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Abstract: Chinese Gaofen-3 (GF-3), a vital satellite for high-resolution earth observation, was the first
C-band polarimetric synthetic aperture radar (SAR) launched in China with a resolution of up to one
meter. Polarimetric SAR can obtain the complete physical scattering mechanisms of targets, thereby
having the potential to differentiate objects. In this paper, several classification methods are briefly
summarized and the types of features that should be chosen during classification are discussed.
A pre-classification step is introduced to reduce the workload of precise labeling. The Random Forest
classifier, which performs well for many other classification tasks, is used for the initial land cover
classification. Then, based on a polarimetric constant false-alarm rate (CFAR) edge detector, a fast
super-pixel generation method for polarimetric SAR image is proposed, which does not require
the adjustment of parameters in advance. Following that, majority vote is conducted on the initial
classification result based on the super-pixels, so that the classification result can be optimized to
better meet the mapping requirements. The experimental results based on GF-3 polarimetric SAR
data verify the effectiveness of proposed procedure and demonstrate that GF-3 data has excellent
performance in land cover classification.

Keywords: GF-3 satellite; polarimetric synthetic aperture radar (PolSAR); land cover classification;
Random Forest; super-pixel segmentation

1. Introduction

Chinese Gaofen-3 (GF-3), launched August 2016, was the first Chinese C-band polarimetric
synthetic aperture radar (SAR). The GF-3 system has high spatial resolution, multi-polarization
imaging, and all-weather, all-day observation. The GF-3 system remote sensing product can be
used for applications such as marine environment monitoring, resource investigation, and disaster
prevention and evaluation [1].

Land cover classification is one of the most important applications in the field of polarimetric SAR
research. The classification results can be either directly used in mapping and national land resource
statistical research, or as the input for other applications. In the fully polarimetric SAR data, the targets’
structure information can be interpreted as the sum of surface scattering, double-bounce scattering and
volume scattering. Surface scattering corresponds to rough surfaces such as bare soil and sand land.
Double-bounce scattering relates to dihedral corners such as artificial targets’ ground-wall corners.
Volume scattering is associated with random oriented dipoles such as the crown of a tree. As such,
polarimetric SAR has the potential to differentiate vegetation, bare land, buildings, water bodies,
and so on.
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Generally, two methods are available for polarimetric SAR classification: polarimetric-decomposition
theorems and statistics-based methods. Even though many classification methods are proposed,
they lack of versatility, resulting in dissatisfying classification accuracies [2–7].

Polarimetric-decomposition theorems are mainly based on model decomposition or eigenvalue
decomposition. Several traditional model-decomposition methods decompose the polarimetric matrix
into the sum of several parts, such as Huynen decomposition, Freeman-Durden decomposition,
Yamaguchi decomposition, and Cameron decomposition [3–7], which all have good physical
interpretability. However, these methods still suffer from many challenges. From the authors’
perspective, the main issues include ambiguity and model mismatch. Ambiguity means one scattering
form can be interpreted as many scattering structures, which leads to a large area of false identifications.
For example, the crown of trees will cause high-volume scattering proportion, but the rotation of
buildings also increases the volume scattering proportion, implying that high-volume scattering can
be related to multiple categories. Model mismatch always occurs when the polarimetric data are
decomposed with incorrect polarimetric models that do not match the ground objects’ real scattering
mechanisms. Therefore, the volume scattering power is overestimated, and negative power will be
generated. Sometimes, the polarimetric data of some crops generate puzzling results after Freeman
decomposition. Part of the reason for this occurrence is that the leaves and branches of the crops do
not match the stochastic volume scattering model. Generally, erroneous estimations mainly exist in
the volume scattering models. Therefore, a series of new polarimetric-decomposition methods were
proposed, such as Arii decomposition [8] and General Polarimetric Model-Based Decomposition [9].
These methods select the optimal volume scattering model by calculating a constrained optimization
problem. In General Polarimetric Model-Based Decomposition, the authors proposed a new concept
about the polarization orientation angle (POA) problem so that the polarimetric decomposition is
more accurate. However, the task is computationally intensive as the constrained optimization must
be computed in each pixel. In conclusion, polarimetric model-decompositions are more similar to
feature extraction and interpreting or visual discrimination, but they cannot be directly utilized
in classification.

To address these two problems, a hierarchical classification is necessary so that
polarimetric-decomposition methods can be used. Since we cannot decompose the polarimetric
data of all the ground targets with the same volume scattering model, we could roughly pre-classify
the data, then use customized volume scattering models to conduct polarimetric decomposition in
each category accordingly. With this method, both problems are considered: through pre-classification,
ambiguity can be alleviated to some extent; and through the customized polarimetric volume scattering
models, model mismatch will be less likely to occur.

The Wishart classifier is an important statistics-based method in the field of polarimetric SAR
classification. Based on the complex Gaussian Circle Distribution, Lee [10] theoretically proved that
polarimetric SAR data are Wishart-distributed if the ground target is homogenous and has only
one scattering mechanism. To improve upon the Wishart classifier, some non-Gaussian models
were proposed which fit the high-resolution polarimetric SAR images [11,12]. Apart from the
microwave band and the resolution of the image, one kind of target generally has different scattering
mechanisms. That is to say, some ground targets do not meet Wishart distribution in general, such as
differently-oriented buildings. Nevertheless, the Wishart classifier is useful in countering changes in
incidence angle, which is still worth researching.

With the growing focus on machine learning, an increasing number of machine learning
methods have been proposed in the polarimetric SAR image classification field. In 1991, Pottier
first used the multi-layer perception neural network (NN) to classify polarimetric SAR images [13].
Then, Support Vector Machine (SVM) [14,15], Extreme Learning Machine (ELM) [16], and Sparse
Representation Classifier (SRC) [17] have been studied in polarimetric SAR image classification.
Apart from polarization features, some texture features can also be applied to classification. Among
those widely used texture features is the gray-level co-occurrence matrix (GLCM), which describes
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the local information such as mean, variance, contrast, and homogeneity. Compared to the Wishart
distribution-based methods, these approaches have the following advantages: (1) they can cope with
data that has more complex feature distributions, (2) more representative information can be considered
so higher accuracy can be obtained, and (3) compared with the polarimetric decomposition methods
mentioned above, the optimization operation is only performed once, resulting in considerable
time savings.

However, the machine learning methods require a certain number of samples and some parameter
adjustments. It is difficult to compare the classification accuracy, false alarm rate, and missed alarm rate
of different methods precisely due to their different parameter settings. Nevertheless, fast classification
speed is desirable because parameter adjustment is usually conducted several times. In conclusion,
faster speed, higher accuracy, and less parameter adjustment are essential elements in choosing the
classifier and optimizing the result.

The Random Forest (RF) is an ensemble learning technique that has been receiving increasing
attention in many Kaggle competitions and in satellite image classification [18,19]. Based on a series
of random generated decision trees, RF assigns a specific class by the ensemble vote of these trees.
RF has the following advantages [20]: (1) higher classification accuracy than SVM and other prevailing
classifiers; (2) low bias, variance, and generalization error, reducing the likelihood of over-fitting;
(3) fast learning process with low memory cost; (4) for unbalanced classification data sets, RF can
balance the error; and (5) as only one to three parameters will be adjusted, RF is easy to handle
and adjust.

The common drawback of these methods is that the classification process is based on pixels.
Due to the speckle noise, error classification often occurs. In addition, according to the mapping
requirement, some isolated ground objects should be ignored. Also, generally, neighbor pixels tend to
belong to the same category. Several research works have focused on smoothing the classification result
to obtain higher accuracy. Markov random field (MRF) has been introduced [21,22], using Wishart
probability density to construct energy models. Other methods are based on super-pixel generation
and majority vote. A super-pixel is defined as a homogeneous area. Ersahin proposed a method based
on Graph Theory using Normalized Cut Algorithm to complete PolSAR image segmentation [16],
but the memory and time cost were considerable, which detracted from its practicality. Qin applied
a simple linear iterative clustering (SLIC) method for super-pixel generation in polarimetric SAR
images [23], which is both faster and performs well. However, parameter adjustment is inevitable with
these methods. To obtain a good segmentation result, a series of parameters must be tested, and the
algorithm runs repeatedly, leading to a considerable time cost.

In this paper, a practical and fast polarimetric SAR classification procedure is proposed.
The procedure is validated using GF-3 polarimetric SAR images. The rest of the paper is organized as
follows. In Section 2, the basics of proposed classification process are presented. Section 3 provides the
experimental results based on GF-3 data and the related discussions. Conclusions and perspectives of
future GF-3 classification products are outlined in Section 4.

2. Methodology

2.1. Basics of Polarimetric SAR

For polarimetric SAR, under the reciprocity assumption SHV = SVH , the full polarimetric
information can be represented in the form of the scatter vector [2] formulated as:

k =
1√
2

[
SHH + SVV , SHH − SVV ,

√
2SHV

]T
(1)

where SHV is the echo transmitted in horizontal polarization and received in vertical polarization, SHH
is the echo transmitted in the horizontal polarization and received in the horizontal polarization, and
SVV is defined similarly for vertical polarization.
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The n-look coherency matrix T without POA compensation is defined as:

T =
1
n

n

∑
i=1

kiki
H =

 T11 T12 T13

T21 T22 T23

T31 T32 T33

 (2)

The scattering power of all polarization channels is:

span = T11 + T22 + T33 (3)

The coherency matrix T [24] with POA compensation by angle θ is formulated as:

T(θ) = R3(θ) · T · RH
3 (θ) (4)

where the rotation matrix R3(θ) is:

R3(θ) =

 1 0 0
0 cos 2θ sin 2θ

0 − sin 2θ cos 2θ

 (5)

The angle θ is the equivalent rotation angle of the target along the antenna. Usually, θ is estimated
through a geometric or cross-polarization term T33 [25,26].

Cloude and Pottier [2] proposed an eigenvalue decomposition method that extracts the following
features from the matrix T: entropy H, anisotropy A, and the mean alpha angle α. Based on Cloude
decomposition, Van Zyl proposed the radar vegetation index (RVI) [27]. These features are defined
as follows: 

H = −
3
∑

i=1
pi log3(pi), pi =

λi
3
∑

k=1
λk

A = λ2−λ3
λ2+λ3

,

α =
3
∑

i=1
piαi

RVI = 4λ3
λ1+λ2+λ3

(6)

where λi(i = 1, 2, 3) are the eigenvalues of T. In addition, αi(i = 1, 2, 3) in the equations, related to
scattering mechanism, are extracted from the eigenvectors of T.

As Si-Wei Chen suggests [9], the general form of polarimetric model-based decomposition is

T = fvol · 〈Tvol〉+ fdb · 〈Tdb(θdb)〉+ fodd · 〈Todd(θodd)〉+ fhel · 〈Thel〉+ . . . + Tresidual (7)

where Tdb(θdb) denotes the double-bounce scattering model rotated by angle θdb and fdb represents
the coefficient of the double-bounce scattering component. The volume scattering model, surface
scattering model, and helix scattering model are similarly defined. Equation (7) indicates that different
kinds of ground objects, especially crops, have different volume scattering models. In Equation (7), 〈∗〉
means choosing the exact or the most fitted model, and Tresidual denotes the residual matrix.

In traditional model-based classification, useful and representative information for classification
includes span and the ratio of fvol , fdb, and fodd. The hidden information includes the type of Tvol , and
some reflection coefficients such as α and β. However, the precise estimations of the type of Tvol , α,
and β are computationally expensive. Notably, the polarimetric decomposition process is similar to
linear dimensionality reduction. If span, fvol , fdb, and fodd can differentiate ground objects, then the
original elements in T can also differentiate these ground objects.
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2.2. Random Forest

Random Forest (RF) is an ensemble learning algorithm that integrates multiple classifiers. Its basic
unit is a decision tree. RF is a powerful classification tool with the unbiased estimation of the
classification result. Cross-verification is virtually not required because RF can be evaluated internally
during the training. For ground objects of the same type but with differently distributed features,
RF can directly classify the objects into one class. The detailed steps of the RF algorithm are described
in Surhone et al. [28].

2.3. Feature Selection

Feature selection is quite important because each feature should be related to some categories.
In the polarimetric SAR classification field, the physical meaning of each feature is easy to determine
due to the existence of the classical models. In our proposed method, the selected features and the
physical meanings are provided in Table 1.

Table 1. Features and physical explanation.

Feature Physical Meaning

log(1 + span1) Describe the scattering power, which is effective in the discrimination among
water, buildings, and roads.

T11/span Describe the target’s surface scattering property, which is effective in the
extraction of bare soil and ocean water.

T22/span Describe the target’s double scattering property, which is effective for
buildings parallel to track.

|T23|/
√

T22 · T33
Describe the target’s reflection asymmetry, which is effective in oriented
building extraction.

|T12|/span,|T23|/span,|T13|/span (selected) Take advantage of all the information in the T.

H, A, α, RVI Describes the statistical characteristics of the target, which are generally used
in the fine-grained discrimination of crops.

GLCM features (selected) Describes the texture of the target, which is effective in building extraction.

The following are some explanations about feature selection. First, all the features should be
scaled to 0–1. In Table 1, span1 is the normalized span; α, which ranges from 0 to 90, should also be
linearly scaled to 0–1. T33/span, which is the feature representing the volume scattering characteristic,
is not considered here because it is highly linear with T11/span and T22/span. Natural ground objects
generally meet the assumption that 〈SHVS∗HH〉 ≈

〈
SHVS∗VV

〉
≈ 0, whereas oriented artificial objects do

not meet this assumption. Therefore |T23|/
√

T22 · T33, which equals the phase of
〈
(SHH − SVV)S∗HV

〉
,

is also effective at distinguishing artificial objects [29].
Some other parameters in Equation (7) are not considered here because they are also highly

linear with the elements in T as analyzed above. For example, the variable Pv in Freeman-Durden
decomposition actually equals 4T33 [24].

Even though nearly all the information in T has been used, H, A, α and RVI are still recommended
because their extractions are not a linear dimensionality reduction process. Additionally, these
parameters all have physical explanations, indicating they are good features in the classification.
Generally, these parameters are more effective in crop classification [30] than the parameters in
Equation (7). Therefore, adding these features will reduce the nonlinear requirements for classifiers.

Information redundancy exists in those selected features. The selected features have almost
obtained all the information in the polarimetric matrix T. As the classification is based on pixels,
obtaining tens of thousands of samples is easy. The greater the number of samples, the stronger the
ability of the classifier to filter the features. Therefore, if extra features such as |T12|/span,|T23|/span
and |T13|/span are used, they do not need to be related to any category. Additionally, so does the
addition of |T12|/

√
T11 · T22 and |T13|/

√
T11 · T33, which are weak in theoretical support.
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GLCM features provide texture information, which are not recommended to be added into the
first training because the performance of these features is not stable on different images. They are
very computationally intensive and parameter adjustment is inevitable in their extraction. A better
approach is to train the classifier without GLCM features for the first time, with the aim of validating
the effect of training sample selection. Besides, the parameters of GLCM features should be tuned with
a small set of oriented building samples. Then the features can be added in the following training.

2.4. Fast Super-Pixel Segmentation Algorithm

Although other super-pixel segmentation methods are available [21–23], their common problem
is the need to pre-set the parameters, and setting the best parameters is challenging. The proposed
segmentation method has almost no need to set the parameters in advance. To be specific, this method
calculates the edge map through a CFAR edge detector [31], filters out the noise by setting a threshold,
and then a watershed algorithm is used to complete segmentation. Compared to other methods, this
method has a fast segmentation speed and low parameter adjustment cost.

2.4.1. Dissimilarity of Two Regions

If the scattering characteristics of two adjacent areas are different to a certain degree, a line of
edge in the middle may exist. Conradsen et al. [32] utilized the Wishart test statistic to measure the
pairwise dissimilarities, which formulated a likelihood-ratio function to present the distance of two
regions. Suppose many regions exist, for pixels in the ith and jth regions, i.e., for the matrices sets
Ri =

{
Ti

1, Ti
2, . . . , Ti

Ni

}
and Rj =

{
T j

1, T j
2, . . . , T j

Nj

}
, the hypothesis test is:

{
H0 : Σ̂i = Σ̂j
H1 : Σ̂i 6= Σ̂j

(8)

where Σ̂i and Σ̂j denote the maximum likelihood Wishart center of the ith and jth regions, respectively,

i.e., Σ̂i =
1
Ni

Ni
∑

n=1
Ti

n and Σ̂j =
1

Nj

Nj

∑
j=1

Tj
n; and Ni Nj are the number of pixels in the ith region and jth

region, respectively. Hypothesis H0 states that the ith region and the jth region are homogeneous
against the alternative hypothesis H1, which states that the ith region and the jth region are different
areas. Notably, H0 is a null hypothesis. However, if the distance between Σ̂i and Σ̂j is quite small, we
assume that H0 will be accepted; otherwise H0 will be rejected.

If the ith region and the jth region are homogeneous, the conditional probability density function
(PDF) is:

p(Ri, Rj|Σ̂) =
Ni+Nj

∏
n=1

p(Tn|Σ̂) (9)

where Σ̂ = 1
Ni+Nj

Ni+Nj

∑
n=1

Tn. Tn is the matrix T of the nth point in the both the ith and the jth regions.

Otherwise, if the ith region and the jth region are different regions, the conditional PDF is:

p(Ri, Rj|Σ̂i, Σ̂j) = p(Ri|Σ̂i)p(Rj|Σ̂j) =
Ni

∏
n=1

p(Ti
n|Σ̂i)

Nj

∏
m=1

p(Tj
m|Σ̂j) (10)

The pairwise distance between the ith and jth regions can be derived from a test statistic such as
the likelihood ratio test. Based on Wishart distribution, the distance could be calculated in the form of:

Q =
p(H1)

p(H0)
=

p(Ri, Rj|Σ̂i, Σ̂j)

p(Ri, Rj|Σ̂)
=
|Σ̂i|

LNi |Σ̂j|
LNj

|Σ̂|L(Ni+Nj)
(11)
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where L indicates the number of looks.
Then, then the distance is defined as:

DS(Ri, Rj) = − 1
L ln Q

= (Ni + Nj) ln |Σ̂| − Ni ln |Σ̂i| − Nj ln |Σ̂i|
(12)

2.4.2. Super-Pixel Generation

Inspired by previous studies [31,33], the edge map was calculated through a set of oriented
pairwise rectangular filters, and an example is shown in Figure 1. Generally, the parameter
configuration of the oriented filter is

{
l, w, d, θ f

}
, where l denotes the filter’s length, w indicates

its width, d is distance between two rectangles, and θ f is the set of orientations of the filter, which are
marked in Figure 1. In this paper, {l, w, d} = {7, 4, 1} with the unit of pixel, and θ f =

{
π
8 , 2π

8 , . . . 8π
8
}

.
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Figure 1. Oriented rectangular filter and its parameter configuration. 
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Figure 1. Oriented rectangular filter and its parameter configuration.

For pixel (x, y), according to Equation (12) and considering that Ni = Nj, the distance of the two
rectangular regions in direction θ f can be formulated as:

Dw(x, y, θ f ) = 2 ln |Σ̂(x, y, θ f )| − ln |Σ̂1(x, y, θ f )| − ln |Σ̂2(x, y, θ f )| (13)

where Σ̂1(x, y, θ f ) and Σ̂2(x, y, θ f ) denote the max-likelihood T centers of two square regions in
direction θ f at the point (x, y), respectively. Σ̂(x, y, θ f ) denotes the max-likelihood T center of the
merging area of the two square regions.

To scale the range into 0–1, the distance can be mapped as:

rF
(

x, y, θ f

)
=

1

1 + Dw

(
x, y, θ f

) (14)

Then the edge similarity is defined as:

e(x, y) = 1−min
θ f

(rF
(

x, y, θ f

)
), f = 1, 2, . . . 8 (15)

As discussed, if pixel (x, y) is on a homogeneous area, the elements of{
Dw(x, y, θ f )| f = 1, 2, 3 . . . 8

}
will all be close to 0, so that e(x, y) will be close to 0. On the

contrary, if pixel (x, y) is on the edge, some elements of
{

Dw(x, y, θ f )| f = 1, 2, 3 . . . 8
}

will be large,
which indicates that e(x, y) will be closer to 1. To conclude, e(x, y) represents the likelihood of the
pixel being on the edge.
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However, in a homogeneous area, e(x, y), though close to 0, still fluctuates to some extent.
To prevent over-segmentation in the subsequent processing, a parameter λ(0 < λ < 1) was introduced
in Equation (15) to suppress these fluctuations. In most cases, λ is the only parameter to set and adjust.
The suppression is formulated as:

eF(x, y) =

{
e(x, y), g(x, y) ≥ λ

0, others
(16)

Then the watershed algorithm is used on the result of Equation (16) to obtain the segmentation
result. Using this method, we obtain the super-pixels with a boundary. Then, the boundary can be
removed by dilate operation.

In addition, if Wishart distribution is not satisfied in some high-resolution polarimetric SAR
images acquired from other sensors, the distance of two pairwise rectangles should be modified.
In that case, based on polarization contrast enhancement, the rF

(
x, y, θ f

)
in Equation (14) can be

calculated as:

rF
(

x, y, θ f

)
= min
|k|=1

(
kHΣ̂1(x, y, θ f )k

kHΣ̂2(x, y, θ f )k
,

kHΣ̂2(x, y, θ f )k

kHΣ̂1(x, y, θ f )k

)
(17)

The solution of k is a generalized Rayleigh quotient problem. Therefore, Equation (17) can be
calculated as:

rF
(

x, y, θ f

)
= min

(
λmin

(
Σ̂2(x, y, θ f )

−1Σ̂1(x, y, θ f )
)

, λmin

(
Σ̂1(x, y, θ f )

−1Σ̂2(x, y, θ f )
))

(18)

where λmin(∗) is the operation used to take the minimum eigenvalue of the matrix.

2.4.3. Acceleration

The calculation of the Wishart distance is computationally slow due to the multiple iterations
required to conduct matrix operations. To accelerate the process, some parallelization or vectorization
techniques can be considered. As shown in Equation (13), all the calculations involve the determinant
of the third-order matrix, which is a fixed operation. Thus, the third-order matrices should be stacked
at the beginning, and then the parallel determinant operation should be conducted, which considerably
shorten the computation time.

2.4.4. Majority Vote

The principle of majority voting is to count the proportion of different points in a super-pixel, and
then select the category that has the highest frequency to represent the entire super-pixel. Figure 2
outlines the majority vote process. The entire block is a demonstration of one super-pixel. In the block,
different colors represent different categories.
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2.4.5. Algorithm and Time Analysis

In summary, the whole segmentation algorithm is shown in Algorithm 1. The whole classification
procedure is presented in Figure 2.



Sensors 2018, 18, 2014 9 of 19

Algorithm 1: Algorithmic steps of Fast Super-Pixel Generation

Input: T11,T12,T13,T21,T22,T23,T31,T32,T33 of the whole PolSAR image;

threshold λ(0 < λ < 1);
{

l, w, d, θ f

}
;

Steps:

1. Set
{

l, w, d, θ f

}
as the configuration of the oriented rectangular filters;

2. For each θ f , use the oriented rectangular filters to compute Σ̂(x, y, θ f ),Σ̂1(x, y, θ f ), and Σ̂2(x, y, θ f );

3. For each θ f , use the parallel technique to compute Equation (13);

4. Calculate Equations (14) and (15) to determine edge similarity;Calculate Equation (16) through λ;
5. Use the watershed algorithm on the result of step 5 to obtain the segmentation result;
6. Use the dilate operation on the result of step 6 to remove the boundary of the region.

Result:
Super-pixels without boundary.

When λ is changed, the only time cost occurs with steps 5, 6, and 7, which are generally accepted
as the fast algorithms.

3. Experimental Results

3.1. Experimental Data

The polarimetric SAR data sampled in San Francisco by GF-3 was chosen for this experiment,
which can be downloaded from https://www.ietr.fr/GF3/. The Pauli decomposition image is shown
in Figure 3a. This region has many types of land resources, including sea water, buildings with
different orientations, vegetation, bare soil, and grass land. The used GF-3 polarimetric SAR data were
acquired on 15 September 2017 on an ascending pass with right looking direction and its pixel space
was about 5.37 × 2.25 m2. The image size was 4500 × 3500 pixels and the data were filtered by a 5 × 5
refined Lee filter.Sensors 2018, 18, x FOR PEER REVIEW  10 of 20 
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The following provides a brief introduction about the land resources in the map. Scattering
mechanisms of buildings vary along different azimuths, as demonstrated in the red boxes labeled 1, 2,
3, and 4 in Figure 4a. In Figure 5a,b, the ground type in the red polygon is a lake, whereas the ground
type in the blue polygon is the sea. Due to the dielectric constant of seawater and the existence of
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waves, the surface scattering intensity of seawater is higher than that of the lake, indicating that the
sampling of water should include both samples. In Figure 5c,d, the ground type in the region with the
red boundary is vegetation, whereas the area with blue boundary represents bare soil with vegetation.
According to the survey, the main types of vegetation include coniferous forests, such as poplars and
pine trees. Though trees and soils all demonstrate high-volume scattering, Figure 5c,d state that the
intensity of trees is higher than that of grass and bare soil, which is consistent with common sense.
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Figure 4. (a) The Pauli-basis images of GF-3 data sampled on 15 September 2017; (b) Google Earth
images sampled on 2 September 2017. In (a), the areas inside the red boxes 1, 2, 3, and 4 represent
buildings with different scattering characteristics. The areas in the green and yellow boxes are analyzed
in Figure 5.
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The experiment and analysis is arranged was follows. First, we adopted a preprocessing step
to label the map precisely. In the next step, we compared classification and conducted super-pixel
generation. Finally, the result was determined and evaluated.

3.2. Sampling

According to the optical image, we inferred that this area mainly included the categories of
Artificial architecture, Water body, Tree, Smooth road, and Soil. Figure 5d demonstrates those classes
with corresponding labeling colors. Soil includes bare soil and grass land. As Figure 5c,d demonstrate,
labeling the polarimetric image is much harder than labeling the optical images. Labeling the samples
to the image pixel by pixel would be a laborious project to ensure the correctness of samples.

Though the polarimetric data still meets Wishart distribution in this image, some categories may
have various scattering mechanisms, indicating that the Wishart classifier was not the best choice in this
case. However, the Wishart classifier is insensitive to outliers to some extent. Therefore, pre-classifying
the image using the Wishart classifier with rough sampling is recommended. As such, we obtain a
primary and intuitive analysis of the data characteristics, and the number of classification categories
can be determined to some extent. Additionally, rough sampling can be quite fast so as to reduce the
workload for precise labeling. Li et al. proposed the Fast Wishart classifier [34], which is tremendously
faster with the same result generated using the Wishart classifier. Figure 6 demonstrates how to
roughly select samples with polygons and exhibits the result obtained via the Fast Wishart classifier.
Among those labels, the Buildings class is not homogeneous in the polygon. Therefore, a threshold to
span was set to eliminate those points that are not the roof of the buildings, as shown in Figure 6c.
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The following provides a discussion about the result displayed in Figure 6b. The image size is
4500 × 3500 pixels, whereas the classification time was only 2.77 s, which is impressive given the
number of classes on the map. According to the optical image in Figure 4b, the result misclassifies
large areas of buildings in the south. Figure 7 demonstrates how to precisely label the polarimetric
map. Comparing Figures 7a and 7b, the buildings, trees, and soil in Figure 7b are more distinguishable.
Therefore, they can be more accurately labeled according to Figure 7b; Figure 7c exhibits that process.
Figure 7e highlights a large area of misclassifications, but the distinction of the roofs and the land
has become clearer. Part of the misclassified points are marked with the right labels referring to the
optical image, as shown in Figure 7f. Based on the pre-classification result, label marking will be more
accurate, and the isolated misclassified labels can be eliminated from the polygons in an easier way.
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3.3. Classification Comparison

Some tests were conducted to compare ELM [16] and RF. Figure 8 demonstrates the classification
results. The sample was randomly split into 70% training set and 30% testing set. The comparison
between ELM and RF in terms of training accuracy, testing accuracy, training time, and classification
time is shown in Table 2.Sensors 2018, 18, x FOR PEER REVIEW  14 of 20 
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Figure 8. The classification result obtained with (a) the Extreme Learning Machine (ELM) and (b)
Random Forest (RF). The area with yellow boundary in Figure 8a has obvious misclassifications.

Table 2. (A) shows the classification performance of the Extreme Learning Machine (ELM) and Random
Forest (RF); (B) exhibits the proportion of selected samples, where the proportion of road samples is
low; (C,D) show the evaluation of the classification results obtained with ELM and RF in the testing set
of selected samples.

(A) Classification Comparison in Selected Samples

% Training Set
Accuracy Testing Set Accuracy Training Time Classification Time (4500×3000)

ELM (100 hidden neurons, sigmoid) 80.80% 81.14% 1.93 s 27.06 s
RF (100 trees) 99.99% 95.69% 27.8 s 181.6 s

(B) Proportion of Selected Samples

Building Soil Water Body Tree Road

Sample number 30,389 15,351 46,931 28,399 2763
Proportion 24.5% 12.4% 37.9% 22.9% 2.2%

(C) Confusion Matrix by ELM in the Test Set of Selected Samples

% Building Soil Water Body Tree Road Producer Accuracy Kappa

Building 6525 255 12 2523 1 69.38%

0.7011

Soil 97 3233 102 1104 69 70.21%
Water body 0 29 14,011 0 39 99.52%

Tree 2438 782 2 5288 9 62.07%
Road 0 483 105 1 239 28.86%
User

Accuracy 71.39% 67.61% 98.45% 59.31% 66.95% 78.33%

(D) Confusion Matrix by RF in the Test Set of Selected Samples

% Building Soil Water Body Tree Road Producer Accuracy Kappa

Building 6531 65 1 2519 0 71.64%

0.7696

Soil 56 4059 16 461 13 88.14%
Water body 0 9 13,986 0 84 99.34%

Tree 2370 709 0 5540 0 65.03%
Road 0 9 30 0 791 95.53%
User

Accuracy 73.74% 83.71% 99.67% 65.02% 89.08% 83.20%
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The yellow box in Figure 8a shows that the runway at the airport was misclassified in a large area,
whereas the same area in Figure 8b exhibits the correct classification. The reason for this is that the
total number of runway samples was relatively small, as shown in Table 2B. This comparison verifies
the characteristics of RF mentioned in Section 1: RF can cope with unbalanced samples to some extent.
Though comparison results change with the parameter, both classification results and the indicators in
Table 2 both demonstrate RF’s superiority.

Table 2C,D demonstrate the confusion matrices of ELM and RF, respectively. The results were
calculated in the testing set of the selected samples. As shown in the tables, RF performed better than
ELM in almost every measure. Table 2D also infers that the Tree and Building classes are the hardest to
distinguish, whereas very few misclassified points occurred in the other classes and these two classes.
Considering that RF is such a powerful tool, some other methods-based merely on physical scattering
mechanisms would also encounter difficulties with these points in the polarimetric image acquired
from GF-3.

3.4. Super-Pixel Generation Experiments

To meet the mapping demand, locally isolated points should be smoothed and ignored. When the
classifier is generalized to the whole image, misclassifications still occur, which may be caused by
speckle noise and sample selection bias. The contextual information improves the classification. Part of
the result of the proposed super-pixel generation is demonstrated in Figure 9. Figure 9a,b exhibit the
different effects of SLIC [23] and fast super-pixel segmentation. Figure 9c depicts part of the edge
map calculated by Equation (15). Figure 9d,e are the super-pixel generation results with λ = 0.7
and λ = 0.8, respectively, which demonstrate the process of adjusting λ to control the size of the
super-pixels. The entire running time and parameter adjustment time are shown in Table 3.

Sensors 2018, 18, x FOR PEER REVIEW  15 of 20 

 

the total number of runway samples was relatively small, as shown in Table 2B. This comparison 
verifies the characteristics of RF mentioned in Section 1: RF can cope with unbalanced samples to 
some extent. Though comparison results change with the parameter, both classification results and 
the indicators in Table 2 both demonstrate RF’s superiority. 

Table 2C,D demonstrate the confusion matrices of ELM and RF, respectively. The results were 
calculated in the testing set of the selected samples. As shown in the tables, RF performed better 
than ELM in almost every measure. Table 2D also infers that the Tree and Building classes are the 
hardest to distinguish, whereas very few misclassified points occurred in the other classes and these 
two classes. Considering that RF is such a powerful tool, some other methods-based merely on 
physical scattering mechanisms would also encounter difficulties with these points in the 
polarimetric image acquired from GF-3. 

3.4. Super-Pixel Generation Experiments 

To meet the mapping demand, locally isolated points should be smoothed and ignored. When 
the classifier is generalized to the whole image, misclassifications still occur, which may be caused 
by speckle noise and sample selection bias. The contextual information improves the classification. 
Part of the result of the proposed super-pixel generation is demonstrated in Figure 9. Figure 9a,b 
exhibit the different effects of SLIC [23] and fast super-pixel segmentation. Figure 9c depicts part of 
the edge map calculated by Equation (15). Figure 9d,e are the super-pixel generation results with 

0.7λ =  and 0.8λ = , respectively, which demonstrate the process of adjusting λ  to control the 
size of the super-pixels. The entire running time and parameter adjustment time are shown in Table 3. 

  
(a) (b) 

   
(c) (d) (e) 

Figure 9. Part of the segmentation result, where the red line presents the boundary. (a) The result 
obtained by simple linear iterative clustering (SLIC), with desired super-pixel number 135, 000k = , 
compactness 0.1m = , and 10 iterations; (b) The result obtained used our proposed method in the 
same region with the parameter 0.8λ = ; (c) Part of the edge mapping values obtained with Equation 
(15); (d) The segmentation result of the same region with; (e) The segmentation result with 0.8λ = . 

Figure 9. Part of the segmentation result, where the red line presents the boundary. (a) The result
obtained by simple linear iterative clustering (SLIC), with desired super-pixel number k = 135, 000,
compactness m = 0.1, and 10 iterations; (b) The result obtained used our proposed method in the same
region with the parameter λ = 0.8; (c) Part of the edge mapping values obtained with Equation (15);
(d) The segmentation result of the same region with; (e) The segmentation result with λ = 0.8.
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Table 3. Comparison of the running time and adjusting time between simple linear iterative clustering
(SLIC) and the proposed method presented in Table 3. The cost time is based on the whole polarimetric
SAR image with 4500 × 3000 pixels.

% Running Time Adjusting Time

SLIC 8515.01 s Running time
Proposed Method 169.03 s 8.23 s average

As shown in Table 3, SLIC needs to pre-set parameters, therefore its adjusting time is equal to the
running time, indicating that a long time is required to obtain the best segmentation result. Similarly,
the methods previously reported [21,22,35,36] have the same deficiency. Figure 9c shows that the
boundary of the super-pixels fits the edge of the image textures because the super-pixel generation is
based on edge extraction.

Adjustment in super-pixel generation is important. The only parameter λ in the proposed method
controls the size of the super-pixels as shown in Figure 9d,e. As λ increases, the super-pixel size
increases. If the super-pixel is too small, some local noise likely remains as the main local component.
The parameter was adjusted several times in this experiment, and λ = 0.73 was chosen as the
final threshold.

3.5. Final Result and Evalution

Figure 10a,b demonstrate how the local misclassifications are eliminated by majority vote.
Figure 10c shows the whole optimized classification result obtained with RF. The class labeled in brown
is a combination of bare soil and grassland. These classes are hard to distinguish with the Pauli-basis
when we used samples from this data. As we suggested, when a hierarchical classification is formed,
the false alarm rate and the missed alarm rate in model-based decomposition decrease. Figure 10d
displays the updated classification result using Freeman decomposition only for the Bare soil with
little vegetation class. After the POA of the data is compensated, a threshold of fvol/( fvol + fdb + fodd)

was set in this class, and the result was optimized by majority vote.
To evaluate the overall classification performance, we compared Figure 10d and the optical image.

Figure 11 demonstrates a series of comparisons. As shown in the region marked with black boundary in
Figure 11b,c, the misclassifications mainly occurred at the layovers of the mountain where the samples
were not taken, and the high intensity caused the classifier misjudges the pixels as buildings. Slopes
would also exert some effects on the polarimetric characteristics. These areas should be eliminated by
digital elevation map (DEM) information in the real-world project. Additionally, as demonstrated by
Figure 11d–g, some misclassifications still occurred between the trees and π/4 oriented buildings.
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Figure 11. (a) Google Earth image of the mountain; (b) the corresponding Pauli-basis image; and (c) the
corresponding classification result; (d) Google Earth image of oriented buildings where the intensity
of the horizontal vertical channel was high; and (e) the corresponding classification result. (f) Google
Earth image of the urban area around the airport; and (g) the corresponding classification result.

4. Conclusions

Polarimetric SAR has the potential to classify ground objects. In this paper, we demonstrated a
method to mark the labels on the polarimetric SAR image. Some experiments were performed in which
ground targets were roughly classified into Artificial architecture, Water body, Tree architecture, Smooth
road, Bare soil, and Herbaceous vegetation. Based on Wishart distribution, a CFAR edge detector was
applied to generate super-pixels more quickly and with a low adjustment cost. Then, we optimized
the initial classification result through majority vote, which improved the classification accuracy, so
the results better meet the mapping demand. The result shows the effectiveness of both the proposed
procedure and the ability of GF-3 for land cover classification.

In this study, some classification methods were also summarized. To achieve high classification
performance, a certain degree of supervision is necessary. In coarse classification, samples are easily
acquired combined with the optical image, which results in rough first-level classification. Because
the satellite conditions are relatively stable, and SAR images are not affected by weather and light,
the classifier can be widely applied to other data. However, polarimetric SAR should have far more
applications. Based on the first-level classification product, as discussed in Section 1, more fine-grained
second-level classification products can be generated automatically by polarimetric decomposition in
areas where samples are hard to obtain with an unknown number of categories. As Lee et al. [37,38]
and Newmann et al. [39] stated, more detailed polarimetric SAR classification products for vegetation,
forest, and crops can be generated. We look forward to more data and classification products for use
with GF-3, which will significantly contribute to land cover surveys.
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