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Abstract: The measurement of static vertical deflections on bridges continues to be a first-level
technological challenge. These data are of great interest, especially for the case of long-term bridge
monitoring; in fact, they are perhaps more valuable than any other measurable parameter. This is
because material degradation processes and changes of the mechanical properties of the structure due
to aging (for example creep and shrinkage in concrete bridges) have a direct impact on the exhibited
static vertical deflections. This paper introduces and evaluates an approach to monitor displacements
and rotations of structures using a novel laser and video-based displacement transducer (LVBDT).
The proposed system combines the use of laser beams, LED lights, and a digital video camera,
and was especially designed to capture static and slow-varying displacements. Contrary to other
video-based approaches, the camera is located on the bridge, hence allowing to capture displacements
at one location. Subsequently, the sensing approach and the procedure to estimate displacements and
the rotations are described. Additionally, laboratory and in-service field testing carried out to validate
the system are presented and discussed. The results demonstrate that the proposed sensing approach
is robust, accurate, and reliable, and also inexpensive, which are essential for field implementation.

Keywords: displacement sensor; laser beam; digital video camera; static deflection; long-term
monitoring; bridge

1. Introduction

In the last 60 years there has been a spectacular increase in bridge heritage issues. While these
infrastructures have provided significant benefits to society, an increasing amount of resources are
needed for their maintenance in order to ensure an adequate level safety and comfort. Within
the maintenance tasks, visual inspection is an essential activity, ultimately enabling efficient resource
use. Challenges with this activity have been associated with the need for a significant use of human
resources combined with low efficiency. Additionally, in many cases inspection results show a notable
level of subjectivity, that is, in most cases the bridge inspection results depend on the skill and
experience of the technicians who performed the inspection.

On the other hand, there has been enormous development of sensor technology, increasing
their quality and, overall, dramatically reducing their cost, which has allowed their use for bridge
monitoring applications. Bridge monitoring becomes a useful tool, alongside an inspection with its
conventional procedures, to quantify the actual state of the bridge and its evolution over time. Using
the monitoring results it is possible to implement better bridge preventive maintenance plans, which
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can be also specific for each structure. Among the many parameters that can be monitored on a
bridge, vertical deflection is perhaps the most useful one, as it can be directly related to the in-service
behavior of a bridge. First, all international standards specify the maximum allowable deflection of a
bridge under service loads to ensure its functionality [1,2]. In addition, aging processes, mechanical
degradation, corrosion, and deferred phenomena (creep and shrinkage in case of concrete bridges or
loss of prestressing in case of prestressed/post-tensioned bridges) directly impact vertical deflection.
However, long-term monitoring of the vertical deflection of bridges under service continues to be a
first-level technological challenge, especially in case of long and/or tall bridges and/or if they are in
difficult-to-access places. Finally, bridges are exposed to harsh environmental conditions and exposed
to sever weather. The ideal measurement system is thus:

• accurate, with the ability to measure small displacement changes;
• robust, to withstand varying temperature and humidity and operate under harsh conditions;
• reliable, producing accurate and repeatable measurements; and
• inexpensive, due to the large number of bridges to be monitored.

Several technical solutions exist on the market such as: displacement transformers (e.g., LVDT),
laser distance meters, acoustic and electromagnetic interferometers, total station theodolites, global
positioning system (GPS)-based systems, geophones, accelerometers, etc. However, none of them are
able to fulfill all the requirements previously described.

In recent years, a novel set of solutions has emerged: video-based sensors. This promising and
quickly evolving technology has been driven by the continuous improving of the features of digital
video cameras resulting in rapidly decreasing costs. Today it is possible to get a commercially-available
4K video camera at accessible prices. In addition, the development and wide availability of digital
image processing (DIP) software, initially developed for applications very different from bridge
monitoring, allows one to simplify post-processing tasks to extract the required information. While this
is a promising technology, it is not a technology mature enough to be widely implemented for bridge
monitoring purposes. Several challenges still exist with this technology before it can be implemented
in the field. The first one is concerning resolution and accuracy, which have to be further improved in
order to reach a level of, for instance, an LVDT. The second one is the simplification of post-processing
tasks. A video record is usually a large file and contains a significant amount of excessive information
with only a small portion of it being useful. In order to be able to monitor a structure in real time by
analyzing a video record, the ability to post-process many frames per second (usually 60 fps with a
size of 3840 × 2160 pixels) is critical.

In most of the research published up to date, the video camera is placed away from the bridge on
a fixed location. Typically, the bridge is equipped with one or several targets. The movement of these
targets is obtained through the comparison of individual video frames [3–9]. While the targets can be
tracked, any fixed reference cannot. This solution has some relevant limitations. The first one is related
to the accuracy of the solution. In real bridges it is expected that the video camera will be placed far
from the bridge and, in consequence, the pixel size (which is primary related to the accuracy of this
solution), is thus large. For the case of very large bridges where the expected deflections are large, i.e.,
on the order of tens or hundreds of millimeters, this represents a feasible solution [10,11]. For the case
of stiffer bridges with expected deflections in the millimeter and sub-millimeter range, however, it may
not work. A natural way to reduce the pixel size is the addition of large (and expensive) lenses to
reduce the vision-field of the camera and, in consequence, the pixel size. The second one is that it is
not possible to monitor during night time. A fundamental assumption for this family of solutions is
that the video camera remains fixed over time, which may not be the case. There is another approach,
alternative to the previous one. In this case, the video camera is located on the structure moving jointly
with the target and the fixed reference is visible in the field of view of the video camera [12]. From
the video camera point of view, the fixed reference moves showing an opposite movement of the target.
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A relevant amount of the research published uses video-based sensors to measure the dynamic
response of structures, that is, natural vibration frequency and damping ratio, among others. Also,
the measure is carried out during short periods of time on the order of seconds or minutes. The results
have been compared to accelerometers and/or LVDT [13–20]. The measurement of the short-term
dynamic response of a bridge is technologically less demanding than the one required to capture
long-term changes. In addition, this is a less useful solution because accelerometers fulfill all
the requirements to obtain such measurements: they are robust, accurate, reliable, and inexpensive.

Recently, some interesting work has been carried out to measure inclination, alone or in
combination with displacements, using lasers and videos [21–23]. The results were compared to
conventional inclinometers. However, this approach has the same limitation as the previous one:
inclinometers are already a robust, accurate, reliable and inexpensive solution.

However, this body of work is a useful starting point for the development of a video-based
technology capable of capturing static and slow-varying displacements over long periods of time.
Only a few number of researchers have documented the monitoring of static vertical deflections over a
period of days or weeks [24].

It is worth highlighting in more detail the research performed by Zhao et al. [25,26]. In their work,
a laser device was placed in the fixed position instead of the video camera, which was located on
the structure. The device emits a laser beam, which projects a dot on a projection plate within the field
of vision of the video camera. The video camera moves jointly with this projection plate and both of
them move jointly with the target. When the target moves, the video camera records a movement
of the laser dot, which is opposite the movement of the target. One of the main advantages of this
solution is that low technical requirements are needed for the video camera (no optical zoom, no high
resolution, etc.) because the distance between the projection plate and the video camera is small and
hence also its field of vision. In consequence, the size of a pixel is small. The researchers demonstrated
that it is possible to perform monitoring using a conventional smartphone. This approach, however,
still has some weak points. First, the projection plate is opaque. In consequence, both the laser device
and the video camera are placed on the same side of the projection plate, which causes the laser beam
to have an oblique impact angle on the projection plate. This must be considered when computing
the movement of the target. Second, it is required that the target, the projection plate, and the video
camera move jointly; otherwise it is not possible to calculate the movement of the target. The reason
for this is that inside the field of view only the fixed reference (laser dot) is included.

To the best of the authors’ knowledge, none of the solutions developed to date are capable of
tracking a fixed and a moving reference within the field of vision of the video camera simultaneously.
This paper introduces a novel sensing approach to monitor displacements and rotations on bridges
and structures by combining a laser beam, a video camera, and LED lights. This solution substantially
improves the approach proposed by Zhao et al. [25,26], eliminating the limitations explained earlier.
Additionally, the proposed solution can used any time of the day, day or night, because both the fixed
and the movable reference are light-emitting. Subsequently, the proposed laser and video-based
transducer (LVBDT) is described in detail. A laboratory experiment and an in-service field test to
evaluate the solution’s feasibility are presented and the results discussed.

2. Proposed Sensing Approach

2.1. Equipment and Components

The proposed laser and video-based displacement transducer (LVBDT) is composed of two main
components: the fixed part and the movable part, as illustrated in Figure 1.
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Figure 1. Illustration of laser and video-based displacement transducer (LVBDT): (a) Fixed part, located
on fixed reference (e.g., non-moving location away from bridge); (b) Movable part, located on target
reference (e.g., bridge girder at mid-span).

The fixed part is placed at a non-moving location and to remain fixed at all times. It is composed
by a support fixture holding two laser emitters. The laser emitters used in this research are green dot
lasers with a wavelength of 532 nm, output power 5 mW, class IIIA and a beam divergence of 1 mrad.

The movable part is placed on the structure and moves jointly with it. It is composed of a
video camera and a measurement panel placed on a support fixture. The video camera used in
this research was a Lumix DMC-G80 (Panasonic, Osaka, Japan) with 16 MP and image stabilization,
type 5-axis/5-stop, Dual IS, with a recording speed of 60 fps and an optical zoom of 12–60 mm
f/3.5–5.6. The video camera was not connected to a computer, although this is an option that could
be implemented.

The measurement panel is made of transparent methacrylate with length × height = 300 mm × 200 mm
and a thickness of 5 mm. On the backside, a white paper sheet was added to make the measurement
panel translucent. Additionally, the panel is equipped with three red LED lights (Figure 2a).
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Figure 2. Measurement panel: (a) description and dimensions and (b) coordinate axes.

The two laser beams project dots on the measurement panel on the opposite side of the white
sheet. Inside the field of vision of the video camera there are five references, which are, the three red
LED lights and the two green laser dots (Figure 2a). The three LED lights define a Cartesian coordinate
system (Figure 2b). The dimensions dx and dy corresponding to the distances between the LED lights
are constant and known. The measurement panel should be placed orthogonally to the video camera.
Additionally, the zoom of the video camera should be in its most open position in order to minimize
the fish eye effect. The field of vision of the video camera should be completely inside the measurement
panel and it should include the five previously mentioned references. When movement of the target
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occurs and, in consequence, the same movement of the measurement panel, the fixed references on
it (laser dots) remain fixed, while the movable references (LED lights) move. However, the record
of the video camera will show, in the most general case, that both fixed and movable references
move (in fact, this happens when the video camera moves respectively to the measurement panel).
In the desired case the video camera and the measurement panel move jointly and the record of
the video camera will show that the fixed references move while the movable references do not move.

An ideal measurement system must be robust; otherwise it cannot be used on real structures and
for long-term monitoring. The robustness of our system depends, among others, on the laser device.
The market provides laser pointers able to withstand environmental conditions and with high pointer
stability. If necessary, the laser device can be protected using a cover with a transparent window.

The system can monitor displacements and rotations in plane with the measurement panel plane.
Movements and rotations out of the measurement panel plane cannot be captured.

The recommended range for the laser emitters used in this study is below 30 m in order to
obtain a laser dot diameter below 30 mm. When the distance between the fixed and the movable
reference is larger, low divergence laser emitters should be used, with a divergence of 0.3 mrad or
less. Additionally, a greater measurement panel should be used, in order to ensure that the laser dots
remain inside the measurement panel during the entire monitoring process.

2.2. Computational Approach

Next, the step by step numerical procedure to analyze the video data is described in detail.

2.2.1. Video-to-Frames Extraction

First, the video camera records the five references previously explained, i.e., the three LED lights
and the two laser dots and many other useless information. The video is recorded using an appropriate
frame rate, e.g., at a speed of 60 fps for slowly-varying displacements, or at high speed using special
video cameras when vibrations are to be captured. The possibility to record time-lapse videos is
interesting, especially for long-term monitoring and slow movement. As explained before, the field
of vision of the video camera is inside the measurement panel. Therefore, the videos include three
distinct colors: white, red, and green, which simplifies the post-processing of the data. The recording
file of the video camera, in AVI, MPEG, MOV, WMV, or similar format is, first, decomposed into a
sequence of images or frames. In this case the MATLAB software (Mathworks, Inc., Natick, MA, USA)
was used. Once all frame files are obtained, the post-processing procedure is applied to each individual
image. When the video is recorded in UHD, each frame has 3840 × 2160 pixels. With this current
setup, the field of vision is governed by the size of the measurement panel (300 × 200 mm), which
results in a pixel size of approximately 0.08 mm.

2.2.2. Homography Transform

Although it is expected that the video camera remains perpendicular to the measurement panel
during all the measurement time, a misalignment may occur due to unexpected actions. In consequence,
it is necessary to consider this event and to include a first step in the computational procedure to
correct it.

Neither displacement nor rotation of the frame are required, since both the fixed and
the movable references are inside the frame. Additionally, it is not necessary to re-scale the frame,
because the physical distance between the LED lights is known (this is intrinsic information
of the sensor) and the ratio between the distance between LED lights in pixels and in mm is
obtained in each frame, as explained later. In consequence, the only correction to be applied is
the homography transform [27–31]. This transform recovers the orthogonality between the video
camera and the measurement panel. Figure 3 shows a sample frame before and after application of
the homography transform.
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Figure 3. Sample frame before (a) and after (b) application of homography transform. Figure 3. Sample frame before (a) and after (b) application of homography transform.

2.2.3. Threshold Color Filtering

The second step is to identify, in each frame, the pixels belonging to the five references previously
explained, i.e., the three LED lights and the two laser dots. To achieve that, it is necessary to filter
the frames, in order to delete any unnecessary information and, thereby, reduce the size of the frames.

One of the main advantages of the solution shown is that the references are light-emitters, which
implies that it is able to work under variable and changing natural lighting conditions, including
night. To validate this assumption, the performance of the LVBDT was evaluated under three
significantly different scenarios: during a sunny day, at night, and with the presence of a shadow on
the measurement panel.

All frames were subjected to a threshold color procedure. In this case, the thresholding method
proposed by Huang and Wang [32] was used. The threshold color selected was black and the color
space used was hue-saturation-brightness (HSB). The hue range was 0–255, the saturation range was
0–140 and the brightness range was 0–243. Figure 4 shows a comparison between unprocessed and
processed frames for the three lighting situations.
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As can be seen in Figure 4, the results obtained in this processing step are satisfactory. In addition,
the file size of each frame is approximately 10% of the original file size, which is beneficial from a
computational point of view.

2.2.4. Pixel Identification and Grouping

Next, each frame is transformed into an N-row, 5-column matrix where N is the total number
of frames in the video. The first and second columns include the X and Y coordinates of a pixel,
respectively, and columns three to five include the RGB color values. Each row is associated with one
specific pixel in a frame. The matrix is identified using the time of the frame, which is (n − 1)/t, where
n is the number of the frame and t is the time interval between frames (or inverse of the frame rate).
Next, the pixels belonging to the five different references are identified and grouped. To do so, color
range and proximity criteria are used. A set of color-number thresholds are defined. One color-number
threshold value is defined for the laser dots and the other one for the LED lights. These thresholds are
the same for all frames. The result are five Nref-row, 2-column matrices, where Nref is the number of
pixels belonging to each reference point, i.e., LED or laser dot. The rest of the pixels are deleted.

2.2.5. Determination of the Center of Gravity

The next step is to obtain the coordinates of the center of gravity of each reference. Procedures
to achieve that are available and described in the literature [33–38]. It should be noted that sub-pixel
resolution can be reached using these procedures, which implies, in this particular case, a resolution
better than 0.08 mm. In this work, the weighted center or gravity has been defined according to
the following expressions [38]:

X̂CoG =
∑ xi·Ii

∑ Ii
(1)

ŶCoG =
∑ yi·Ii

∑ Ii
(2)

where X̂CoG and ŶCoG are the coordinates of the center of gravity of the reference, xi and yi are the center
of gravity of each pixel (i1 to Nre f ), and Ii is the intensity of the pixel. This value is obtained from
the ordinate axis of the red or green histograms (depending of the reference) belonging to the red or
green value of the pixel.

At this point, all the information provided by a frame is concentrated in a 5 × 2 matrix and
associated with the time of the frame. For the ith-frame, each row includes the X and Y coordinate
values of the center of gravity of each of the five references, which are the LED lights P1,i, P2,i, and
P3,i and the laser dots L1,i and L2,i: 

P1, i(0)x

P2, i(0)x

P1, i(0)y

P2, i(0)y

P3, i(0)x

L1, i(0)x

L2, i(0)x

P3, i(0)y

L1, i(0)y

L2, i(0)y

 (3)

Next, a transformation is performed on the matrix shown in Equation (3), including translation
and rotation, from the X-Y coordinate system of the frame to the X’-Y’ coordinate system of
the reference points P1,i, P2,i, and P3,i (Figure 2b). The resulting matrix is as follows:

0
P2, i(1)x

0
0

0
L1, i(1)x

L2, i(1)x

P3, i(1)y

L1, i(1)y

L2, i(1)y

 (4)
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Next, conversion factors are applied to the matrix shown in Equation (4), in order to convert pixel
coordinates to physical coordinates:

P2, i(1)x = dx (5)

P3, i(1)y = dy (6)

The matrix is now defined as follows (see Figure 5):

0
dx

0
0

0
L1, i(1)x· dx

P2,i(1)x

L2, i(1)x· dx
P2,i(1)x

dy

L1, i(1)y·
dy

P3,i(1)y

L2, i(1)y·
dy

P3,i(1)y


(7)
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Finally, the absolute values for horizontal distance, vertical distance and inclination angle are
defined for each frame according to the following expressions:

dh,i =
1
2
·
(

L1, i(1)x + L2, i(1)x

)
· dx

P2, i(1)x
(8)

dv,i =
1
2
·
(

L1, i(1)y + L2, i(1)y

)
·

dy

P3, i(1)y
(9)

tan(θi) =
L1, i(3)y − L2, i(3)y

L1, i(3)x − L2, i(3)x
·

dy

P3, i(1)y
·P2, i(1)x

dx
(10)

In this case, “absolute values” refers to the values relative to the beginning of the measurement.
Between the 1st and the i-th frame there is, in a general case, a movement of all references, both

the fixed and movable ones. In fact, a movement of the movable references P1,i, P2,i, and P3,i are only
observed if, during the record, a relative movement between the video camera and the measurement
panel occurs. However, even in this case and since the references P1,i, P2,i, and P3,i define an intrinsic
coordinate reference and L1,i and L2,i are, in fact, fixed references, it is possible to define the real
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movement of the target, through the variation of the coordinates of L1,i and L2,i referred to the local
axis X’-Y’, according to the following expressions and illustrated by Figure 6:

δh = dx,i − dx,1 (11)

δv = dv,i − dv,1 (12)
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One of the main advantages of this proposed approach, and also its main novelty, is that every
frame includes both the fixed and the movable references. In consequence, the measurement is
independent of the position of the video camera. The system is capable of capturing both the horizontal
and vertical movement as well as the rotation of the target, all of them contained in the measurement
panel plane. The range of the measurement depends on the dimensions of the measurement panel
and the resolution depends on the quality of the video camera. Another relevant advantage is that
the post-processing is simple and computationally inexpensive, and can thus be performed on a regular
desktop or laptop computer. The procedure supports every recording speed (from ultrahigh speed to
time lapse recording) and every video camera resolution (from 720 p to the new 8K).

This solution provides sub-pixel accuracy for displacements, both horizontal and vertical.
For the case of rotations, it is less accurate, since it is inversely proportional to the distance between
laser dots.

It is not necessary that the laser beams should impact perpendicular to the measurement panel as
long as the panel moves only within its plane. However, if out-of-plane movements and/or rotations
of the panel are expected to occur (e.g., due to creep, shrinkage and thermal variations in case of
concrete bridges and long-term monitoring, or even abnormal or non-expected movements and/or
rotations), the lack of orthogonality between laser beams and measurement panel introduce non-real
movements. These are proportional to cos(θ), where θ is the angle between the laser beams and
the measurement panel. Consequently, it is recommended that the laser beams impact perpendicular
to the measurement panel.

While the proposed solution has been primarily designed to measure static and low-varying
displacements and rotations, the authors have plans to evaluate it for vibration measurements in
the near future. Anticipated adjustments are related to frame rate and fixation of the movable part to
ensure proper coupling.
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3. Experimental Evaluation

3.1. Laboratory Testing

A laboratory experiment was performed to compare the proposed LVBDT with a traditional linear
variable differential transformer (LVDT), which served as the reference measurement. The movable
part of the LVBDT was placed on a horizontal steel beam connected to a dynamic tension—compression
actuator, model MTS 244.51 (MTS, Eden Prairie, MN, USA), with a capacity of ±1000 kN. The actuator
had a built-in LVDT with a range of 250 mm and an error < 1% over its range. The actuator was
connected to an ultra-rigid frame. The fixed part of the proposed LVBDT was placed on the floor of
the lab, at a distance of 15 m (Figure 7). The distance between camera lens and panel was 300 mm and
the pixel size was approximately 0.08 mm.Sensors 2018, 18, x  10 of 15 
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Figure 7. Laboratory setup: (a) General overview with movable part and (b) Close-up view of fixed part.

During the test, the piston of the hydraulic actuator was moved down slowly, remaining at this
position for several seconds and, finally, it was moved down up to its initial position. The maximum
displacement was 20 mm. The displacement rate was 0.2 mm/s. During testing, the vertical deflection
was measured and recorded using both the LVDT of the hydraulic jack and the proposed LVBDT.
In this case, although the recording speed of the video camera was 60 fps, only 1 fps was used
for post-processing. A comparison of the obtained displacements from both sensors are shown in
Figure 8a.
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Figure 8. Results from laboratory experiment: (a) Measured vertical displacements vs. time for
laboratory experiment and (b) LVBDT vs. LVDT correlation plot with 95% prediction limits.
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As can be observed in Figure 8a, the displacement curves are in close agreement, i.e.,
the LVBDT shows very similar results compared to the reference measurement (LVDT). The maximum
displacement difference was found to be 0.6 mm, which appears to be due to small variations in
the color intensity of the pixels belonging to the different reference points or the presence of shadows
that partially cut the reference point, thereby slightly affecting the center of gravity. The correlation
between the two measurements is high, as can be observed visually in Figure 8b. A simple linear
regression produced a slope of 0.98, that is, on average, the LVBDT gives displacements that are
2% lower compared to the LVDT displacements. The squared correlation coefficient was found to
be 99.9%. The mean and standard deviation of the residuals, which are the differences between
the displacements obtained from the two sensors, was 0.19 mm and 0.23 mm, respectively. In this test,
no rotation was applied.

3.2. In-Service Field Testing

An in-service load test was performed in order to evaluate the response of the proposed LVBDT
under realistic field conditions. The tested structure was the Loiola Station Bridge located in the City of
San Sebastian, Spain and is an 11-span continuous composite steel-concrete bridge. The span lengths
are 50.4 + 21.6 + 24.0 + 6 × 21.6 + 24.0 + 26.4 m corresponding to a total length 277.2 m. The cross
section includes to steel box girders connected with transverse I-beam girders. Both the box and
the I-beam girders have an in-situ concrete slab of 0.25 m thickness, as shown in Figures 9 and 10.

During the load test, among other parameters, vertical deflection at the mid-span cross section of
Span 1 was measured (Figure 9a). These displacements were measured using the proposed LVBDT as
well as with a conventional LVDT. For case of the LVBDT, the fixed part was placed outside the deck, on
the abutment between the two rail lanes, and the movable part was placed on the target cross-section,
on the deck and between the two rail lanes. The distance between the fixed and the movable parts was
approximately 26 m (Figures 9 and 10). The distance between camera lens and panel was 300 mm and
the pixel size was approximately 0.08 mm.
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During the load test, several trials were carried out by passing a train over the deck from Abutment
1 to Abutment 2 at different speeds (from low to high). Both LVDT and LVBDT recorded the variation of
the vertical deflection of the mid-span cross section over time. Similarly to the lab experiment, although
the recording speed of the video camera was 60 fps, only 1 fps was post-processed. A comparison of
the obtained displacements from both sensors for one select trial are shown in Figure 11. In this case,
the train speed was 5.0 km/h.
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As can be observed in Figure 11a, the displacement curves are again in close agreement.
The maximum displacement difference was found to be 0.2 mm. For the case of this field test, additional
causes of discrepancies can be considered. The most important one being that the fixed part was
placed on the abutment between the rail lanes, which may have been experiencing minute movements
during testing, thereby affecting the measurement. The correlation of the two measurements is high,
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as can be observed visually in Figure 11b. A simple linear regression produced a slope of 1.026, that is,
on average, the LVBDT gives displacements that are 2.6% higher compared to the LVDT displacements.
The squared correlation coefficient was found to be 99.8%. The mean and standard deviation of
the residuals, which are the differences between the displacements obtained from the two sensors,
was 0.04 mm and 0.05 mm, respectively. Due to the very high torsional stiffness of this bridge, rotation
could not be measured.

4. Summary and Conclusions

To date, long-term monitoring of vertical bridge deflections is a technological challenge not
well solved. The different technical solutions that can be found on the market only partially address
the requirements, especially for the case of large, tall and/or very stiff bridges, or for the ones located
in remote places. Hence, an accurate, robust, reliable, and inexpensive solution is needed.

This paper presents a novel sensing approach to measure the displacements and rotations in
bridges and structures using laser beams, LED lights, and a digital video camera, referred to as
laser and video-based displacement transducer (LVBDT). This solution has been especially designed
for the long-term monitoring of slowly varying displacements acquired during any time of the day.
The LVBDT overcomes some of the limitations shown by the previous solutions. The main novelty is
that, inside the field of vision, there are both the fixed and the movable references. In consequence,
it is not necessary that the video camera remains fixed or moves jointly with the target; in fact,
the position and/or the movement of the video camera during the monitoring has no impact on
the measurement. Another advantage is the complete insensitivity to changing lighting conditions,
which can be a significant problem for other contemporary video-based approaches. Contrary to other
video-based approaches, the camera is located on the bridge, hence allowing to capture displacements
at one location.

This paper describes the proposed sensor and the computational procedure to obtain
the displacements and rotations. The post-processing scheme is simple and computationally
inexpensive, and can be performed with off-the-shelf desktop or laptop computers. The laboratory
experiment and in-service field test demonstrate the promise of the proposed approach. The differences
between the proposed LVBDT and LVDT was within ±2%, which is acceptable for bridge deflection
measurements. Future work will look at improving the computational approach, developing an
integrated prototype, and evaluating the solution for vibration measurements.

5. Patents

A Spanish patent (Patent No.: P201730410) has been submitted and is currently pending [39].
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