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Abstract: For the conventional FDA-MIMO (frequency diversity array multiple-input-multiple-output)
Radar with uniform frequency offset and uniform linear array, the DOFs (degrees of freedom) of
the adaptive beamformer are limited by the number of elements. A better performance—for example,
a better suppression for strong interferences and a more desirable trade-off between the main lobe and
side lobe—can be achieved with a greater number of DOFs. In order to obtain larger DOFs, this paper
researches the signal model of the FDA-MIMO Radar with nested frequency offset and nested array,
then proposes an improved adaptive beamforming method that uses the augmented matrix instead of
the covariance matrix to calculate the optimum weight vectors and can be used to improve the output
performances of FDA-MIMO Radar with the same element number or reduce the element number
while maintain the approximate output performances such as the received beampattern, the main lobe
width, side lobe depths and the output SINR (signal-to-interference-noise ratio). The effectiveness of
the proposed scheme is verified by simulations.
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1. Introduction

As a new kind of MIMO Radar, the FDA-MIMO Radar has drawn much attention, and has
been widely investigated since the introduction of the concept of the “frequency diversity array”.
In contrast to the traditional MIMO Radar, the FDA-MIMO Radar consists of a beampattern that
expands from the angle domain to the joint angle-range domain by utilizing a small frequency offset
across the array [1]. Previous research has shown that the beampattern periodically changes with
the following parameters: angle, range and time [2–4]. Simulation results for transmitted beampattern
have been achieved by evaluating the effect of frequency offset, range, angle, antenna element spacing,
as well as other factors [5],with the authors proposing that “FDA-MIMO Developments: Windowing
and Nonlinear Frequency Shift”. Furthermore, in [6,7], the authors investigated the FDA-MIMO
Radar with jamming signals, and established mathematical models for the FDA-MIMO Radar received
signals and its jamming signals.

In recent years, the FDA-MIMO Radar has continued toplace a lot of emphasis on the exploitation
of the benefits that are exclusive to the joint angle-range domain. In particular, range-angle location
and estimation has been a popular research subject [7–10]. For instance, a joint range-angle estimation
algorithm is presented in [7]; a FDA-MIMO Radar with double pulsewas proposed, with the aim
ofimproving the range-angle localization of the target [8]. Another popular area of FDA-MIMO
Radar research is related to optimizing nonuniform frequency offset to obtain modified range-angle
beampattern or better output performance [11–15]. As discussed in [11], the logarithmic frequency
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offset allows a single maxima for each beam, ensuring that the signal information at the receiver
is of better quality. Moreover, square increasing and cubic frequency offset are recommended for
the FDA-MIMO Radar, so that the targets’ range and angle can be estimated without ambiguities [12].
A cognitive FDA-MIMO Radar with situational awareness is researched to maximize the output SINR
by iteratively optimizing the frequency offset in a closed-loop control manner [13]. In [15], the authors
took advantage of an optimal frequency increment selection method by maximizing the SINR in
each coherent processing interval for the FDA-MIMO Radar, and also discuss a corresponding target
discrimination method. Nevertheless, to the best of our knowledge, less attention has been paid to
tapping the potential of nonuniform frequency offset in increasing the DOFs while keeping the same
element number.

Larger DOFs in the angle domain have been achieved by choosing a suitable nonuniform array
(or sparse array), such as MRA (minimum redundancy array) [16], co-prime array [17], and nested
array [18]. As mentioned above, the beampattern of FDA-MIMO Radar, which involves the joint
angle-range domain and the corresponding DOFs, is decided by both the frequency offset and the array
interval. Consequently, increasing the DOFs in the FDA-MIMO Radar has to be achieved based on
these two aspects. We research the signal model of the FDA-MIMO Radar with nested frequency offset
and nested array, and propose an improved MVDR (Minimum Variance Distortionless Response)
beamforming. Rather than directly using the covariance matrix obtained from the received data matrix,
the improved MVDR beamforming method augments the covariance matrix of the received data with
a new Toeplitz matrix that can provide greater DOFs. By using the new matrix in the MVDR
beamforming, the resultant beampattern has lower side lobes and higher SINR than the conventional
MVDR beamforming, which utilizes the covariance matrix in a direct manner.

The rest of the paper is organized as follows: Signal models of the collocated FDA-MIMO Radar
with nested frequency offset and nested array are presented in Section 2. This Section explains
the specific process of the improved MVDR beamforming. Simulations and discussions are shown in
Section 3, followed by the conclusions in Section 4.

2. Signal Models of the Collocated NNFDA-MIMO Radar

An N-element collocated FDA-MIMO Radar with the nested array and the nested frequency
offset, namedan NNFDA-MIMO Radar, transmits signals and receives the echo signals using the same
two-level nested array. A two-level nested array is basically a concatenation of two ULAs (uniform
linear arrays): inner ULA and outer ULA, where the inner ULA has N1 elements with interval d and
the outer ULA has N2 elements with interval (N1 + 1)d. The array intervalof each omnidirectional
element is half wavelength, expressed as d = λ

2 = c
2 f0

, c is the light speed. When N is even, N1 =

N2 = N
2 , while when N is odd, N1 = N−1

2 and N2 = N+1
2 . Consequently, for the N-element two-level

nested array, the position set is P = [d, 2d, . . . , N1d, (N1 + 1)d, 2(N1 + 1)d, . . . , N2(N1 + 1)d].
To illustrate the difference between the two-level nested array and ULA, we show sketches of

the 4-element two-level nested array and the 6-element ULA in Figure 1a,b.

Sensors 2018, 18, x 2 of 12 

 

FDA-MIMO Radar research is related to optimizing nonuniform frequency offset to obtain modified 
range-angle beampattern or better output performance [11–15]. As discussed in [11], the logarithmic 
frequency offset allows a single maxima for each beam, ensuring that the signal information at the 
receiver is of better quality. Moreover, square increasing and cubic frequency offset are 
recommended for the FDA-MIMO Radar, so that the targets’ range and angle can be estimated 
without ambiguities [12]. A cognitive FDA-MIMO Radar with situational awareness is researched to 
maximize the output SINR by iteratively optimizing the frequency offset in a closed-loop control 
manner [13]. In [15], the authors took advantage of an optimal frequency increment selection method 
by maximizing the SINR in each coherent processing interval for the FDA-MIMO Radar, and also 
discuss a corresponding target discrimination method. Nevertheless, to the best of our knowledge, 
less attention has been paid to tapping the potential of nonuniform frequency offset in increasing the 
DOFs while keeping the same element number. 

Larger DOFs in the angle domain have been achieved by choosing a suitable nonuniform array 
(or sparse array), such as MRA (minimum redundancy array) [16], co-prime array [17], and nested 
array [18]. As mentioned above, the beampattern of FDA-MIMO Radar, which involves the joint 
angle-range domain and the corresponding DOFs, is decided by both the frequency offset and the 
array interval. Consequently, increasing the DOFs in the FDA-MIMO Radar has to be achieved based 
on these two aspects. We research the signal model of the FDA-MIMO Radar with nested frequency 
offset and nested array, and propose an improved MVDR (Minimum Variance Distortionless 
Response) beamforming. Rather than directly using the covariance matrix obtained from the received 
data matrix, the improved MVDR beamforming method augments the covariance matrix of the 
received data with a new Toeplitz matrix that can provide greater DOFs. By using the new matrix in 
the MVDR beamforming, the resultant beampattern has lower side lobes and higher SINR than the 
conventional MVDR beamforming, which utilizes the covariance matrix in a direct manner. 

The rest of the paper is organized as follows: Signal models of the collocated FDA-MIMO Radar 
with nested frequency offset and nested array are presented in Section 2. Section 3 explains the 
specific process of the improved MVDR beamforming. Simulations and discussions are shown in 
Section 4, followed by the conclusions in Section 5. 

2. Signal Models of the Collocated NNFDA-MIMO Radar 

AnN-element collocated FDA-MIMO Radar with the nested array and the nested frequency 
offset, namedan NNFDA-MIMO Radar, transmits signals and receives the echo signals using the 
same two-level nested array. A two-level nested array is basically a concatenation of two ULAs 
(uniform linear arrays): inner ULA and outer ULA, where the inner ULA has 1N  elements with 
interval d  and the outer ULA has 2N  elements with interval 1( 1)N d . The array intervalof each 

omnidirectional element is half wavelength, expressed as 
02 2
cd
f


  , c  is the light speed. When 

N  is even, 1 2 2
NN N  , while when N  is odd, 1

1
2
NN 

  and 2
1

2
NN 

 . Consequently, for 

the N-element two-level nested array, the position set is
1 1 1 2 1[ , 2 ,..., , ( 1) , 2( 1) ,..., ( 1) ]d d N d N d N d N N d   P . 

To illustrate the difference between the two-level nested array and ULA, we show sketches of 
the 4-element two-level nested array and the 6-element ULA in Figure 1a,b. 

 

Figure 1. (a) The 4-element two-level nested array; (b) The 6-element uniform linear array. 

(a)

(b)

Figure 1. (a) The 4-element two-level nested array; (b) The 6-element uniform linear array.

The nth transmit element’s carrier frequency fn is expressed as

fn = f0 + Jn∆ f (1)
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where f0 is the reference carrier frequency and ∆ f is the frequency offset, which is negligible compared
with f0. Jn is the nth element of the set J = [1, 2, . . . , N1, (N1 + 1), 2(N1 + 1), . . . , N2(N1 + 1)], N1 =

N2 = N
2 when N is even, while N1 = N−1

2 and N2 = N+1
2 when N is odd. The N-element collocated

NNFDA-MIMO Radar is shown schematically in Figure 2.
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Given the far-field point target at range r0 and from angle θ0, the signal ym,n,which is
transmitted by the nth element, reflected by the target, then received by the mth element and finally
matched-filtered, can be written as

ym,n ≈ ξ exp{−j4π
∆ f

c
Jnr0} × exp{j2π

d
λ

Jn sin(θ0)} × exp{j2π
d
λ

Jm sin(θ0)} (2)

where ξ = ρ exp{j2π f0r0} and ρ is the complex-valued coefficient of the point target. The received
snapshot of target in FDA-MIMO can be expressed in the vector form as

xs = [y11, y12, . . . , y1N , y21, . . . , yNN ]
T

= ξb(θ0)⊗ a(r0, θ0)

= ξv1(r0, θ0)

(3)

where “⊗” denotes the Kronecker product operator and the superscript T is the transpose operator.
v1(r0, θ0) is the virtual steering vector, a(r0, θ0) and b(θ0) are the transmit steering vector and receive
steering vector respectively, expressed as

a(r0, θ0) = [eJ1 ϕ(r0,θ0), eJ2 ϕ(r0,θ0), . . . , eJN ϕ(r0,θ0)]
T

ϕ(r0, θ0) =
(
−j4π

∆ f
c r0 + j2π d

λ sin(θ0)
) (4)

b(θ0) = [eJ1φ(θ0), eJ2φ(θ0), . . . , eJN φ(θ0)]
T

φ(θ0) =
{

j2π d
λ sin(θ0)

} (5)

The received snapshot x has the following components: the target component xs, the interference
component xi and the noise component wn. Assume that there are L interferences impinging on
the array from the direction θl , l = 1, 2, . . . , L. The received interference component can be expressed
as [7]

xi =
L

∑
l=1

ξlb(θl)⊗ nal (6)

where ξl is a zero-mean circularly symmetric complex Gaussian random variable with variance
σl

2 = E
{

ξlξl
H
}

, l = 1, 2, . . . , L, the superscript H is the conjunctive transpose operator. The nal ∈ CN×1

is the noise-like transmit steering vector of the noise jamming and assumed zero-mean white Gaussian
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distribution [19]. The b(θl) ∈ CN×1 is the receive steering vector of the noise jamming, and takes

the form b(θl) = [eJ1φ(θl), eJ2φ(θl), . . . , eJN φ(θl)]
T

.
Hence, the total received snapshot can be written as

x = xS + xi + wn

= ξv1(r0, θ0) +
L
∑

l=1
ξlb(θl)⊗ nal + wn

(7)

There is an assumption that the noise is temporally-spatially white, and temporally uncorrelated
from each signal. Additionally, the interferences are statistically noise-like and oppressive. The matrix

Rj =
L
∑

l=1
σl

2
(

b(θl)b(θl)
H
)
⊗ IN is defined as the interferences’ covariance matrix, IN is the N × N

identity matrix. For the N-element collocated NNFDA-MIMO Radar, the covariance matrix R can be
expressed as

R = σ1
2v1(r0, θ0)v1(r0, θ0)

H + Rj + σn
2IN2 (8)

where σ1 is the desired signal’s power, IN2 is the N2 × N2 identity matrix, σn is the noise power and σl
is the interference signal’s power.

For matrices A ∈ Cm×n, B ∈ Cn×k, C ∈ Cl×p, D ∈ Cp×q, (AB)⊗ (CD) = (A⊗C)(B⊗D) and
(A⊗ B)H = AH ⊗ BH . Hence, it can be obtained

(b(θ0)b(θ0)
H)⊗ (a(r0, θ0)a(r0, θ0)

H) = (b(θ0)⊗ a(r0, θ0))
(

b(θ0)
H ⊗ a(r0, θ0)

H
)

= (b(θ0)⊗ a(r0, θ0))(b(θ0)⊗ a(r0, θ0))
H

= v1(r0, θ0)v1(r0, θ0)
H

(9)

The covariance matrix R can further be formed as

R = σ1
2v1(r0, θ0)v1(r0, θ0)

H + Rj + σn
2R

= σ1
2(b(θ0)b(θ0)

H)⊗ (a(r0, θ0)a(r0, θ0)
H)

+
L
∑

l=1
σl

2
(

b(θl)b(θl)
H
)
⊗ IN + σn

2IN2

(10)

Now, we define B(θ0) = b(θ0)b(θ0)
H , A(r0, θ0) = a(r0, θ0)a(r0, θ0)

H and B(θl) = b(θl)b(θl)
H .

There is

R = σ1
2B(θ0)⊗A(r0, θ0) +

L

∑
l=1

σl
2B(θl)⊗ IN + σn

2IN2 (11)

Each element of matrix B(θ0), B(θl) and A(r0, θ0) can be formed as

[B(θ0)]j,k = eJjφ(θ0)−Jkφ(θ0) (12)

[B(θl)]j,k = eJjφ(θl)−Jkφ(θl) (13)

[A(r0, θ0)]m,n = eJm ϕ(r0,θ0)−Jn ϕ(r0,θ0) (14)

where [A(r0, θ0)]m,n ({m, n} = 1, 2, . . . , N) is the {m, n}th element of A(r0, θ0), [B(θ0)]j,k({j, k} = 1, 2, . . . , N)

and [B(θl)]j,k({j, k} = 1, 2, . . . , N) represent the {j, k}th element of B(θ0) and B(θl), respectively.
The function mod(x, y) returns the modulus after division of x by y, while the function f ix(x)
returns the first integer x1 when x1 ≤ x. According to the definition of the Kronecker product,
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[R]m,n
(
{m, n} = 1, 2, . . . , N2) is the {m, n}th element of the matrix R(N2 × N2 size) and can be

decomposed as

[R]m,n = σ1
2[B(θ0)] f ix(m−1

N2 )+1, f ix( n−1
N2 )+1[A(r0, θ0)]mod(m−1,N2)+1,mod(n−1,N2)+1

+
L
∑

l=1
σl

2B(θl) f ix(m−1
N2 )+1, f ix( n−1

N2 )+1δ
(
mod(m− 1, N2)−mod(n− 1, N2)

)
+ σn

2δ(m− n)
(15)

where δ(t) is the delta function that equals 1 when t = 0 and 0 when t 6= 0.
Here are two definitions:

V1(m, n) = J( f ix(m−1
N2 )+1) − J( f ix( n−1

N2 )+1) (16)

V2(m, n) = J(mod(m−1,N2)+1) − J(mod(n−1,N2)+1) (17)

Hence, [R]m,n is simplified as

[R]m,n = σ1
2eV1(m,n)φ(θ0) × eV2(m,n)ϕ(r0,θ0) +

L

∑
l=1

σl
2eV1(m,n)φ(θl)δ(V2(m, n)) + σn

2δ(m− n) (18)

It can be easily seen that the elements in R depend on the values of V1(m, n) and V2(m, n).
The value of V1(m, n) is only decided by the array interval, while the value of V2(m, n) is dependent
on both the frequency offset and the array interval. For the N-element collocated NNFDA-MIMO
Radar, V1(m, n) and V2(m, n) are both elements of the following vector V = [−(N2(N1 + 1) −
1), . . . ,−1, 0, 1, . . . , N2(N1 + 1)− 1].

Du = σ2[e−JN2(N1+1)φ(θ0), . . . , 1, eJ1φ(θ0), . . . , eJN2(N1+1)φ(θ0)]⊗ [e−JN2(N1+1)ϕ(r0,θ0), . . . , 1, eJ1 ϕ(r0,θ0), . . . , eJN2(N1+1)ϕ(r0,θ0)]

+
L
∑

l=1
σl

2[e−JN2(N1+1)φ(θl), . . . , e−J1φ(θl), 1, eJ1φ(θl), . . . , eJN2(N1+1)φ(θl)]⊗C + σn
2C⊗C

(19)

where C = [0, 0, . . . , 0, 1, 0, . . . , 0, 0] ∈ C1×(2N2(N1+1)−1).
The size of Du is 1× (2N2(N1 + 1)− 1)2, so for the N-element collocated NNFDA-MIMO Radar,

the covariance matrix R has (2N2(N1 + 1)− 1)2 distinct elements, and its size is N2×N2, which means
the DOFs of the adaptive beamformer is equal to N2 [20]. Furthermore, the elements’ order of
arrangement in the matrix R is given in (18), since there are (2N2(N1 + 1)− 1)2 distinct elements in
matrix R, while the number of DOFs is just N2. Next, we decide to rearrange the distinct elements in
matrix R in a new order to augment the size of matrix R and obtain more DOFs, which could improve
the output performances of the beampattern.

Firstly, we define N = N2(N1 + 1), Jn is the nth element of the set J = [0, 1, . . . , N − 2, N − 1] ∈
C1×N and a Toeplitz matrix R ∈ CN2×N2

, and it has 2N2 − 1 distinct elements and can be decomposed
in the following Kronecker product operator forms

R = R1 + R12 ⊗DN (20)

R = R11 ⊗R12 (21)

where R1 ∈ CN2×N2
, R11 ∈ CN×N , R12 ∈ CN×N , R22 ∈ CN×N are Toeplitz matrices and DN is a N× N

diagonal matrix. Combing the property “a linear combination of the Toeplitz matrices is still a Toeplitz
matrix”, the desired Toeplitz matrix, reconstructed by the set Du, can be written as

R = σ0
2B(θ0)⊗A(r0, θ0) +

L

∑
l=1

σl
2B(θl)⊗ IN + σn

2I
N2 (22)
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where I
N2 is the N2 × N2 identity matrix while I

N2 is the N × N identity matrix, the Toeplitz

matrix B(θl) = b(θl)
(

b(θl)
)H

, b(θl) = [eJ1φ(θl), eJ2φ(θl), . . . , eJN φ(θl)]
T

, the Toeplitz matrix B(θ0) =

b(θ0)
(

b(θ0)
)H

, b(θ0) = [eJ1φ(θ0), eJ2φ(θ0), . . . , eJN φ(θ0)]
T

and the Toeplitz matrix A(r0, θ0) =

a(r0, θ0)a(r0, θ0)
H , a(r0, θ0) = [eJ1 ϕ(r0,θ0), eJ2 ϕ(r0,θ0), . . . , eJN ϕ(r0,θ0)]

T
. Define the new virtual steering

vector v1(r0, θ0) = b(θ0) ⊗ a(r0, θ0). [R]m,n,
(
{m, n} = 1, 2, . . . , N2

)
is the {m, n}th element of

the matrix R, written as

[R]m,n = σ1
2eV1(m,n)φ(θ0) × eV2(m,n)ϕ(r0,θ0) +

L

∑
l=1

σl
2eV1(m,n)φ(θl)δ

(
V2(m, n)

)
+ σn

2δ(m− n) (23)

V1(m, n) = J( f ix(m−1
N2 )+1) − J( f ix( n−1

N2 )+1) (24)

V2(m, n) = J
(mod(m−1,N2

)+1)
− J

(mod(n−1,N2
)+1)

(25)

In order to reconstruct the matrix R, we need to augment the size of matrix R, so we name
the Toeplitz matrix R as the corresponding augmented matrix R and the augmenting process is carried
out as follows:

Step (1): Create a blank matrix R ∈ CN2×N2
and assign the initial values m = n = 1;

Step (2): Search the element [R]j,k in the matrix R (N2 × N2 size), if V1(j, k) = V1(m, n) and
V2(j, k) = V2(m, n), assign the value of [R]j,k = [R]m,n;

Step (3): Judge the value of m: if m = N2
+ 1, assign m = 1 and let n = n + 1, otherwise let

m = m + 1;
Step (4): Judge the value of n: if n = N2

+ 1, finish the augmenting process and obtain the desired
matrix R described above, otherwise repeat the Step (2);

The diagram is shown as Figure 3.

w =
(
R
)−1v1(r0, θ0) (26)

where v1(r0, θ0) is the new desired virtual steering vector, defined above and formed as

v1(r, θ) = [eJ1φ(θ), eJ2φ(θ), . . . , eJN φ(θ)]
T
⊗ [eJ1 ϕ(r,θ), eJ2 ϕ(r,θ), . . . , eJN ϕ(r,θ)]

T
(27)

Since the weight vector w has a dimension N2 × 1, the DOFs number of the adaptive beamformer
(using augmented matrix R) is N2. If the covariance matrix R is used directly, the DOFs is N2, although
the two matrices have the same distinct elements. Referring to the two-level nested array, the optimal
values N1, N2 and the corresponding DOFs of the adaptive beamformer are listed in Table 1.

Table 1. DOFs of the adaptive beamformer.

N Optimal N1, N2 R (DOFS) R (DOFS)

even N1 = N2 = 1
2 N N2

(
N2

4 + N
2

)2

odd N1 = N−1
2 , N2 = N+1

2 N2
(

N2+1
4 + N

2

)2
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The principle of MVDR beamforming is minimizing the output’s variance while constraining
the response of the desired signal to unity [18]. By using the augmented matrix R instead of R
directly obtained from the received snapshot, we obtain a new MVDR beamformer with an optimal
weight vector.

It can be easily seen that N ≥ N when N ≥ 2, which means that larger DOFs for the adaptive
beamformer can be obtained from the augmented matrix R. Compared with the traditional method,
which increases the DOFs by using more antenna elements, the NNFDA scheme utilizes the advantages
of NLA and incorporates the reconstruction method to obtain the virtual matrix, having equal DOFs to
the larger ULA. The larger DOFs are able to improve the output beamformer performances; namely,
in terms of a better trade-off between the main lobe width and side lobes levels, and the higher SINR.

The normalized received beampattern B(r, θ) and the output SINR are respectively given as

B(r, θ) =

∣∣wHv1(r, θ)
∣∣2∣∣wHv1(r0, θ0)
∣∣2 (28)

SINR =
σ0

2
∣∣wHv1(r0, θ0)

∣∣2
wHRwH − σ02

∣∣∣∣wHv1(r0, θ0)
∣∣∣∣2 (29)

3. Simulations and Discussions

In the numerical simulations, the reference carrier frequency is f0 = 1.6 GHz, the frequency offset
is set as ∆ f = 5 kHz and the snapshot number is 500. The target is assumed to be located at a range
r0 = 10 km and in the direction θ0 = 30◦. We consider the 8-element collocated NNFDA-MIMO
Radar, the ith (i = 1, 2, 3, . . . , 8) element carrier frequency is the ith element of the set [ f0 + ∆ f , f0 +

2∆ f , f0 + 3∆ f , f0 + 4∆ f , f0 + 5∆ f , f0 + 10∆ f , f0 + 15∆ f , f0 + 20∆ f ], and the set of the antennas’
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positions is [d, 2d, 3d, 4d, 5d, 10d, 15d, 20d]. From the 8-element collocated NNFDA-MIMO Radar’s
received snapshots, we can obtain two resultant MVDR beamformings with different DOFs. One is
obtained by directly using the covariance matrix while the other one utilizes the augmented matrix.
In order to distinguish and compare the two MVDR beamforming results more clearly, we name
the one that directly uses the covariance matrix as NNFDA direct, and the other one is NNFDA
augmented. A better performance—for example, a better suppression of strong interference and
a higher energy concentration—can be achieved with a greater number of DOFs [18,20]. To verify this,
this paper introduces another two conventional FDA-MIMO Radars, the 8-element FDA-MIMO Radar
and 20-element FDA-MIMO Radar, to carry out the simulations and comparisons. The noise is assumed
to be White Gaussian Noise, and the SNR is equal to 0dB. In addition, the interferences, as described in
(6), impinge the array from directions {20◦, 40◦}. For each interference, its interference-to-noise ratio
(INR) is 10dB. The four DOFs and number of distinct elements are provided in Table 2.

Table 2. The four DOFs and numbers of distinct elements.

DOFs Number Distinct Elements

20-element FDA-MIMO Radar 400 1521
8-element FDA-MIMO Radar 64 225

8-element NNFDA-MIMO direct 64 1521
8-element NNFDA-MIMO augmented 400 1521

Figure 4a–d shows the normalized beampatterns of the Radars listed in Table 2. It can be
found that the four normalized beampatterns’ peaks appear at the same point (10 km, 30◦), which is
the desired location of the target indeed. Hence, the effectiveness of the MVDR beamforming,
for the FDA-MIMO Radar and NNFDA-MIMO Radar, can be verified. For the conventional
FDA-MIMO Radar, a greater number of DOFs always means a sharper beampattern, but depends
on more elements. Comparing Figure 4a,b, we find that the normalized beampattern of 20-element
FDA-MIMO Radar (DOFs 400) obviously has a narrower main-lobe than the one of the 8-element
FDA-MIMO Radar (DOFs 64). However, for the NNFDA-MIMO Radar, we can utilize the MVDR
beamforming based on the augmented matrix to increase the DOFs, instead of only relying on a larger
array. Figure 4c,d provides the resultant beampatterns of the 8-element NNFDA direct and 8-element
NNFDA augmented. They have approximately the same main lobe width, but the latter possesses
obviously lower side lobe levels, due to the increased DOFs (from 64 to 400). Figure 4c,d verifies
the effectiveness and necessity of the augmented matrix, introduced in Section 3. Furthermore,
although the numbers of elements in Figure 4b,d are the same, the normalized beampattern of
8-element NNFDA augmented is significantly better than the one of the 8-element FDA in terms of
main lobe width and side lobe depth. The NNFDA-MIMO Radar can improve normalized beampattern
with the same number of elements.

In order to visually display the normalized beampatterns’ main-lobe width, Figure 5 plots
the−3dB sectional areas which can effectively reflect the main lobes’ energy concentration performance.
In Figure 5, the 20-element FDA-MIMO Radar, the 8-element NNFDA-MIMO Radar augmented and
the 8-element NNFDA-MIMO Radar direct have nearly the same −3dB sectional area of beampattern,
which is significantly narrower than the one of the 8-element FDA-MIMO Radar. Because those
three have the same maximum aperture of equivalent antenna in theory. Through Figure 5, it can
be concluded that the proposed FDA-MIMO Radar scheme can reduce the element number while
maintaining the approximate normalized beampatterns’ main lobe width.
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The results of the range scanning at the desired direction (θ0 = 30◦) are provided in Figure 6a.
Among the four corresponding results, there are three (20-element FDA, 8-element NNFDA augmented,
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8-element NNFDA direct) possessing nearly the same main lobe beam width, because their covariance
matrices or augmented matrix, used for the received beamforming, have the same number of distinct
elements. However, due to their having equal DOFs, the side lobes of the 8-element NNFDA
augmented and the 20-element FDA are nearly identical to one another, but are much lower than those
of 8-element NNFDA direct. A similar situation appears in Figure 6b, which shows the results
of the angle scanning at the desired range (r0 = 10 km). Generally, the resolution is defined
as the width of the −3dB range in the normalized pattern, so we can assume that the received
beampatterns of 20-element FDA and 8-element NNFDA augmented have a similar angle resolution
and range resolution.
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The output SINR versus the input SINR for the described MVDR beamformers are plotted in
Figure 7, where the input SINR is changed from −30dB to 30dB while the other parameters are
the same as those in Figure 4. Through Figure 7, it can be concluded that in the aspect of robustness
against the noise and interference, the 8-element NNFDA augmented beamformer is quite same
to the 20-element FDA beamformer, but better than the 8-element NNFDA direct beamformer and
the 8-element FDA beamformer.
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4. Conclusions

In order to obtain larger DOFs, this paper researches the signal model of the FDA-MIMO Radar
with nested frequency offset and nested array, then proposes an improved adaptive beamforming
method that can provide a better beamforming performance, including narrower main lobe width,
lower side lobes, and a higher output SINR, as shown in the simulations. Furthermore, the proposed
method provides a novel working mode for the existing FDA-MIMO Radar. Such a mode can reduce
hardware expense, as the process of the augmented matrix is not complex, creating a new array by
selecting fewer elements to support a fully functional radar, rather than letting the whole array work
as the traditional mode does. More importantly, the corresponding resultant received beampatterns
obtained by the two different modes have the nearly same output performance.
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Abbreviations

FDA-MIMO frequency diversity array multiple-input-multiple-output
NNFDA-MIMO nested frequency offset and nested array FDA-MIMO
ULA uniform linear array
DOFs degrees of freedom
SINR Signal to interference noise ratio
MRA minimum redundancy array
MVDR minimum variance distortionless response
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