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Abstract: With the emergence of various forms of smart devices and new paradigms such as the
Internet of Things (IoT) concept, the IT (Information Technology) service areas are expanding
explosively compared to the provision of services by single systems. A new system operation
concept that has emerged in accordance with such technical trends is the IT ecosystem. The IT
ecosystem can be considered a special type of system of systems in which multiple systems with
various degrees of autonomy achieve common goals while adapting to the given environment.
The single systems that participate in the IT ecosystem adapt autonomously to the current situation
based on collected data from sensors. Furthermore, to maintain the services supported by the whole
IT ecosystem sustainably, the configuration of single systems that participate in the IT ecosystem also
changes appropriately in accordance with the changed situation. In order to support the IT ecosystem,
this paper proposes an architecture framework that supports dynamic configuration changes to
achieve the goal of the whole IT ecosystem, while ensuring the autonomy of single systems through
the collection of data from sensors so as to recognize the situational context of individual participating
systems. For the feasibility evaluation of the proposed framework, a simulated example of an IT
ecosystem for unmanned forest management was constructed, and the quantitative evaluation results
are discussed in terms of the extent to which the proposed architecture framework can continuously
provide sustainable services in response to diverse environmental context changes.

Keywords: Internet of Things; IT ecosystem; cyber physical systems; self-adaptive systems;
orchestration; MAKE-K (Monitor-Analyze-Plan-Execute over a shared Knowledge) loop

1. Introduction

We live in an age where almost every hour of our daily routine involves interactions with devices
powered by software applications. Many of those devices are equipped with features that enable them
to intake information and make autonomous decisions. The prominent emergence of new system
operation paradigms, such as cloud computing or the Internet of Things (IoT) [1–5], implies that
software products are rapidly moving away from the traditional concept of a closed, stand-alone
system to one of a system of systems involving multiple, heterogeneous systems that collaborate with
each other.
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“System of systems”, a term that has been used since the 1950s, refers to a system or collective of
independent constituent systems that perform in collaboration to achieve a single common goal [6].
Although the term “system of systems” has been used for more than 50 years, there is still no widely
accepted definition of its meaning, but rather it is regarded as a taxonomic group name [7]. An IT
ecosystem is one of the systems that belongs to the newly emerging system of systems along with
the IoT. An IT ecosystem [8–10] is a system operation concept which has been proposed to embrace
the recent technical developments. The concept proposes a special form of system of systems in
which multiple locally adaptive systems collaborate interactively. The name of the concept refers to its
similarity with biological ecosystems where constituent lifeforms interactively evolve their shapes and
behaviors to achieve a common goal: survival. The primary challenge of an IT ecosystem is to provide
control mechanisms that ensure the group’s survival through effective evolution while ensuring the
individual autonomy of its component system. In recent years, cases of implementing IT ecosystems
have been introduced in various types of application domains [11–15], but these are only example
cases that show the feasibility of the IT ecosystem concept; no empirical evaluation results have yet
been provided.

In our research, we adopted dynamic component reconfiguration methods used in self-adaptive
software as the control mechanism for the collaborative evolution of an IT ecosystem. Noticeable
academic developments in recent self-adaptive software studies [16–18] include efforts that are focused
on applying the Monitor-Analyze-Plan-Execute plus Knowledge (MAPE-K) loop [19] to various
domain applications and analyzing their results. MAPE-K is a reference architecture that governs
a software feedback loop used for monitoring and analyzing internal and external environments to
detect contextual changes, developing a reconfiguration plan when changes are deemed necessary,
and executing the established plan. The MAPE-K architecture also includes information about the
software’s components and the knowledge shared between those components. While MAPE-K is an
effective architecture that is helpful in supporting the concept of self-adaptive software implementation,
existing research studies are restrictive in their application of it to a single, stand-alone system’s internal
components and their capabilities.

The framework proposed in this paper is based on the MAPE-K architecture, but it has three
differentiations compared to existing study results based on the MAPE-K architecture as a basic
prototype. These are described as follows:

• The first is an extension of the application scope of the MAPE-K architecture. Several typical
frameworks [20–22] have been previously proposed to implement the MAPE-K loop, each
with their own advantages and disadvantages, but their driving goals are limited to dynamic
component reconfiguration in a single system. In contrast, the proposed framework includes
mechanisms for both local adaption and global adaptation to ensure service sustainability of the
system’s individual components while maintaining IT-ecosystem-wide collaborative performance.

• The second is a proposal for an orchestration mechanism that can minimize overheads due to
the expansion of the IT ecosystem scale. Generally, the scale of an IT ecosystem that survives to
achieve the common goal changes in the open IoT environment. The increase in the population
of participating systems in the IT ecosystem can be a factor that can increase the time needed
to find the optimal combination of device collaboration. The framework proposed in this paper
aims to solve the scalability problem of IT ecosystems by applying a genetic algorithm, which
is considered one of the most proven methods to solve the problem that calculates the global
optimal solution.

• The third is a quantitative evaluated framework to provide a walk-through of a sample case
study. Though we could not build an IT ecosystem in the real world, we have developed a
sample IT ecosystem utilizing the proposed conceptual architecture to showcase its operational
capabilities in simulated environments. Extending our previous work [23], we continue to explain
our dynamic reconfiguration mechanism by providing a sample case study, which is an unmanned
forest management system, into an IT ecosystem domain. Our research results are differentiated
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from the findings reported in previous work in that they apply the proposed mechanisms to an
actual working IT ecosystem, thereby grounding our performance results in quantifiable test
results and reinforcing the feasibility of our suggested architecture framework.

The rest of this paper is organized as follows: Section 2 presents a quick review of previous
research studies on self-adaptive software. Section 3 describes the concepts of the reference architecture
that was presented in our previous work. Section 4 briefly introduces the operating environment of
the IT ecosystem application for the sample target domain, which is unmanned forest management.
Section 5 explains the dynamic reconfiguration mechanism employed by the system components
that comprise the concrete architecture utilizing the reference architecture described in Section 3.
Section 6 specifies the quantitative analysis data resulting from a feasibility evaluation of the suggested
architecture. Lastly, in Section 7, we present the conclusions of our study along with our plans for
future research.

2. Related Work

Rainbow [20], MUSIC [21], and DiVA [22] are noticeable study results about frameworks that
support a self-adaptive system. These frameworks were all proposed to implement the MAPE-K loop.
Each of the frameworks proposed its own mechanism for monitoring and analyzing the environment
data detected by the runtime inside or outside the software system, establishing a plan to respond to a
significant environmental change if detected, and then executing the established plan.

The Rainbow framework contributed to the first case that proposed an infrastructure,
systematically, which can be reusable by separating application logic and adaptation logic. Since then,
various types of adaptive software frameworks have been proposed using the Rainbow framework as
a prototype. Although the Rainbow framework’s reusable infrastructure, relatively low cost, and low
effort make it advantageous to achieve self-adaptation, it has a limitation in that only action rules that
are specific to predefined circumstance are operable.

MUSIC proposes a solution that combines component-based development and service-oriented
architecture (SOA) to respond to requirements that are changed dynamically in a mobile environment.
It resolves adaptation issues by combining components that are most suitable to given circumstances
after classifying all the required components according to the business logic, context awareness, and
interests considered during the adaptation. Since MUSIC does not propose a model of an MAPE-K
adaptation goal in the framework, the adaptation plan has to be updated or, in some cases, replaced
manually, which is a limitation of this framework.

DiVA focuses on providing a methodology and framework to either manage the variability of a
self-adaptive system or develop a self-adaptive system, rather than proposing architecture about the
infrastructure of adaptive software. The architecture of DiVA is based on aspect-oriented programming
(AOP), and it supports self-adaptation by adding dynamically required aspects as a form of a plug-in.

The results of the studies investigating the Rainbow, MUSIC, and DiVA frameworks have their
own advantages and disadvantages. Besides the previously mentioned framework related studies,
various case studies on application of self-adaptive control loop are introduced [24–27]. However,
until now, most of the proposed frameworks and applications based on a self-adaptive mechanism
provide answers for local adaptation to dynamically change the configuration of software components
inside a single system. Our research builds on the work presented in previous studies to extend the
application of the dynamic reconfiguration mechanism of self-adaptive software from single system
to entire IT ecosystems by bridging the technical gap between the self-adaptive framework and the
conceptual architecture of IT ecosystems.

3. A Reference Architecture for IT Ecosystems

In our previous research [28] we suggested a metamodel for defining IT ecosystems as a set of
system goals and aggregate participant system collaborations based on Organization-based Multi-agent
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System Engineering (O-MaSE) [29]. In this paper, we extend that research by complementing the
metamodel, as shown in Figure 1.
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The new metamodel shown in Figure 1 presents the objectives of IT ecosystems as two separate
goals: a service goal to specify the requirements of individual autonomous system participants in the
ecosystem, and an orchestration goal to specify the operation performance and quality of the entire
ecosystem. Each participant performs one or more roles with a predefined capability set for each role,
in which a capability is defined as a set of actions that executes a specific plan.

Before developing reference architecture as a generic conceptual model to operate an IT ecosystem
specified by the suggested metamodel in Figure 1, we need to define the two requirements that the
reference architecture must satisfy. First, the reference architecture must specify the nature of the
relationships between N instances of MAPE-K loops assigned to each participant system in order
to achieve the service goal, in accordance with the single MAPE-K loop assigned to achieve the IT
ecosystem’s orchestration goal. Second, the reference architecture must clarify the role that each
participant system plays in order to achieve the two separate goal models, and it must specify the
collaboration protocol that should be used.

From among several multiple MAPE-K loop distribution patterns proposed in [30], we selected
the hierarchical control pattern (Figure 2) as the base pattern of our suggested architecture framework.
The reasoning behind this choice is that the hierarchical control pattern is the most efficient in the
IT ecosystem context where multiple self-adaptive systems in distributed locations collaborate as
constituents of a single ecosystem. As seen in Figure 2, this involves a pattern of N instances of
MAPE-K loops in independent execution that are connected in a manner in which the modules within
each MAPE-K loop that are responsible for monitoring or carrying out adaptation to locally detected
environment changes share their local information or system capabilities with each other.



Sensors 2018, 18, 562 5 of 25

Sensors 2018, 18, x FOR PEER REVIEW  5 of 25 

 

 
Figure 2. Hierarchical control pattern [30]. Reproduced with permission from Danny Weyns, Bradley 
Schmerl, Vincenzo Grassi et al., On Patterns for Decentralized Control in Self-Adaptive Systems; 
published by Springer Nature, 2013. 

Figure 3 presents a refined view of the conceptual reference architecture model for IT ecosystem 
operation based on the selected control pattern. Its overall structure suggests a vertical hierarchy 
composed of a single MAPE-K loop and N instances of MAPE-K loops, with respective purposes of 
achieving the ecosystem-wide orchestration goal and the component-level service goal. Each 
participant system defines its own metric for evaluating its service performance in correspondence 
to its given role, causing data to be periodically collected and stored according to the defined metrics 
within the local system. Among the locally stored knowledge, the information that needs to be shared 
globally is periodically updated to the global knowledge storage, enabling information sharing 
among the IT ecosystem participants. The sequence of knowledge sharing activities is carried out on 
the Service layer embedded in the systems designated to fulfil the <<Role>> TeamMember. 

 
Figure 3. Conceptual architecture of an IT ecosystem [23]. Reproduced with permission from Soojin 
Park, Young B. Park, ITE arbitrator: A Reference Architecture Framework for Sustainable IT 
Ecosystems; published by IEEE, 2016. 

Figure 2. Hierarchical control pattern [30]. Reproduced with permission from Danny Weyns, Bradley
Schmerl, Vincenzo Grassi et al., On Patterns for Decentralized Control in Self-Adaptive Systems;
published by Springer Nature, 2013.

Figure 3 presents a refined view of the conceptual reference architecture model for IT
ecosystem operation based on the selected control pattern. Its overall structure suggests a vertical
hierarchy composed of a single MAPE-K loop and N instances of MAPE-K loops, with respective
purposes of achieving the ecosystem-wide orchestration goal and the component-level service goal.
Each participant system defines its own metric for evaluating its service performance in correspondence
to its given role, causing data to be periodically collected and stored according to the defined metrics
within the local system. Among the locally stored knowledge, the information that needs to be shared
globally is periodically updated to the global knowledge storage, enabling information sharing among
the IT ecosystem participants. The sequence of knowledge sharing activities is carried out on the
Service layer embedded in the systems designated to fulfil the <<Role>> TeamMember.
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The MAPE-K loop running on the Orchestration layer continuously monitors a separate set of
metrics defined to measure the status of the collaboration or the availability of the participating systems.
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When collaboration performance fails to exceed the IT ecosystem’s operation goals, the problem
is analyzed in order to develop a plan to either disassociate the problematic participant from the
collaboration or to introduce a new candidate system, and, thereafter, it is executed. The MAPE-K loop
for satisfying the orchestration goal is executed by the Orchestration layer components embedded in
the systems assigned with the <<Role>> TeamLeader.

The orchestration goal model and service goal model shown on the right-hand side of Figure 3
captures a snapshot of an IT ecosystem model for the unmanned forest management system that will
be introduced in Section 4. The generic goals applicable to the entire IT ecosystem, such as “Run
Optimal Participants”, are an example of a defined orchestration goal. Goals achieved as a result of
functional collaboration of the participant-embedded capabilities, such as “Fight Fire”, are service goals.
Subordinate goals are defined to achieve a higher-level goal, such as: “Detect Fire”, “Secure Road”,
and “Suppress Fire”, are examples presented in Figure 3. How these subordinate goals are assigned to
participants is determined by the participant’s capabilities.

For example, as seen in Figure 4, the unmanned helicopter type participant, defined using the
metamodel shown in Figure 1, has a sensor and an actuator as its <<Capability>> element, and these
both implement the <<action>> of GetStatus and Sensing. Based on these attributes, we can determine
that the unmanned helicopter type participants are equipped with the necessary capabilities to achieve
“Detect Fire”, which is a subordinate goal of the “Fight Fire” service goal.
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Figure 4. Model for a participant type: Helicopter.

The participant to be assigned the <<Role>> TeamLeader is selected from among all the IT ecosystem
participants using a predefined strategy that defines the election policy, such as “the system with the
most expansive capabilities” or “the system with the highest current availability”. The system designated as
the TeamLeader searches for MAPE components within the Orchestration layer, binds them to its system,
and thereby controls the configuration of the entire IT ecosystem.

Figure 5 provides a definition of the collaboration protocol between the TeamLeader and
TeamMember systems, triggered by an initialization of the TeamLeader, in order to achieve the
orchestration goal “Run Optimal Participants”. The TeamLeader periodically monitors the status of
its TeamMember systems by calculating the collaboration scores for each member using data collected
from the sensors and actuators embedded in various TeamMember participants. When the collaboration
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score falls below a threshold, a reconfiguration of the optimal participants is carried out. Notice that
the collaboration score is a type of utility function value that may vary widely with regard to the metric
sets involved, depending on the orchestration goal that is to be achieved.
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4. Case Study: An IT Ecosystem for Unmanned Forest Management

We continued to use the unmanned forest management in a simulated environment from
our previous research [23] as the target domain of the application for our proposed architecture
framework. The systems participating in the simulated ecosystem are 12 autonomous unmanned
vehicles embedded with sensors and actuators, including unmanned aircrafts, unmanned helicopters,
and unmanned vehicles.

Figure 6a shows the full unmanned forest management IT ecosystem’s service goal model.
Autonomous unmanned systems in the ecosystem perform either stand-alone or collaborative services,
depending on the capabilities of each of the participants, such as rescuing survivors or planting
trees. The TeamLeader role, which is defined in the collaboration behavior metamodel seen in Figure 5,
is inherited by the ChiefGardner type, while the TeamMember role is inherited by the Gardner and
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Surveillant types, as seen in Figure 6b. The class diagram in Figure 6b describes how each instantiated
role inherits <<Capabilities>> defined for the TeamLeader or TeamMember roles, and which goals each
role will try to <<achieve>>.
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Figure 7 shows the specification for the external environment in which the unmanned forest
management IT ecosystem operates. The participant collaborations that occur across the nine forest
regions are typically too vast for direct human management. Figure 7a depicts an environment model
with a list of attributes that may manifest in the service zones. Each zone may have multiple categories
of attributes; for example, weather attributes indicate a zone’s cloudiness, amount of rainfall, or fog
density, while terrain attributes represent the zone’s visibility range, wind velocity, and forest density,
and if bodies of water exist.
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Figure 7b shows the status of the nine forest zones that are being monitored in terms of the defined
attributes. In our simulated environment, the zones have identical size dimensions (width and breadth
of 10 km), giving each zone an area of 100 km2. Therefore, we assigned zone width and breadth as
the constants rather than the attributes to simplify the calculations. Changes in some of the zone
properties, typically forest density or terrain type, are unlikely; thus, they are good constant candidates.
However, they serve as constraints when determining unmanned system assignability. For example,
zones with dense forests, rivers, or large lakes may prevent unmanned vehicles from being assigned to
them or limit their utilization. Attributes that frequently change, such as weather conditions, visibility
range, or wind velocity, may cause unmanned systems to be reassigned. For example, when dense
fogs suddenly appear or visibility falls below a threshold, unmanned helicopter or aircraft operations
may be suspended.

The cost and benefit metric items in collaborations between individual participant systems in the
IT ecosystem vary depending on the service domain provided by the IT ecosystem. It is necessary to
customize what cost items are required to run each of the participant systems in collaboration and
what benefit items are provided as a result of collaboration in terms of the service viewpoints through
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the participant systems in the IT ecosystem to make them appropriate for each of the domain during
the design of the IT ecosystem. For example, for JE1, which is a Jeep type, item J refers to an area of
0.64 km2 that can be monitored for one hour by JE1 in an environment where there is no mountain and
no snow (rain) in the region.

The values in Table 1 for the case study are inferred values obtained by reviewing the literature
by vehicle or sensor type [31–34]. However, if all populations of the participants in the real IT
ecosystem are prepared in the real world, the metric values for the cost–benefit evaluation can be
calculated based on the premeasured historical data regardless of whether or not individual participant
systems participate in the IT ecosystem collaboration. Other profiles of each unmanned system from
a cost-benefit perspective is presented in Table 1. Information on the profile includes cost factors
(columns A to G), representing the costs incurred by the system operations, and benefit factors (columns
H to N), representing the performance of the sensors embedded in the system. Column O shows the
remaining fuel and column P displays the available resources. The profile information is used as input
data to calculate the collaboration scores, which is further described in Section 5.4.

Table 1. Participant profiles in the unmanned forest management IT ecosystem.

ID Type
Cost Benefit

O P
A B D E F G H I J K L M N

JE1 Jeep 40 40 14 60 32 19 0.7 0.6 0.64 100 87 74 46 30 80
JE2 Jeep 40 40 15 35 37 22 0.59 0.35 0.73 100 78 54 54 25 69
JE3 Jeep 40 40 12 64 39 23 0.98 0.64 0.78 100 96 57 47 27 63
JE4 Jeep 40 40 13 76 35 21 1 0.76 0.7 100 86 58 46 37 79
JE5 Jeep 40 40 16 45 38 23 0.8 0.45 0.75 100 78 68 38 25 74
JE6 Jeep 40 40 16 85 47 28 0.93 0.85 0.93 100 84 72 51 31 84

UAV1 UAV 0 100 70 86 50 30 0.9 0.86 1 100 100 100 100 102 72
UAV2 UAV 0 100 75 100 50 30 0.95 1 1 100 100 100 100 86 68
HE1 Hlct 80 70 67 75 34 20 0.67 0.75 0.68 100 87 100 74 120 62
HE2 Hlct 80 70 56 60 43 26 0.87 0.6 0.85 100 87 100 78 116 83
AP1 AP 100 80 80 63 37 22 0.62 0.63 0.74 100 87 100 86 170 73
AP2 AP 100 80 83 73 47 28 0.84 0.73 0.93 100 83 100 87 150 86

5. An Instantiated Architecture for the Unmanned Forest Management IT Ecosystem

In this section, we look at the composition of a concrete architecture designed for unmanned forest
management IT ecosystem operations, which is an instantiation of the proposed conceptual reference
architecture discussed in Section 3. Furthermore, we explain the principles behind the self-adaptation
mechanism of the architecture.

Figure 8 shows the structure of a concrete architecture designed for the unmanned forest
management IT ecosystem. All the participants in the ecosystem share the Android platform layer as
their lowest layer; the Android platform layer and the Felix [35] layer are embedded in all systems
by default, regardless of the system’s assigned role. To monitor the status of the applications that
are running, we injected two special purpose components into the Android platform. The first is
the Probe component, which is identical to the concept proposed in Rainbow [20], a widely used
reference architecture that supports the MAPE-K loop. Probe acts as the channel for periodically
receiving the attribute information needed to evaluate the status of the running applications, and it
is capable of monitoring different metric sets depending on the target domain. For the unmanned
forest management IT ecosystem, Probe uses metrics that read data from the system-embedded sensors,
such as fuel gauges and GPS. The collected status data are first stored in the local environment storage
within the system.
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Another special purpose component injected into the Android platform layer is the Effector, which
adds or removes components, such as sensors, actuators, or other system-internal components, based
on the updated configuration information acquired from the Configuration Manager in the Felix layer.

Apache Felix is used as an interface between the Android platform and the MAPE Core Bundle
layer. When the Felix Service Client initiates the Adaptation Bundle Activator using the Felix Service,
the activator looks up the bundle registry information on the cloud and dynamically binds the necessary
components to the MAPE Core Bundle layer.

Components bound to the MAPE Core Bundle layer are, thereafter, managed by a lifecycle
management service provided by OSGi [36]. The role of the target system, to which the components
are to be bound, determines the component sets that are used. For example, for systems assigned with
the TeamLeader role Chief Gardner, the components defined in the Orchestration layer are bound to
the MAPE Core Bundle layer to activate the MAPE cycle in order to achieve the orchestration goal.
In contrast, for systems with TeamMemer roles Gardner or Surveillant, the components defined in the
Service layer are bound to the MAPE Core Bundle layer. To better illustrate the integrated relationship
between the local adaptation mechanism and the global adaptation mechanism (which we refer to as
the orchestration mechanism), we will walk through a specific scenario where an unmanned aircraft in
service is required to suspend its service due to a sudden change in its external environment. As we
walk through the scenario, we will describe how the component roles in Figure 8 are performed.

5.1. Local Adaptation Mechanism for Achieving the Service Goals of Individual Participants

Figure 9 depicts a situation where HE2, an unmanned aircraft carrying out the “Monitoring
Drought” service goal, is met with a sudden gale of 25 m/s in zone[0][2]. The change of weather
in the zone is detected by the sensor installed on HE2, and it is subsequently updated to its local
environment storage. HE2’s assigned role <<Surveillant>>, which is a TeamMember type of role, triggers
the components within the MAPE Core Bundle layer to be bound to the components in the Service layer.
The Service layer may contain various component sets, depending on the service goal. In our scenario,
the components in the Service layer (WeatherMonitor, WeatherChangeAnalyzer, and PullOutPlanner) are
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respectively bound to ContextMonitor, AdaptationAnalyzer, and Adaptation Planner in the MAPE Core
Bundle layer. The MAPE-K loop triggered by the sudden weather change is executed among the HE2
components in the following order:

1. Weather Monitor: Periodically reads sensor data from the Local Environment storage, updates gauge
values to reflect the current environment in zone[0][2], and sends the data to Weather Analyzer.

2. Weather Analyzer: Analyzes the gauge values delivered from Weather Monitor to diagnose whether
the present environmental conditions in zone[0][2] violate the HE2 assignment constraints, and
requests a reconfiguration plan by sending the diagnostic results to Pull Out Planner as parameters.

3. Pull Out Planner: Creates a component reconfiguration plan for HE2 to land safely in a safe region
in zone[0][2], and it sends the plan to Adaptation Executor.

4. Adaptation Executor: If any component required by the reconfiguration plan does not exist in
the given system, this component locates the missing component and identifies requests for it
through ITE Bridge Service by passing the required service features as parameters.

5. ITE Bridge Service: This component is an OSGi bundle that provides a common interface for
accessing the support devices available on the system; it also enables access to external resources.
The REST [37] style services provided by ITE Bridge Service enable the entire IT ecosystem to share
components, services, or other resources among all participants.

6. Configuration Manager: When all the components required to land HE2 have been procured,
the component reconfiguration results are sent to ConfigurationManager within HE2, and updates
its Local Configuration storage. Then, Effector in HE2’s controller reads the updated configuration
and implements the actual component reconfiguration. Function calls between the Android
platform and OSGi bundle are unidirectional to prevent AdaptationExecutor from directly passing
on a new configuration to Effector.

7. ITE Configuration Manager: The changed environmental information in zone[0][2] and the status of
HE2 (incapable of service) are updated to ITE Global Knowledge through ITE Configuration Manager.
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5.2. Orchestration Mechanism for IT Ecosystem-Wide Dynamic Reconfiguration

Column O in Table 1 shows that, in the unmanned forest management IT ecosystem, AP2 is
selected for the TeamLeader-type role ChiefGardner because it has the highest availability (83%) among
the candidate participants. As HE2 executes its local adaptation to land in response to sudden
turbulence, the situation is updated to ITE Global Knowledge. As shown in Figure 10, the sequence of
collaboration among the components bound to the MAPE Core Bundle layer within AP2 (the TeamLeader)
is as follows:

• Collaboration Monitor: On every monitoring cycle, Collaboration Monitor acquires the current
configuration information from the global configuration storage in Global ITE Knowledge and
extracts the information needed to analyze the current collaboration score; it then delivers the
information to Collaboration Analyzer.
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• Collaboration Analyzer: This component receives monitoring information from Collaboration Monitor
and calculates the collaboration score of the current configuration. Details of how the orchestration
is measured as a score are provided in Section 5.4. If the score falls below a predefined
threshold, Collaboration Analyzer reviews the mismatch between the current configuration and its
environment, and it sends the result to Collaboration Planner.

• Collaboration Planner: This component receives information about the current configuration and
its problems, and it plans the next optimal configuration. To do so, it calculates the scores
for all possible configuration variations to identify the highest next score. When the next
optimal configuration is found, Collaboration Planner develops a reconfiguration plan to execute
the transition. These options include withdrawing an existing participant, deploying a new
participant, or adding previously unavailable capabilities to the participant to activate unused
sensors or actuators.

• Adaptation Executor: This component receives the reconfiguration plan developed by Collaboration
Planner, and it selectively delivers commands that modify the ChiefGardner system’s local
component configuration to Configuration Manager on the Felix layer. The delivered commands
are updated to the local configuration. Effector on the Android platform periodically reads the
updated commands and executes the component change. At the same time, reconfiguration
commands intended for other TeamMember participants are delivered to their destinations through
the Collaborative Communication layer. When the entire configuration of the IT ecosystem completes
its shift to the next step, the changed configuration information is updated to Global Configuration
storage via ITE Configuration Manager.
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The quality of an IT ecosystem’s adaptation to the changes in its environment is influenced not
only by the quality of its MAPE loop’s components, but also by the quality of the shared knowledge
between systems. As shown in the scenario above, there are two types of knowledge storage in
an IT ecosystem. Global ITE Knowledge stores the overall configuration of the IT ecosystem and the
history of changes, and Local Environment storage manages the information needed to execute the
local adaptations by individual systems. Local Environment storage is in the Android platform, while
Global ITE Knowledge is on the cloud (for simplicity, Figure 8 represents the storage as being adjacently
located). The data types stored in Global ITE Knowledge are:

• Environment model: This data type stores definitions for the environment components that
change with time, shown in Figure 7a, and the environment specifications using the defined
environmental model, as seen in Figure 7b. The environmental model does change after its initial
definition at design, but the environment specifications are updated regularly based on the data
collected through various sensors.
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• Participants’ profile: This data type stores the profiles of individual participants in the IT
ecosystem, including their operational costs and their expected benefits. The cost and benefit
information is used as input to calculate the collaboration score when reconfigurations are needed.

• Constraints and rules: Information on the restrictions to be considered when assigning participants
to specific zones is also stored in Global ITE Knowledge storage. In the case of the unmanned
forest management IT ecosystem, the participants’ attributes determine the parts of the forest
the system to which they can be assigned. For example, unmanned helicopters, unmanned
aircrafts, or general aircrafts cannot be assigned to zones with a wind velocity higher than 20 m/s.
Collaboration Analyzer monitors the list of environment-participant data pairs to detect violations
of these constraints and rules. Table 2 shows a sample definition of the constraints for assigning
unmanned systems performing the “Draught Monitoring” service goal.

Table 2. Constraints in the unmanned forest management IT ecosystem.

No. Constraint for Assignment of Participant Systems

1 IF (Zone[ ][ ].Weather.Visibility < 5 (km)) THEN
Helicopter CANNOT PLAY AS Surveillant AT Zone[ ][ ]

2 IF (Zone[ ][ ].Wind.Velocity > 20 (m/s)) THEN
(UAV & Helicopter & AirPlane) CANNOT PLAY AS Surveillant AT Zone[ ][ ]

3 IF (Zone[ ][ ].Weather.Condition = Snowy) THEN
Jeep CANNOT PLAY AS Surveillant AT Zone[ ][ ]

4 IF (Zone[ ][ ].Type = HasLake) OR (Zone[ ][ ].Type = HasRiver) THEN
Jeep CANNOT PLAY AS Surveillant AT Zone[ ][ ]

5 IF (Zone[ ][ ].ForestDensity = High) AND (Zone[ ][ ]. Participant)= Jeep) THEN
Jeep should be operated by a human driver

6 IF (Partcipant.RemainedFuelQuantity < Required Quantity for Running One Period) THEN
Participant CANNOT PLAY any role AT every zone

5.3. Application of a Genetic Algorithm to the Participant Reallocation Problem in an IT Ecosystem

In the MAPE loop running in the Orchestration layer of a TeamLeader participant, Collaboration
Monitor triggers a collaboration score recalculation once for every monitoring period in order to
quantify the performance of the current collaboration. If the collaboration score falls below a
predetermined threshold, Collaboration Planner calculates the collaboration scores of every possible
configuration combination to find the next optimal value. Assuming an IT ecosystem has n participants
and m service zones, the collaboration score calculation may be executed up to nPm times. Assuming
the unmanned forest management IT ecosystem has 12 participants, one participant is assigned the
TeamLeader role to manage the orchestration goal of the entire ecosystem, leaving 11 other candidate
participants to be assigned to nine forest zones. This creates a total of 19,958,400 possible configurations
(11P9) where each configuration requires a collaboration score calculation. Because collaboration score
recalculation will be needed for every monitoring period, and IT ecosystem participants are likely to be
embedded in systems that lack the processing power or computational resources of desktops or servers,
the high overhead imposed by the collaboration score calculation can be prohibitive. Furthermore,
an increase in the number of participants or service zones will increase the computational overhead
exponentially. As a solution to the overhead problem, we applied a genetic algorithm to significantly
decrease the number of configurations that require collaboration score recalculation.

While a genetic algorithm is a well-established approach for finding the global optimal solution
for various decision making problems [38,39], it is not automatically applicable to all optimization
problems. For a genetic algorithm to be applicable, two conditions must be met: (1) the optimal
solution should be represented as a chromosome, or a sequence of bits (to enable the algorithm to
generate solutions using transformative functions, such as crossover or mutations [40]), and (2) the
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optimal solution should be determined using a fitness function defined to evaluate the appropriateness
of a given configuration-environment pair.

To apply a genetic algorithm to the problem of identifying the next optimal configuration, we have
modeled the mapping between service zones and participant systems as a bit array, as shown in
Figure 11. The attributes of individual forest zones and participants are encoded to represent the status
of the collaboration at each monitoring interval as a form of genetic sequence.
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Collaboration Planner creates the next generation of chromosomes by transforming them using
simulated evolutions, such as genetic crossovers or mutations. After obtaining a set of candidate
chromosomes, their genetic sequences are scanned to identify the genes (including data pairs) that
violate configuration constraints (as seen in Table 2), which are consequentially excluded from the
candidate pool. The remaining candidates are evaluated using the fitness function to determine the
next optimal configuration. Each chromosome’s fitness for the unmanned forest management IT
ecosystem is obtained using the collaboration score calculation function, which is explained in depth
in the paragraph below.

The number of chromosomes needed to generate the next generation can vary depending on the
problem that needs to be solved. In the worst case, when generating the very first configuration after
initializing a new IT ecosystem, the number of required collaboration score calculations may be equal
to the case in which a genetic algorithm has not been applied. However, once the first chromosome
representing the initial optimal configuration has been selected, the collaboration score calculations for
the following generations can be set to a fixed number; this is possible due to a genetic algorithm’s
feature of fixing the size of the chromosome pool for the generations following the first selection of
the optimal chromosome. This useful capability significantly contributes to reducing the computation
overhead in dynamic reconfiguration, even when the number of participants or service zones increases.
The impact of applying a genetic algorithm is further explored in Section 6, along with the results of
the quantitative experiment.
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5.4. Calculating the Collaboration Score via Cost–Benefit Analysis

In this section, we review the design of the fitness function, which is the second requirement for
applying a genetic algorithm. We have defined a generic cost-benefit analysis model to measure the
degree of collaboration between the unmanned systems participating in an IT ecosystem. The metrics
for cost-benefit analysis may vary widely depending on the domain of the ecosystem; for unmanned
forest management, we chose the metrics shown in Table 3. The factors that incur economically
measurable costs as a result of participant operations are accounted for as cost factors. The metrics that
reflect the degree of correctness and completeness of the collaboration are reflected as benefit factors.
Different sets of metrics might need to be defined for other domains.

Table 3. Cost–benefit factors [23]. Reproduced with permission from Soojin Park, Young B. Park,
ITE arbitrator: A Reference Architecture Framework for Sustainable IT Ecosystems; published by
IEEE, 2016.

Cost Factors

A Cost of human labor for emergency operations ($/h)
B Cost of system asset deprecation ($/h)
C Cost of fuel ($/h)

D~F Cost of sensor asset deprecation ($/h): vision (D), infrared (E), and GPS (F)

Benefit Factors

G~I Sensor asset sensitivity and accuracy (0~1): vision (G), infrared (H), and GPS (I)

J~M

Monitoring coverage (km2/h): may vary depending on zone types or weather
conditions J:
Monitoring scope when there are no mountains and no snow (rain) in the region
(km2/h) K:
Monitoring scope when there are no mountains and there is snow (rain) in the
region (km2/h) L:
Monitoring scope when there are mountains and there is no snow (rain) in the
region (km2/h) M:
Monitoring scope when there are mountains and snow (rain) in the region (km2/h)

Cost factors include labor costs for operating the participating unmanned systems, depreciation
costs for the unmanned system assets during their operation hours, fuel costs to run the systems, and
depreciation costs for various sensor assets, including optical, vision, infrared, and GPS. Labor costs
are accounted for because even self-adaptive systems need human intervention during emergencies,
such as fighting a forest fire. Fully autonomous systems with a labor cost of zero indicate a system
without any human intervention. Costs are evaluated per participant system, and then they are totaled
to obtain the final cost.

The benefit derived from a given participant’s services can vary widely depending on the
environment. This indicates that benefit factors are not determined by the participants themselves
but by the mapping between the participants and their assigned service zones. While cost factors are
deterministic when a participant is chosen, benefit factors are measurable only when they are assigned
to a service zone and are in collaboration with that zone. Therefore, benefit factors are often used as
an average of actual in-service values measured via prolonged monitoring. In case of the “Draught
Monitoring” service goal, its benefit factors mainly focus on the performance of system-embedded
sensors, including optical, vision, infrared, and GPS. In addition to the sensitivity and accuracy of the
monitoring, the coverage of sensors, in terms of area per unit time (km2/h), is also accounted for as a
benefit factor. Note that the monitoring coverage may vary in the same service zone depending on the
weather condition.

Now, we explore the collaboration score calculation function in detail. The function requires an
input of configuration data Con fr, which is defined as a data pair

(
pi, ej

)
indicating an unmanned

system pi assigned to a service zone ej.
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As described in Section 5.3, cost(pi) is solely determined by the choise of the participant pi.
The value of cost(pi) is calculated by adding up the normalized value C fk of the pertinent cost factors
listed in Table 3. For each cost factor, the weight coefficient ηk representing each factor’s significance is
applied; the sum of the weights should add up to 1:

Nc fk =
(C fk − C fmin)

(C fmax − C fmin)
where k = 1, 2, . . . , n (1)

cost(pi) = ∑
k
(ηk × Nc fk) where ∑

k
ηk = 1 (2)

The expected benefit of assigning a participant pi at zone ej, expressed as bene f it
(

pi, ej
)
, is calculated

by adding up the normalized Mb fk values of relevant benefit factors weighted with ηk :

Mb fk =
(B fk − B fmin)

(B fmax − B fmin)
where k = 1, 2, . . . , m (3)

bene f it
(

pi, ej
)
= ∑

k
(ηk ×Mb fk) where ∑

k
ηk = 1 (4)

The collaboration score is calculated using the cost(pi) and bene f it
(

pi, ej
)

values obtained using
Equations (1)–(4), presented above, and it can be adjusted by using appropriate weights when there
are significant differences between the importance of the costs and benefits. If there are no significant
differences, the delta between the cost and benefit is used as the collaboration score, as shown
in Equation (5), promoting maximized return-on-investment. The total collaboration score for a
configuration Con fr is equal to the sum of the collaboration scores for all data pairs

(
pi, ej

)
in the

configuration Con fr:

CollaborationScore
(

pi, ej
)
= w0 × bene f it

(
pi, ej

)
+ w1 × cost

(
pi, ej

)
where ∑|ωi| = 1 and ∏ ωi = −1 (5)

Equations (6)–(8) show the steps used to calculate the collaboration score, assuming UAV1 has
been assigned to zone[0][2] (as seen in Figure 9). The operating cost for UAV1 in executing the Draught
Monitoring service goal consists of depreciation costs for the system asset and sensor assets, and fuel
cost. Each cost factor is assigned an equal weight of 1/3. Regarding the benefit factor weights, sensor
sensitivity (an accuracy metric) is assigned less weight than monitoring coverage (a collaboration
quality metric), and each is given as 0.3 and 0.7, respectively. The following equations are the results of
applying the UAV1 profile data from Table 1:

Cost(UAV1) =
1
3
∗ DeprecaionCost(UAV1) +

1
3
∗ FuelCost(UAV1) +

1
3
∗ DeprecationCosto f Sensor(UAV1)

=
1
3
∗ N(100) +

1
3
∗ N(70) +

1
3
∗ (N(86) + N(50) + N(30)) = 0.31

(6)

Bene f it(UAV1, zone[0][2]) = 0.3 ∗ Sensitivity o f Sensors(UAV1, zone[0][2])+

0.7 ∗MonitoringCoverage (UAV1, zone[0][2]) = 0.3 ∗ (N(0.92) + N(1) + N(1)) + 0.7 ∗ N(100) ≈ 1.02
(7)

where N(x) is a normalized function for each factor:

CollaborationScore(UAV1, zone[0][2]) = Bene f it(UAV1, zone[0][2])− Cost(UAV1, zone[0][2]) = 0.71 (8)

The remaining eight data pairs in Con fr are sequentially processed to calculate their collaboration
scores by repeating the above steps. The added total for each candidate configuration is then compared
to select the configuration with the highest sum, which will be the next optimal configuration.

Figure 12 illustrates the collaboration results displayed on a mobile device running an Android
platform. We can observe the visualization of the currently selected configuration and its total



Sensors 2018, 18, 562 18 of 25

collaboration score of 4.48. In addition to the selected optimal configuration, information on other
candidate configurations is also shown at the bottom of the screen.Sensors 2018, 18, x FOR PEER REVIEW  18 of 25 
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6. Evaluation

This section discusses the quantitatively validated results that contribute to the IT ecosystem via
the architecture framework that supports the dynamic orchestration proposed in this study. Toward
this end, two questions will be validated:

1. Can the proposed framework guarantee that constant services will be provided while adapting to
the internal and external environments faced by the overall IT ecosystem? (sustainability issue)

2. Is the overhead required for reconfiguration of the IT ecosystem an acceptable level, and does it
not show an exponentially increasing pattern as the IT ecosystem expands? (scalability issue)

6.1. Design of Experiment

6.1.1. Evaluation Scope

There are many current limitations to implementing an unmanned forest management system
in the real world that can evaluate the overall performance of the proposed architecture framework
specified in Figure 8 in Section 5. The most critical part among the components in the framework
proposed in this paper is the Orchestration layer that recognizes environmental changes and modifies
the optimal system collaboration configuration dynamically to maintain the sustainability of the IT
ecosystem. Thus, this study set the components in the Orchestration layer, which was bound to the stub
component over the MAPE Core Bundle layer inside the TeamLeader participant system, as a practical
performance evaluation scope of the orchestration mechanism while the simulated unmanned forest
management system was running. To help with understanding, the evaluation scope is highlighted
among the overall structure of the proposed architecture framework in Figure 13.
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6.1.2. Metrics for Evaluation

To test the sustainability and scalability issues that were set as the goal of the evaluation,
the following metric sets are placed:

1. Periodically monitored collaboration score value

The performance of the orchestration mechanism that is conducted in the MAPE Core Bundle
layer by the components that belong to the Orchestration layer was evaluated using the collaboration
score, which is a result value of the fitness function presented in Section 5.4. A trend of the change
in collaboration scores measured after executing the orchestration mechanism in response to various
external environment changes is analyzed and discussed in the description of the evaluation results.

2. The mean required time from sensing an external environmental change by the Collaboration
Monitor that belongs to the Orchestration layer via the Collaboration Analyzer up to the creation of
the next optimal configuration plan by the Collaboration Planner

There are various practical overheads and delay factors, such as a delay in the collaborative
communication layer or a delay in the sub-layer of the system, to provide services after a new
participant system is positioned in a specified location or when participant systems in collaboration
are disabled or new functions are redeployed during the execution of dynamic reconfiguration in
the IT ecosystem that is running in the real world. However, since only overhead elements that
were measurable in the simulated environment are considered currently, the overhead elements were
not included in the current evaluation result values. A mean required time to create the optimal
configuration plan was calculated based on 30 dynamic reconfiguration executions.

6.1.3. Test Bed Specification

We have conducted our experiments with a simulation of the unmanned forest management IT
ecosystem implemented in Java and run on a computer with an Intel i7 processor 3.5 GHz and 16 GB
of RAM.
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6.2. Experimental Results

The verification result of whether or not the IT ecosystem is provided constantly, which answers
the first question, is as follows. A ceaseless change in weather plays a role as an external factor that
causes the evolution in the IT ecosystem of the unmanned forest management system, although the
result is based on a simulated environment. Simulations were conducted to progress the wind intensity,
rain travel path, and locations of fog and clouds across nine forest zones at a certain rate and direction
for weather change. We aimed to prove the adaptation effect of the proposed mechanism by comparing
the cost, benefit, and collaboration score for each of the IT ecosystem configurations measured for cases
in which the orchestration mechanism in response to the environment change was or was not applied.
Furthermore, this study aimed to verify if the proposed orchestration mechanism could provide a
constant performance of collaboration services for the IT ecosystem, even in rapid environmental
changes, by simulating a differential degree of weather changes.

In addition to changes in the external environmental factors, the unmanned forest management IT
ecosystem has an internal factor, fuel consumption, which causes a service outage in the participating
systems. Simulation was set to decrease fuel consumption at a certain rate according to the type of
unmanned system over time by defining fuel consumption per hour. Thus, a system service outage
due to fuel depletion can be another factor of the dynamic reconfiguration mechanism.

The graphs presented in Figure 14 show a trend of collaboration performance changes in the IT
ecosystem for the unmanned forest management system calculated by the Collaboration Analyzer for
every monitoring cycle. Graphs (a) and (c), on the left side of Figure 14, indicate the collaboration
performance monitoring results when the MAPE loop is not running at the Orchestration layer of
the proposed framework, and graphs (b) and (d), on the right side of Figure 14, show the results
when the MAPE loop is running. The horizontal axis in the graph represents the monitoring cycle
that is performed. The vertical axis represents a cost value, benefit value, and collaboration score for
the collaboration configuration at the monitoring cycle. The suspension of all the unmanned forest
management system services assigned to nine zones was verified at the 15th cycle monitoring time
when the orchestration mechanism is not running, regardless of the severity level of the weather
change. Consequently, after the 15th cycle, the monitoring results are insignificant, which is why those
results are not reflected in the graph.

As seen in Figure 14a, when the orchestration mechanism is not running, and the gradual weather
change is simulated externally, a zone, where the participating system does not achieve the service goal,
gradually occurs from the 6th cycle monitoring time. Thus, the benefit values and the collaboration
scores start to decrease, and the values are rapidly dropped from the 8th cycle monitoring time.
Conclusively, in the unmanned forest management system, nearly all the service regions become an
outage state at the 14th cycle monitoring time, resulting in convergence of the benefit value to zero.
As seen in Figure 14b, when rapid weather changes were simulated without running the orchestration
mechanism, the service outage state in the unmanned forest management system started to occur from
the 2nd cycle monitoring time, which was much faster than the service outage state in the gradual
weather change scenario. Although the complete service age of the IT ecosystem was revealed at the
14th cycle monitoring time, which is the same in the above, the mean collaboration calculation score
was −3.3, which was much lower than −1.09 at the time when a gradual weather change occurred.
As expected, the decrease in the collaboration performance rate was much greater when the level of
external change was rapid.
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The two graphs on the right side of Figure 14 show the results that were obtained when the
dynamic reconfiguration mechanism provided by the proposed framework revealed a completely
different pattern. The measurements in Figure 14a, where the reconfiguration mechanism is not
running, exhibit a descending curve from the 6th cycle monitoring time. In Figure 14b which depicts
the results when the dynamic reconfiguration mechanism is running, the measurement maintains
constant values for the cost, benefit, and collaboration score based on when the IT ecosystem operates
until the 15th cycle monitoring time. On the lower side of Figure 14, graphs (c) and (d) display a
comparison of the measurements when a rapid external change occurs, and the result shows the clear
effect of the dynamic reconfiguration mechanism on maintaining constant performance services in
the IT ecosystem. Thus, these verification results prove that the proposed orchestration framework
contributes to maintaining the IT ecosystem via dynamic reconfiguration because the IT ecosystem
appropriately responds to internal and external environmental changes.

Next, the second verification point sought to verify whether or not the overhead, due to the
dynamic reconfiguration mechanism run by the MAPE-K loop that is implemented in the Orchestration
layer, is acceptable. When the “Drought Monitoring” service was provided at nine zones by assigning
12 unmanned systems in the IT ecosystem for the unmanned forest management system discussed in
this study, the average time it took to select the optimal configuration combination measured prior to
applying a genetic algorithm was approximately 4.24 s. In contrast, when the optimal candidates were
selected using the calculation of the collaboration score by generating a set of candidate configurations
through the execution of a genetic algorithm via single thread, the measured average time at the same
condition was only 2.77 milliseconds. This result can be regarded as the effect obtained by limiting the
size of the next generation set generated by applying the genetic algorithm to 200.

Since the time required to select the optimal configuration combination for the same circumstance
was verified, this study aimed to verify which pattern would be expected by the overhead increment
when the IT ecosystem range was expanded. Without applying the genetic algorithm, when the
number of collaboration participation candidate systems was increased by one to 13 systems, the time
required to select the optimal configuration measured at a desktop personal computer (PC) with a
basic specification was approximately 14 min, on average, which was 800-times faster than the time
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required when using 12 systems. Once again, when an additional system was added for a total of
14 systems, it was not possible to obtain the results.

In contrast, when the genetic algorithm was applied, the time required to select the optimal
configuration measured while increasing the number of candidate systems that can participate in
collaboration with the IT ecosystem from 11 to 20 candidates was increased from 2.10 milliseconds
to 5.37 milliseconds, as shown in the graph presented in Figure 15. The increase in the pattern of
time required to select the optimal configuration would be represented by a slope nearly close to a
horizontal straight line if the unit of the vertical y-axis is a second instead of a millisecond. The trend
increased because the time required to select the first optimal configuration increased in proportion
to the increase in the number of participation systems, even though the size of the candidate set of
the next optimal configuration was always limited to a constant number (although that number was
minimal). However, the exponential increase in the time required to select the optimal configuration,
which was discovered in the results of the previous experiment without applying the genetic algorithm,
did not occur. The above verification result proves that the framework proposed in this study not only
supported the consistency of the IT ecosystem, it also solved the scalability issue in the IT ecosystem
although the result was measured based on a limited experiment result in the simulation environment.
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7. Conclusions and Future Work

This study proposes a framework that supports the dynamic orchestration mechanism, which is
one of the core requirements of an IT ecosystem, to ensure that it provides consistent services. The study
complemented and individualized the metamodels that have been defined in previous studies to
develop a framework that supports an IT ecosystem, which was tested using an unmanned forest
management service system in an Android platform-based simulation environment. The proposed
framework provides the orchestration mechanism by which environmental changes are recognized
through constant monitoring. An optimal system collaboration configuration was selected for the
changing environment because the IT ecosystem adapts and evolves according to environmental
changes in a way that is similar to a biological ecosystem. The proposed framework uses a method
that selects a candidate set of optimal configurations by applying a genetic algorithm to resolve the
overhead issue due to the IT ecosystem expansion. As an evaluation function to select the optimal
configuration from among the selected configuration candidates, the performance of collaboration
between unmanned devices was quantified with cost and benefit factors, thereby defining a function
that derives the collaboration score.

Although previous adaptive system-related study results have proposed various types of adaptive
software frameworks and infrastructures, they only focused on the self-adaptive technique of the
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configuration components inside a single system. In addition to studies investigating IT ecosystems,
studies on the system of systems based on the IoT have also been conducted. However, most of those
studies have only proposed conceptual architecture rather than practical, implementable case results.

Thus, the present study is differentiated from previous studies in that it proves the effectiveness
of the proposed framework using quantitative verification results that are applied to practical service
examples by which an actual operation can be verified, even though it was conducted under simulated
environments. The quantitative verification results were analyzed, and the results verified that the
proposed framework was able to reassign a new configuration in accordance with the internal and
external changes that occurred frequently in the IT ecosystem, thereby maintaining constant service.
Furthermore, the experiment results proved that the problem of exponential increase in the overhead
of dynamic reconfiguration, due to IT ecosystem expansion, can be resolved by limiting the size of the
set of candidate configurations by utilizing a genetic algorithm.

Up to now, our studies have focused on problem solving that selects optimal ecosystem
participants to sustain the IT ecosystem. In a future study, the vulnerabilities inherent in the
combination of already-selected optimal systems will be identified prior to collaboration execution.
Toward this end, the potential conflict factors between the participating systems, which can act as
vulnerabilities during collaboration, will be identified using formal model-based verification.
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