Supplementary Material

Table S1. List of attribute candidates

No.	Attribute Name	Description
1	$A v g_{\text {ACCX }}$	Average of acceleration on lateral axis
2	$A v g_{\text {ACCY }}$	Average of acceleration on vertical axis
3	$A v g_{\text {ACCZ }}$	Average of acceleration on longitudinal axis
4	$A v g_{\text {GYROX }}$	Average of angular velocity around lateral axis
5	$A v g_{\text {GYROY }}$	Average of angular velocity around vertical axis
6	$A v g_{\text {GYROZ }}$	Average of angular velocity around longitudinal axis
7	$S D_{\text {ACCX }}$	Standard deviation of acceleration on lateral axis
8	$S D_{\text {ACCY }}$	Standard deviation of acceleration on vertical axis
9	$S D_{\text {ACCZ }}$	Standard deviation of acceleration on longitudinal axis
10	$S D_{\text {GYROX }}$	Standard deviation of angular velocity around lateral axis
11	$S D_{\text {GYROY }}$	Standard deviation of angular velocity around vertical axis
12	$S D_{\text {GYROZ }}$	Standard deviation of angular velocity around longitudinal axis
13	$N Z C_{\text {ACCX }}$	Number of zero-crossing of acceleration on lateral axis
14	$N Z C_{\text {ACCY }}$	Number of zero-crossing of acceleration on vertical axis
15	$N Z C_{\text {ACCZ }}$	Number of zero-crossing of acceleration on longitudinal axis
16	$N Z C_{\text {GYROX }}$	Number of zero-crossing of angular velocity around lateral axis
17	$N Z C_{\text {GYROY }}$	Number of zero-crossing of angular velocity around vertical axis
18	$N Z C_{\text {GYROZ }}$	Number of zero-crossing of angular velocity around longitudinal axis
19	$A v g Z C I_{\text {ACCX }}$	Average of zero-crossing interval of acceleration on lateral axis
20	$A v g Z C I_{\text {ACCY }}$	Average of zero-crossing interval of acceleration on vertical axis
21	$A v g Z C I_{\text {ACCZ }}$	Average of zero-crossing interval of acceleration on longitudinal axis
22	$A v g Z C I_{\text {GYROX }}$	Average of zero-crossing interval of angular velocity around lateral axis
23	$A v g Z C I_{\text {GYROY }}$	Average of zero-crossing interval of angular velocity around vertical axis
24	$A v g Z C I_{\text {GYROZ }}$	Average of zero-crossing interval of angular velocity around longitudinal axis
25	$S D Z C I_{\text {ACCX }}$	Standard deviation of zero-crossing interval of acceleration on lateral axis
26	$S D Z C I_{\text {ACCY }}$	Standard deviation of zero-crossing interval of acceleration on vertical axis
27	$S D Z C I_{\text {ACCZ }}$	Standard deviation of zero-crossing interval of acceleration on longitudinal axis
28	$S D Z C I_{\text {GYROX }}$	Standard deviation of zero-crossing interval of angular velocity around lateral axis
29	$S D Z C I_{\text {GYROY }}$	Standard deviation of zero-crossing interval of angular velocity around vertical axis
30	SDZCIGYROZ	Standard deviation of zero-crossing interval of angular velocity around longitudinal axis
31	$S D Z C I U_{\text {ACCX }}$	Standard deviation of time interval of adjacent local maxima of acceleration on lateral axis
32	$S D Z C I U_{\text {ACCY }}$	Standard deviation of time interval of adjacent local maxima of acceleration on vertical axis

33	$S D Z C I U_{\text {ACCZ }}$	Standard deviation of time interval of adjacent local maxima of acceleration on longitudinal axis
34	$S D Z C I U_{\text {GYrox }}$	Standard deviation of time interval of adjacent local maxima of angular velocity around lateral axis
35	$S D Z C I U_{\text {GYROY }}$	Standard deviation of time interval of adjacent local maxima of angular velocity around vertical axis
36	$S D Z C I U_{\text {GYROZ }}$	Standard deviation of time interval of adjacent local maxima of angular velocity around longitudinal axis
37	SDZCIL ${ }_{\text {ACCX }}$	Standard deviation of time interval of adjacent local minima of acceleration on lateral axis
38	SDZCIL ${ }_{\text {ACCY }}$	Standard deviation of time interval of adjacent local maxima of acceleration on vertical axis
39	$S D Z C I L_{\text {ACCZ }}$	Standard deviation of time interval of adjacent local maxima of acceleration on longitudinal axis
40	SDZCIL ${ }_{\text {GYROX }}$	Standard deviation of time interval of adjacent local maxima of angular velocity around lateral axis
41	$S D Z C I L_{\text {GYROY }}$	Standard deviation of time interval of adjacent local maxima of angular velocity around vertical axis
42	$S D Z C I L_{\mathrm{GYROZ}}$	Standard deviation of time interval of adjacent local maxima of angular velocity around longitudinal axis
43	$S D 1_{\text {ACCX }}$	Standard deviation of points perpendicular to the axis of line of identity of Poincaré plot of acceleration on lateral axis
44	$S D 1_{\text {ACCY }}$	Standard deviation of points perpendicular to the axis of line of identity of Poincaré plot of acceleration on vertical axis
45	$S D 1_{\text {ACCZ }}$	Standard deviation of points perpendicular to the axis of line of identity of Poincaré plot of acceleration on longitudinal axis
46	$S D 1_{\text {GYROX }}$	Standard deviation of points perpendicular to the axis of line of identity of Poincaré plot of angular velocity around lateral axis
47	$S D 1_{\text {GYROY }}$	Standard deviation of points perpendicular to the axis of line of identity of Poincaré plot of angular velocity around vertical axis
48	$S D 1_{\text {GYROZ }}$	Standard deviation of points perpendicular to the axis of line of identity of Poincaré plot of angular velocity around longitudinal axis
49	$S D 2_{\text {accx }}$	Standard deviation of points along the axis of line of identity of Poincaré plot of acceleration on lateral axis
50	$S D 2_{\text {ACCY }}$	Standard deviation of points along the axis of line of identity of Poincaré plot of acceleration on vertical axis
51	$S D 2^{\text {ACCZ }}$	Standard deviation of points along the axis of line of identity of Poincaré plot of acceleration on longitudinal axis
52	$S D 2_{\text {GYROX }}$	Standard deviation of points along the axis of line of identity of Poincaré plot of angular velocity around lateral axis
53	$S D 2_{\text {GYROY }}$	Standard deviation of points along the axis of line of identity of Poincaré plot of angular velocity around vertical axis
54	$S D 2_{\text {GYROZ }}$	Standard deviation of points along the axis of line of identity of Poincaré plot of angular velocity around longitudinal axis
55	$F M A X_{\text {ACCX }}$	Maximum value of frequency of acceleration on lateral axis
56	$F^{\prime} M A X_{\text {ACCY }}$	Maximum value of frequency of acceleration on vertical axis
57	$F M A X_{\text {ACCZ }}$	Maximum value of frequency of acceleration on longitudinal axis
58	$F M A X_{\text {GYROX }}$	Maximum value of frequency of angular velocity around lateral axis
59	$F_{M A X}{ }_{\text {GYROY }}$	Maximum value of frequency of angular velocity around vertical axis

60	$F M A X_{\text {GYROZ }}$	Maximum value of frequency of angular velocity around longitudinal axis
61	Kur $_{\text {ACCX }}$	Kurtosis of frequency of acceleration on lateral axis
62	Kur ${ }_{\text {ACCY }}$	Kurtosis of frequency of acceleration on vertical axis
63	Kur ${ }_{\text {ACCZ }}$	Kurtosis of frequency of acceleration on longitudinal axis
64	Kur ${ }_{\text {GYROX }}$	Kurtosis of frequency of angular velocity around lateral axis
65	Kur ${ }_{\text {GYROY }}$	Kurtosis of frequency of angular velocity around vertical axis
66	Kur ${ }_{\text {GYROZ }}$	Kurtosis of frequency of angular velocity around longitudinal axis
67	Skew $_{\text {ACCX }}$	Skewness of frequency of acceleration on lateral axis
68	Skew $_{\text {ACCY }}$	Skewness of frequency of acceleration on vertical axis
69	Skew $_{\text {ACCZ }}$	Skewness of frequency of acceleration on longitudinal axis
70	Skew ${ }_{\text {GYROX }}$	Skewness of frequency of angular velocity around lateral axis
71	Skew ${ }_{\text {GYROY }}$	Skewness of frequency of angular velocity around vertical axis
72	Skew ${ }_{\text {GYROZ }}$	Skewness of frequency of angular velocity around longitudinal axis
73	MAX ${ }_{\text {ACCX }}$	Maximum value of acceleration on lateral axis
74	MAX ${ }_{\text {ACCY }}$	Maximum value of acceleration on vertical axis
75	$M A X_{\text {ACCZ }}$	Maximum value of acceleration on longitudinal axis
76	MAX $X_{\text {GYROX }}$	Maximum value of angular velocity around lateral axis
77	MAX $X_{\text {GYROY }}$	Maximum value of angular velocity around vertical axis
78	$M A X_{\text {GYROZ }}$	Maximum value of angular velocity around longitudinal axis
79	$A v g_{\text {ACCXY }}$	Average of acceleration ratio of the lateral axis to the vertical axis
80	$A v g_{\text {Acciz }}$	Average of acceleration ratio of the lateral axis to the longitudinal axis
81	$A v g_{\text {ACCYZ }}$	Average of acceleration ratio of the vertical axis to the longitudinal axis
82	$A v g_{\text {GYROXY }}$	Average of angular velocity ratio of the lateral axis to the vertical axis
83	$A v g_{\text {GYROXZ }}$	Average of angular velocity ratio of the lateral axis to the vertical axis
84	$A v g_{\text {GYROYZ }}$	Average of angular velocity ratio of the vertical axis to the longitudinal axis
85	$S D_{\text {ACCXY }}$	Standard deviation of acceleration ratio of the lateral axis to the vertical axis
86	$S D_{\text {ACCXZ }}$	Standard deviation of acceleration ratio of the lateral axis to the longitudinal axis
87	$S D_{\text {ACCYZ }}$	Standard deviation of acceleration ratio of the vertical axis to the longitudinal axis
88	$S D_{\text {GYROXY }}$	Standard deviation of angular velocity ratio of the lateral axis to the vertical axis
89	$S D_{\text {GYroxz }}$	Standard deviation of angular velocity ratio of the lateral axis to the vertical axis
90	$S D_{\text {GYROYZ }}$	Standard deviation of angular velocity ratio of the vertical axis to the longitudinal axis
91	$N Z C_{\text {ACCXY }}$	Number of zero-crossing of acceleration ratio of the lateral axis to the vertical axis
92	$N Z C_{\text {ACCXZ }}$	Number of zero-crossing of acceleration ratio of the lateral axis to the longitudinal axis
93	$N Z C_{\text {ACCYZ }}$	Number of zero-crossing of acceleration ratio of the vertical axis to the longitudinal axis
94	$N Z C_{\text {GYROXY }}$	Number of zero-crossing of angular velocity ratio of the lateral axis to the vertical axis
95	$N Z C_{\text {GYROXZ }}$	Number of zero-crossing of angular velocity ratio of the lateral axis to the vertical axis

96	$N Z C_{\text {GYroyz }}$	Number of zero-crossing of angular velocity ratio of the vertical axis to the longitudinal axis
97	$A v g Z C I_{\text {ACCXY }}$	Average of zero-crossing interval of acceleration ratio of the lateral axis to the vertical axis
98	$A v g Z C I_{\text {ACCxZ }}$	Average of zero-crossing interval of acceleration ratio of the lateral axis to the longitudinal axis
99	$A v g Z C I_{A C C Y Z}$	Average of zero-crossing interval of acceleration ratio of the vertical axis to the longitudinal axis
100	$A v g Z C I_{\text {GYROXY }}$	Average of zero-crossing interval of angular velocity ratio of the lateral axis to the vertical axis
101	$A v g Z C I_{\text {GYROXZ }}$	Average of zero-crossing interval of angular velocity ratio of the lateral axis to the vertical axis
102	$A v g Z C I_{\text {GYROYZ }}$	Average of zero-crossing interval of angular velocity ratio of the vertical axis to the longitudinal axis
103	$S D Z C I_{\text {ACCXY }}$	Standard deviation of zero-crossing interval of acceleration ratio of the lateral axis to the vertical axis
104	$S D Z C I_{\text {ACCXZ }}$	Standard deviation of zero-crossing interval of acceleration ratio of the lateral axis to the longitudinal axis
105	$S D Z C I_{\text {ACCYZ }}$	Standard deviation of zero-crossing interval of acceleration ratio of the vertical axis to the longitudinal axis
106	$S D Z C I_{\text {GYROXY }}$	Standard deviation of zero-crossing interval of angular velocity ratio of the lateral axis to the vertical axis
107	$S D Z C I_{\text {GYROXZ }}$	Standard deviation of zero-crossing interval of angular velocity ratio of the lateral axis to the vertical axis
108	$S D Z C I_{\text {GYROYZ }}$	Standard deviation of zero-crossing interval of angular velocity ratio of the vertical axis to the longitudinal axis
109	$S D Z C I U_{\text {ACCXY }}$	Standard deviation of time interval ratio of adjacent local maxima of acceleration of the lateral axis to the vertical axis
110	$S D Z C I U_{\text {ACCXZ }}$	Standard deviation of time interval ratio of adjacent local maxima of acceleration of the lateral axis to the vertical axis
111	$S D Z C I U_{\text {ACCyZ }}$	Standard deviation of time interval ratio of adjacent local maxima of acceleration of the vertical axis to the longitudinal axis
112	$S D Z C I U_{\text {GYRoXy }}$	Standard deviation of time interval ratio of adjacent local maxima of angular velocity of lateral axis to the vertical axis
113	$S D Z C I U_{\text {GYRoxz }}$	Standard deviation of time interval ratio of adjacent local maxima of angular velocity of lateral axis to the vertical axis
114	$S D Z C I U_{\text {GYRoyz }}$	Standard deviation of time interval ratio of adjacent local maxima of angular velocity of vertical axis to the longitudinal axis
115	$S D Z C I L_{\text {ACCXY }}$	Standard deviation of time interval ratio of adjacent local minima of acceleration of the lateral axis to the vertical axis
116	$S D Z C I L_{\text {ACCXZ }}$	Standard deviation of time interval ratio of adjacent local minima of acceleration of the lateral axis to the vertical axis
117	$S D Z C I L_{\mathrm{ACCYZ}}$	Standard deviation of time interval ratio of adjacent local minima of acceleration of the vertical axis to the longitudinal axis
118	SDZCIL ${ }_{\text {GYROXY }}$	Standard deviation of time interval ratio of adjacent local minima of angular velocity of lateral axis to the vertical axis
119		Standard deviation of time interval ratio of adjacent local minima of angular velocity of lateral axis to the vertical axis

120	SDZCIL ${ }_{\text {GYROYZ }}$	Standard deviation of time interval ratio of adjacent local minima of angular velocity of vertical axis to the longitudinal axis
121	$S D 1_{\text {ACCXY }}$	Standard deviation of points perpendicular to the axis of line of identity of Poincare plot of acceleration ratio on the lateral axis to the vertical axis
122	$S D 1_{\text {ACCXZ }}$	Standard deviation of points perpendicular to the axis of line of identity of Poincare plot of acceleration ratio on the lateral axis to the longitudinal axis
123	$S D 1_{\text {ACCYZ }}$	Standard deviation of points perpendicular to the axis of line of identity of Poincare plot of acceleration ratio on the vertical axis to the longitudinal axis
124	$S D 1_{\text {GYROXY }}$	Standard deviation of points perpendicular to the axis of line of identity of Poincaré plot of angular velocity ratio around lateral axis to the vertical axis
125	$S D 1_{\text {GYRoxz }}$	Standard deviation of points perpendicular to the axis of line of identity of Poincaré plot of angular velocity ratio around lateral axis to the longitudinal axis
126	$S D 1_{\text {GYROYZ }}$	Standard deviation of points perpendicular to the axis of line of identity of Poincaré plot of angular velocity ratio around vertical to the longitudinal axis
127	$S D 2_{\text {accuy }}$	Standard deviation of points along to the axis of line of identity of Poincaré plot of acceleration ratio on the lateral axis to the vertical axis
128	$S D 2_{\text {ACCXZ }}$	Standard deviation of points along to the axis of line of identity of Poincare plot of acceleration ratio on the lateral axis to the longitudinal axis
129	$S D 2_{\text {ACCYZ }}$	Standard deviation of points along to the axis of line of identity of Poincaré plot of acceleration ratio on the vertical axis to the longitudinal axis
130	$S D 2_{\text {GYROXY }}$	Standard deviation of points along to the axis of line of identity of Poincaré plot of angular velocity ratio around lateral axis to the vertical axis
131	$S D 2_{\text {GYRoxz }}$	Standard deviation of points along to the axis of line of identity of Poincaré plot of angular velocity ratio around lateral axis to the longitudinal axis
132	$S D 2_{\text {GYROYZ }}$	Standard deviation of points along to the axis of line of identity of Poincare plot of angular velocity ratio around vertical to the longitudinal axis
133	$F M A X_{\text {ACCXY }}$	Maximum value of frequency of acceleration ratio of lateral axis to the vertical axis
134	FMAX ${ }_{\text {ACcxz }}$	Maximum value of frequency of acceleration ratio of lateral axis to the longitudinal axis
135	$F M A X_{\text {ACCYz }}$	Maximum value of frequency of acceleration ratio of the vertical axis to the longitudinal axis
136	$F M A X_{\text {GYROXY }}$	Maximum value of frequency of angular velocity ratio around lateral axis to the vertical axis
137	$F M A X_{\text {GYROXZ }}$	Maximum value of frequency of angular velocity ratio around the lateral axis to the vertical axis
138	$F M A X_{\text {GYROYZ }}$	Maximum value of frequency of angular velocity ratio around the vertical axis to the longitudinal axis
139	Kur ${ }_{\text {ACCXY }}$	Kurtosis of frequency of acceleration ratio of the lateral axis to the vertical axis
140	Kur ${ }_{\text {ACcxz }}$	Kurtosis of frequency of acceleration ratio of the lateral axis to the longitudinal axis
141	Kur ${ }_{\text {ACCYZ }}$	Kurtosis of frequency of acceleration ratio of the vertical axis to the longitudinal axis
142	Kur ${ }_{\text {GYROXY }}$	Kurtosis of frequency of angular velocity ratio around the lateral axis to the vertical axis
143	Kur ${ }_{\text {GYROXZ }}$	Kurtosis of frequency of angular velocity ratio around the lateral axis to the longitudinal axis

144	Kur ${ }_{\text {GYROYZ }}$	Kurtosis of frequency of angular velocity ratio around the vertical axis to the longitudinal axis
145	Skew ${ }_{\text {ACCXY }}$	Skewness of frequency of acceleration ratio of the lateral axis to the vertical axis
146	Skew ${ }_{\text {accxz }}$	Skewness of frequency of acceleration ratio of the lateral axis to the longitudinal axis
147	Skew ${ }_{\text {accyz }}$	Skewness of frequency of acceleration ratio of the vertical axis to the longitudinal axis
148	Skew $_{\text {GYROXY }}$	Skewness of frequency of angular velocity ratio around the lateral axis to the vertical axis
149	Skew $_{\text {GYroxz }}$	Skewness of frequency of angular velocity ratio around the lateral axis to the longitudinal axis
150	Skew $_{\text {GYroyz }}$	Skewness of frequency of angular velocity ratio around the vertical axis to the longitudinal axis
151	AvgSum $_{\text {ACCXY }}$	Average value of lateral axis and vertical axis acceleration
152	AvgSum ${ }_{\text {ACCXZ }}$	Average value of lateral axis and longitudinal axis acceleration
153	A^{\prime} Sum $_{\text {ACCYZ }}$	Average value of vertical axis and longitudinal axis acceleration
154	AvgSum ${ }_{\text {ACCXYZ }}$	Average value of angular velocity around lateral axis, vertical axis and longitudinal axis
155	AvgDifL $R_{\text {ACCX }}$	Average difference of acceleration on lateral axis when subject stamps on the ground
156	$A v g D i f L R_{\text {ACCyz }}$	Average difference of acceleration of the vertical axis to the longitudinal axis when subject stamps on the ground
157	$A v g D i f L R_{\text {GYRox }}$	Average difference of angular velocity of vertical axis around to the lateral axis when subject stamps on the ground
158	AvgDifLRG ${ }_{\text {ACCX }}$	Average difference of acceleration between left and right on lateral axis
159	AvgDifLRG ${ }_{\text {ACCY }}$	Average difference of acceleration between left and right on vertical axis
160	$A v g D i f L R G_{\text {ACCZ }}$	Average difference of acceleration between left and right on longitudinal axis
161	AvgDifL $\mathrm{FG}_{\text {GYroy }}$	Average difference between left and right angular velocity of vertical axis around to the lateral axis
162	AvgSumF ACCxz	An average of the sum of the lateral axis acceleration and the longitudinal axis acceleration when forward acceleration is generated
163	$\operatorname{Var} R_{\text {ACCX }}$	Variance of lateral axis acceleration when an acceleration signal is applied to the rear during walking
164	$\operatorname{Var} R_{\text {ACCY }}$	Variance of vertical axis acceleration when an acceleration signal is applied to the rear during walking
165	$\operatorname{Var} R_{\text {GYROZ }}$	Variance of angular velocity around longitudinal axis when an acceleration signal is applied to the rear during walking

