N ∑N

i=1
(
ap∗,i − AP∗

)4(
1
N ∑N

i=1
(
ap∗,i − AP∗

)2
)2 − 3 (20)

where ap∗,i is the RSS value measured by the i-th AP at the measurement position. AP∗ is the
mean value that is derived from Equation (18).

4. Skew is used to measure the asymmetry of the probability distribution. It can be positive,
negative, or zero. Positive and negative values, respectively, indicate that a value is on the
right- or left-hand side of the probability density function; a zero value indicates that values are
distributed relatively evenly on both sides of the mean. The skew is calculated as

s =
E
[
AP∗3]− 3AP∗σ2 − AP∗

3

σ3 (21)

where AP∗ is the center distance derived from Equation (18), AP∗ is the RSS signal strength value
measured at the anchor point, σ is the standard deviation in AP∗. Because AP∗3 is the cubic value



Sensors 2018, 18, 4164 9 of 19

of this RSS signal strength value, hence, we derived AP∗3 as AP∗
3, and E

[
AP∗3] is computed as

the expected value in our study.

To make the data processing more convenient and to improve location accuracy, we need
to normalize these four characterizing values and map the data to the [0,1] range for processing.
Data normalization removes the unit limits of the data and converts data into a dimensionless pure
value, thereby facilitating the comparison and weighting of indicators of different units or magnitudes,
that is, turning dimensioned expressions into dimensionless expressions. The units of the signal
value’s four characterizing values are different. Data normalization is necessary and it is beneficial
for calculating the data and improving the model accuracy. Data can be normalized in many ways.
This study uses the Z-score standardization method:

z =
x−m

σ
(22)

where x is the input data for data normalization; m, the mean; and, σ, the standard deviation. Figure 4
shows the normalized results of the four data characterizing values, namely, kurtosis, skewness, mean,
and standard deviation.Sensors 2018, 18, x FOR PEER REVIEW  10 of 21 
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3.2.2. Gaussian Process Regression

The GPR is the core of the DGPR model. Normalized data that is calculated by the previous layer
is used as input data for the GPR. The four characterizing values that were obtained are intersected
one by one and used as the parameters of the GPR to predict the regression, which can directly predict
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the specific position coordinates of the location point. In the previous section, after the four feature
values were normalized, the AP∗ value was expressed as

AP∗ →


K∗(k∗,1, k∗,2, · · · , k∗,N)

Sk∗(sk∗,1, sk∗,2, · · · , sk∗,N)
M∗(m∗,1, m∗,2, · · · , m∗,N)
St∗(st∗,1, st∗,2, · · · , st∗,N)

(23)

where K∗ is the kurtosis eigenvalue; Sk∗, the skewness eigenvalue; M∗, the average eigenvalue; and,
St∗, the variance eigenvalue. These four groups of data are used as the input data of GPR. Because of
the noise in our environment, we can combine the regression problem with it as follows:

(x, y) = f ( f en1, f en2) + N
(

0, σ2
n

)
, (24)

where f en1 and f en2 are characterizing values, n1, n2 ∈ {1, · · · , 4}, that is, f en1 and f en2 correspond to
f en1, f en2 ∈ {kurt, skew, mean, std}, and n1 6= n2; N

(
0, σ2

n
)

is the physical noise that follows a Gaussian
distribution; (x,y) is the resulting positional coordinate; and, f (·) is a potential function that describes
the relationship between these four characterizing values and spatial coordinates,

f ( f en1, f en2) ∼ GP(m( f en1, f en2), k(( f en1, f en1′), ( f en2, f en2′))), (25)

where f en1′ is the characterizing value calculated using the RSS data set (APr) collected in the offline
stage. According to the solution of GPR, the posterior distribution is

p
(
(x, y)

∣∣∣ f , σ2
n

)
= ∏

n
N((xn, yn); f ( f en1, f en2), σ2

n). (26)

GPR is defined by the mean and covariance function. The mean and covariance function represent
the main features and structure of GPR. Many types of mean and covariance functions are commonly
used in GPR. Tables, Tables 1 and 2 respectively list the commonly used mean and covariance functions.
The GPR performance differs with the mean and covariance kernel functions used. In Section 4,
we experimentally tested the effects of different covariance functions on GPR performance. In this
study, zero and constant kernel were respectively used as the mean and covariance function.

Table 1. Summary of several commonly used mean functions.

Mean Function Equation Expression

Zero 0
Constant C;

(
x× x′ + σ2

0
)p

Linear αx + b
Poly ∑N

i αixN−i

Table 2. Summary of several commonly used covariance functions.

Covariance Function Equation Expression

Rational Quadratic Kernel k(x, y) = 1− ‖x−y‖2

‖x−y‖2+c

Exp-Sine-Squared Kernel k(x, y) = exp
(
−2sin

(
pi/(per×d(x,y)

l

)2
)

White kernel k(x, y) = k1(x, y) + k2(x, y)

Matern Kernel k(x, y) = 1
2v−1γ(v)

(
2
√

v‖x−y‖
θ

)v
Hv

(
2
√

v‖x−y‖
θ

)
Constant Kernel k(x, y) = σ2

0
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3.2.3. Reinforcement

In the previous layer, the input data consists of multiple sets of two characterizing values.
The GPR algorithm is used to predict a set of positional coordinates (X,Y) of the positioning point
as (X, Y) = {(x1, y1), (x2, y2), · · · (xs, ys)}, s = 1, 2 · · · , 6. To locate the coordinates more accurately,
we use reinforcement/enhancement learning to make the model proceed from the existing state and to
constantly optimize our own strategy to obtain the position coordinates (x∗, y∗) with the smallest error.

At first, the reinforcement learning is mainly a decision-making process, and the goal of
reinforcement learning is to enable machines to learn a good strategy independently to solve
some decision-making problems. Q-learning algorithm is the most typical reinforcement learning
algorithm [24,25]. Q-learning is a model-independent reinforcement learning algorithm that was
proposed by Watkins based on time difference by means of state-action logarithmic function Q(s, a).
It is also called off-policy TD [25]. This study uses the concept of deep Q-learning (deep reinforcement
learning), and the deep GP model that we proposed uses a network of Q-values. The Q-values is the
action evaluation function Q∗(s, a), which is used to indicate the potential value of a state. Starting
from the state s, the cumulative reward of the strategy ∗ is executed after the action a is performed.
The parameter θ is the weight of each network layer in the model. The objective is to find the θ value
that can obtain the minimum positional error by constantly updating the state and action. In this
process, we need to constantly update the valuation function Q∗(s, a; θ). This is expressed as

Q∗(s, a; θ) = Q(s, a; θ) + α
(
r + γmaxa′Q

(
s′, a′; θ

)
−Q(s, a; θ)

)
(27)

where Q∗(s, a; θ) is the value function that represents the future potential value of a state and that needs
to be updated; a, the action; s, the state; Q(s′, a′, θ), the value function under the optimal decision; and,
Q∗(s, a; θ), the updated valuation function. Updating the value function actually implies updating
the parameter θ. We need to update the parameter θ to make the Q(s, a; θ) function approximate the
optimal Q(s′, a′, θ) value. Therefore, a loss function is defined to evaluate the difference between the
predicted values and the target values:

L(θ) = E
[
(TargetQ−Q(s, a; θ))2

]
(28)

where the objective function TargetQ is

TargetQ = r + γmaxa′Q
(
s′, a′; θ

)
(29)

Although the target Q is calculated based on the value iteration, it does not directly assign this Q
estimate value directly to the new Q. Instead, it uses a gradual approach in a manner that is similar to
a gradient descent and approaches the target in small steps. Finally, it can converge to the optimal Q
value. The gradient of L(θ) is calculated and the stochastic gradient descent method is used to update
the parameter θ:

θj = θj + α
(

Q(s, a; θ)(i) − TargetQ(i)
)

Q(i)
j (30)

where α is the learning rate/step size. After calculating θ values, the position coordinates (x∗, y∗) can
be calculated as

(x∗, y∗) =

(
∑M

n=1 θnxn

M
,

∑M
n=1 θnyn

M

)
, M = 1, 2, · · · 6. (31)

4. Experiments and Discussion

4.1. Experiment Environment Initialization

We conducted experiments in two environments. One environment was a simulation programmed
using MATLAB R2017b. For the purpose of demonstrateing the flexibility of our proposed method,
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we focused on the comparison of two extreme sizes of the testing areas. In the simulation experiment,
which was a 30 m× 30 m square area with four beacons that were deployed at the corners. The signal
was smooth; thus, the RSS energy declined gradually from the source, and the received energy could
be predicted easily according to the distance from the source. In this area, the performance of the
proposed model can be reviewed clearly. Furthermore, the physical experiment did perform on the
second floor in the 55th office building of Tianjin University. This area was used to verify the accuracy
and effectiveness of our positioning method in Sections 4.2 and 4.3. The area was approximately
7 m× 15 m (Figure 5). The area was a typical building hall with some pillars in each corner of the area
and was relatively open in the center, with people being able to walk around freely. Four Bluetooth
transmitters were placed in the corners to ensure full signal coverage in the testing area. Although
this area is smaller than the simulated area, the real process of signal transmission can be revealed too.
To receive the online RSS data, the Samsung cell phone (Note 3) was used as the data collector in the
testing areas, according to our previous studies, the antenna design of Samsung cell phones was much
more stable than the other brands at the data collection [7]. According to the broadcasting performance
of Bluetooth beacon, we setup our transmitter up to 100 packages per second and 20 samples are
collected at each location for the system evaluation [26,27]. Fifteen packages and five left pages were
used for the system training and testing, respectively.
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The simulated area and physical testing area were divided into 800 and 54 locations for the
measurements, respectively. The locations in physical area are marked by black dots in Figure 5.
The collected samples are transmitted to the server, the positioning coordinates are calculated by
different methods in our experiments, and then the position information is returned to the mobile
phone. In addition, we applied our DGPR method with the mod function to avoid potential overfitting
problems through a single signal measurement.
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4.2. Effect on Different GPR Kernel

In this study, we tested the following five kernel functions, Rational Quadratic Kernel, Constant
Kernel, Matern Kernel, White Kernel, and Exp-Sine-Squared Kernel in our proposed Different GPR
Kernel. All of the differences among these kernels were discussed on Section 3.2.2. The main use-case
of White Kernel is as part of a sum-kernel, where it explains the noise component of a signal. Tuning its
parameters corresponds to estimating the noise level. The Matern Kernel is a generalization of RBF and
an absolute exponential kernel that is parameterized by an additional parameter nu. Rational Quadratic
Kernel can be seen as a scale mixture (an infinite sum) of RBF kernels with different characteristic length
scales. Exp-Sine-Squared Kernel allows for the modeling of periodic functions. It is parameterized by
a length-scale parameter length_scale > 0 and a periodicity parameter periodicity > 0. Constant Kernel
can be used as part of a product-kernel where it scales the magnitude of the other factor (kernel) or as
part of a sum-kernel where it modifies the mean of the GP.

Table 2 shows the expressions of these five kernels. We compared the results of the five kernels;
the definition of each kernel is illustrated on Tables 1 and 2. Table 3 summarizes the overall results.
Obviously, the result of the Exp-Sine-Squared Kernel is the worst and the Constant Kernel works best
in the DGPR model. On the other hand, Figure 6 shows the cumulative distribution function (CDF)
plot of the final positioning errors for these five kernels. It is obvious that the positioning using the
Constant Kernel is the most accurate. Therefore, we use the Constant Kernel as the kernel of the GPR
in the DGPR middle layer.

Table 3. Localization results in testing area.

Kernel RMSE (m) 1 m 2 m 3 m 6 m

Rational Quadratic Kernel 2.75 5.56% 24.04% 57.41% 100%
Exp-Sine-Squared Kernel 4.05 7.41% 16.67% 29.63% 88.89%

White Kernel 2.71 7.43% 29.63% 62.97% 100%
Matern Kernel 2.83 11.11% 29.64% 57.43% 98.15%

Constant Kernel 2.44 14.81% 33.33% 64.81 100%
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4.3. Localization Accuracy in Different Environments

In these experiments, we evaluated our system performance in two different environments:
simulated and field. In the field experiment environment, the location examined was the second
floor of the 55th building of Tianjin University. We compared four methods for indoor localization,
our proposed method, GPRP proposed by Liu et al., the method proposed by Yiu et al., and the general
FingerPrint (FP) method. FP is based on the RSS location system and it requires the RSS mapping
database of an entire area to be built. When comparing to the other methods, the offline database
construction time and online indexing time cost more than the other three methods. Besides, in this
experiment, we focused on the user experience on the location estimation in our study, the construction
time of the offline database was ignored herein. On the contrary, the time consumption was briefly
summarized by the data collection time and model execution time.

We used the test on the field environment as an example. The area was divided into 54 blocks.
Each block was approximately 1.4 m long and 1.2 m wide. For every time, collecting the FP RSS of each
block cost us 10 s, totally it took us about 54× 10 = 540 s for the collection of 54 blocks, and the FP
method took another 1 s to obtain/index the online location. Furthermore, in the methods that were
proposed by Yiu et al. [14], Liu et al. (GPRP) [7], and us (DGPR), 30% sampling blocks were selected to
collect their databases. Thus, the base RSS data collection time required 54× 0.3× 10 = 160 s. Overall,
the model online execution times are 147 s, 45 s, and 28 s for Yiu et al., Liu et al. (GPRP), and us (DGPR),
respectively. Then, the total time consumptions are 541 s, 307 s, 205 s, and 188 s by the same methods’
order. Table 4 shows the data for these four methods. These results indicate that the computation time
increases with the sampling size of the FP database, because the procedure of RSS value needed to
recollect every time. The less sampling time and fast model execution time would improve the users’
experiment. Comparing to the GPRP method, our proposed DGPR method can derive the position
(x, y) directly without the inference method needed; the model execution time can be outperformed by
the others. Thus, our proposed method can not only save the computation time that is required for
collecting the RSS database, but also decrease the execution time on the system execution.

Table 4. Total performance of four comparison methods.

Simulated Experiments Field Experiments

Time Cost (s) Average Error (m) Time Cost (s) Average Error (m)

FingerPrint (FP) Method 4201 1.46 541 2.34
Yiu Method [14] 1385 4.88 307 3.09

GPRP Method [7] 1395 1.87 205 2.28
DGPR (Our Proposed Method) 1316 1.78 188 2.30

Furthermore, we compared four methods for the FP method, the method that was proposed by
Yiu et al. [14], the GPRP method [7], and our proposed DGPR method. Figure 7 shows a comparison of
these methods. The average errors for these respective methods were 2.36 m, 3.09 m, 2.34 m, and 2.28 m,
respectively. In the meantime, if we reviewed the results from Figure 7, our method clearly reduces the
maximum positioning error; our DGPR method’s maximum error is approximately 6 m. This error
value is approximately 3 m, 3 m, and 2 m lower than that the Liu’s method, Yiu’s method, and FP
method, respectively. Their probabilities of the maximum error of these three methods exceeding
6 m are 20%, 10%, and 2%, respectively. These results indicate that our proposed method can retain
accuracy and reduce the computation time in the localization system.

In the simulation area, as shown in Figure 8, the results showed that the performance of our
method was almost the same as that of the FP and GPRP methods, the average error of these three
methods was 1.78 m, 1.87 m, and 1.46 m. The FP positioning method is relatively more accurate, but it
takes the longest time; specifically, it is almost three times slower than our method. Although the
method that was proposed by Liu et al. takes almost the same time as ours, it is slower for both actual
measurements and simulation predictions. The maximum error of the method that was proposed by
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Liu et al. is extremely large, and it differs from ours by approximately 5 m. The method proposed by
Yiu et al. takes less time than FP; however, it has the worst positioning accuracy with error of 4.88 m.
Overall, the current results indicate that our proposed method can retain accuracy and reduce the
computation time in the simulated localization system.Sensors 2018, 18, x FOR PEER REVIEW  16 of 21 
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4.4. The Robustness for Location Accuracy Testing

To check the effects of obstacles on signal transmission in these simulations, we tested signal
transmission in two situations: one used the same environment with different obstacles and the other
situation involved a robust test with different obstacles.

According to Equation (1), the WAF is defined as the obstacle factor, which is used to represent
the effects of obstacles on the RSS. Figure 9a shows the optimal situation with receiving signals;
the distribution is shown as a cyclic shape. In addition, Figure 9b–d show the strength mapping,
with WAF of 1.1, 3.2, and 6.4, respectively. These values were indicated as light, medium, and heavy
crowds in the environment. These figures show that the WAF affects the simulation environment;
the larger the WAF, the greater is the signal interference, and the more obvious is the image fluctuation.Sensors 2018, 18, x FOR PEER REVIEW  18 of 21 
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Figure 9. Received signal strength (RSS) strength mapping with wall attenuation factor (WAF) obstacles.

To test the robustness, the validation was performed according to the changing environment.
Thus, the WAF value was changed in offline training and online testing. We defined four different
environments in Table 5. These four environments were represented by the same offline training and
dynamic online testing with light, medium, heavy, and super heavy crowds. E1 is the same situation
for both offline training and online forecasting. It also emulates the experimental environment that
is discussed herein. E1 is used for comparisons with other different environments to verify the
robustness of our proposed DGPR model. Table 6 shows that, as the WAF increases, the interference
of the environment also increases. Although the positioning accuracy has been decreased slightly,
the overall difference is not great. Table 6 and Figure 10 show that the DGPR method could adjust to
dynamic environments with acceptable accuracy. According to these examples, we can see that the
positioning accuracy is nearly unchanged in both light and heavy crowds.
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Table 5. Robustness testing for five different environments.

ID for Testing Environment WAF for Off-Line Training WAF for On-Line Testing

E1 (General area) 0.2 0.2
E2 (Light Crowds Area) 0.2 0.3

E3 (Medium Crowds Area) 0.2 0.5
E4 (Heavy Crowds Area) 0.2 1

E5 (Super Heavy Crowds Area) 0.2 2

Table 6. Localization results in different obstacle environments: E1 (General Crowds Area), E2 (Light
Crowds Area), E3 (Medium Crowds Area), E4 (Heavy Crowds Area), E5 (Super Heavy Crowds Area).

RMSE (m) 1 m 3 m 5 m 9 m

E1 1.78 49.21% 79.37% 95.24% 98.41%
E2 2.25 34.92% 79.37% 93.65% 96.83%
E3 2.26 14.81% 81.48% 96.29% 96.29%
E4 2.46 14.29% 74.60% 95.16% 98.39%
E5 2.72 11.11% 73.02% 92.06% 96.77%
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5. Conclusions

Generally, the main challenge in RSS-based location positioning is the high sensitivity of the
technique to environmental changes. Variations in RSS measurement reduce estimation accuracy.
In other words, if the radio propagation signal strength were correlated with the distance between
the transmitter and the receiver, then location determination would be a trivial problem. However,
the relationship between these two parameters is dynamic rather than straightforward. Therefore,
many methods have been proposed for obtaining location predictions when the receiver position is
changing. One such basic method is using an FP database, which involves straight computations for
RSS signal collection. However, time consumption and searching from the lookup table database are
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both bottlenecks in this method. In this study, we proposed an indoor positioning system that is based
on the DGPR model. This method can improve both the computation time and the efficiency.

In our study, we tested our method by examining the 7 m × 15 m area in the 55th building
of Tianjin University as a physical environment, and simulated environment with the 30 m× 30 m.
square area by MATLAB. We tested the performances on the different GPR Kernels, and derived the
accuracy and time consumption with four distinct methods, including the general FingerPrint method,
Yiu method in [14], GPRP method in [7], and our proposed DGRP method. Finally, the robustness
for location accuracy was evaluated. Depending on our testing results, the constant kernel is the
most accurate on the first position test. We adopt the constant kernel as our major part in our system.
Then, we compare the localization accuracy with four different methods. The results shown that
our proposed method can not only save the computation time required for building the RSS FP
database, but also retain the accuracy of online prediction with the average error 1.46 m, 4.88 m, 1.87 m,
and 1.78 m, respectively, for the simulated environment, and 2.34 m, 3.09 m, 2.28 m, and 2.30 m,
respectively, for the field environment. Furthermore, on the robustness comparison, the validation
was performed according to the changing environment with light, medium, heavy, and super heavy
crowds’ areas. According to the results, we can see that the positioning accuracy is nearly unchanged
in both light and heavy crowds. Thus, the robustness can be regarded as keeping the nearest accuracy
in our proposed method.
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