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Abstract: The dual-channel synthetic aperture radar (SAR) system is widely applied in the field of
ground moving-target indication (GMTI). With the increase of the imaging resolution, the resulting
substantial raw data samples increase the transmission and storage burden. We tackle the problem
by adopting the joint sparsity model 1 (JSM-1) in distributed compressed sensing (DCS) to exploit the
correlation between the two channels of the dual-channel SAR system. We propose a novel algorithm,
namely the hierarchical variational Bayesian based distributed compressed sensing (HVB-DCS)
algorithm for the JSM-1 model, which decouples the common component from the innovation
components by applying variational Bayesian approximation. Using the proposed HVB-DCS
algorithm in the dual-channel SAR based GMTI (SAR-GMTI) system, we can jointly reconstruct the
dual-channel signals, and simultaneously detect the moving targets and stationary clutter, which
enables sampling at a further lower rate in azimuth as well as improves the reconstruction accuracy.
The simulation and experimental results show that the proposed HVB-DCS algorithm is capable of
detecting multiple moving targets while suppressing the clutter at a much lower data rate in azimuth
compared with the compressed sensing (CS) and range-Doppler (RD) algorithms.

Keywords: distributed compressed sensing; Variational Bayesian; dual-channel SAR; ground
moving-target indication

1. Introduction

Synthetic aperture radar (SAR) is a kind of high resolution imaging radar, which is capable of
working at long distances, all-weather, and day and night. In the SAR system, the scene is observed
by an antenna at different positions in the azimuth direction. The coherent information recorded at
the different positions is used to synthesize a very long antenna to improve the azimuth resolution.
The dual-channel SAR system is widely applied in the field of ground moving-target indication (GMTI).
In practice, the Doppler shift of the stationary clutter spreads the Doppler bandwidth of the clutter
returns due to the motion of the platform. Accordingly, the Doppler bandwidth of the clutter will mask
that of moving targets [1]. Dual-channel SAR can effectively suppress the clutter, which is propitious
to slowly moving targets detection [2]. Some traditional approaches, such as the displaced phase
center antenna (DPCA) approach, and along-track interferometry (ATI) detection [3], have achieved
good results. However, relying on the Nyquist sampling theorem, dual-channel SAR is obliged to
transmit and store substantial raw data samples, which limits its application in practice.

Compressed sensing (CS) [4–7], as a novel sparse reconstruction technique, is able to recover the
signals that have been sampled below the traditional Nyquist sampling rate. It provides a good solution
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for the transmission and storage of substantial raw data samples. CS aims at minimizing the number
of measurements and attempts to recover the original signal from these necessary measurements by
solving an `0-norm optimization problem, or equivalently a convex `1-norm optimization problem
under the restricted isometry property (RIP) condition [8].

A lot of valuable literature on CS-based SAR imaging and the GMTI system has been published
in recent years. A CS-based SAR imaging algorithm is proposed in [9], which demonstrates that
CS has the potential to eliminate the need for the pulse compression matched filter at the receiver,
and reduce the required receiver analog-to-digital conversion bandwidth. In [10], CS is applied
to randomly select lines in azimuth from the signals after range compression, which allows the
implementation of wide-swath modes without reducing the azimuth resolution. Sun et al. [11] propose
a CS-based method for joint sparse recovery of all channel or sub-aperture images. In [12], a fast
CS-based SAR imaging algorithm is proposed to save the computational cost both in time and memory.
In [13], a phase error correction method is proposed for the CS-based radar imaging system based
on approximated observation, which improves the defocus caused by the phase error. In [14], CS
is utilized in tomographic SAR system, extended to the SAR elevation direction for 3-D imaging.
In the field of GMTI, in [15] CS is used to estimate the velocities and positions of moving targets.
In [16,17], a CS-based space-time adaptive processing (STAP) algorithm is proposed to detect the
moving targets. The above CS-based algorithms can efficiently reduce data rate and improve image
quality, as well as improve anti-jamming performance. However, for the dual-channel SAR based
GMTI (SAR-GMTI) system, with the increase of the imaging resolution, the resulting substantial raw
data samples aggravate transmission and storage load. Thus it is required to develop an efficient
algorithm that can further reduce the data rate.

In this work, we tackle the problem by exploiting the correlation between two channels of the
dual-channel SAR system. The antennas of dual-channel SAR are configured in the along-track
direction. Thus the SAR images acquired by each channel are highly correlated during a flight along
the track. Using distributed compressed sensing (DCS) based algorithms, we can jointly reconstruct the
dual-channel signals, which enables sampling at a further lower rate in azimuth as well as improves
the reconstruction accuracy.

DCS [18] exploits both intra-signal and inter-signal correlations. Three different joint sparsity
models have been proposed, i.e., joint sparsity model 1 (JSM-1), joint sparsity model 2 (JSM-2) and
joint sparsity model 3 (JSM-3). In JSM-1, a sparse signal consists of a common component and an
innovation component. Such signals may exist when large-scale phenomena affects all signal sources
and local phenomena affects specific individual source. In JSM-2, all signals are constructed from the
same sparse set of basis vectors, but with different coefficient values. JSM-3 extends JSM-1 so that
the common component needs no longer to be sparse in any basis. In this work, the echo signal of
dual-channel SAR is the combination of the signals from both stationary clutter and moving targets.
After time delay and phase compensation, the signal from stationary clutter is common to all channels,
while the signals from moving targets are specific and different across different channels. Thus the
JSM-1 model is adopted, considering that the signal from stationary clutter can be treated as the
common component, while those from moving targets can be treated as the innovation components.

Many reconstruction algorithms have been proposed for the JSM-1 model, either in a central
manner or a distributed manner. The central recovery methods assume the presence of a fusion center
where all information is gathered. The joint recovery strategy (JRS) [18,19] is to stack the common
component and all innovation components together as one single sparse signal, and reconstruct the
single sparse signal via `0-norm minimization or `1-norm minimization. There are well developed
algorithms such as subspace pursuit (SP), basic pursuit (BP), iterative hard thresholding (IHT), etc.,
to solve the minimization problem. However, JRS is computationally expensive since the dimension
of the sparse signal is multiplied by stacking. As another branch of the methods, the distributed
recovery performs the reconstruction in the network, with no fusion center. The Texas Hold ’Em
algorithm [20] separates the estimation of the common component and innovation components by the
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measurement decomposition process. Valsesia et al. [21] exploit the side information from one of the
signals to reconstruct the innovation components. Recently Sundman et al. [22] propose the parallel
pursuit with side information (SIPP) algorithm, which extends SP by using the side information of common
support set at each iteration. SIPP can reconstruct the signals in a distributed manner, thus achieving
much less computing time than JRS. This implies that the information of support set can be utilized to
accelerate the reconstruction process. In [23], an alternating direction method of multipliers (ADMM)
based algorithm is proposed for the JSM-1 model in a decentralized framework, which exploits the
local cooperation between nodes.

In this work, we consider dealing with the JSM-1 model in a different way, i.e., in a Bayesian
framework. Bayesian methods essentially approximate the posterior distributions of sparse signals
according to the prior knowledge and data, which is effective in dealing with uncertain models
and large noises. We consider using the variational Bayesian algorithm for the JSM-1 model.
Variational Bayesian (VB) inference [24] obtains the optimal solution by iterating over a set of
mutually dependent equations, providing a good approximation to the exact posterior with a readily
monitored convergence.

Variational Bayesian has been widely applied in sparse signal reconstruction [25,26]. In this
work, we propose a novel algorithm, namely the hierarchical variational Bayesian based distributed
compressed sensing (HVB-DCS) algorithm for the JSM-1 model, which decouples the common
component from the innovation components by applying variational approximation. The proposed
algorithm is capable of approximating the complex signal in a hierarchical framework. Moreover,
we apply the proposed HVB-DCS algorithm for signal reconstruction in the dual-channel SAR based
GMTI system. Based on the received signal from both the moving targets and the stationary clutter,
we decouple the common component (stationary clutter) from the innovation components (moving
targets). We derive separable PDF functions for common component and innovation components,
respectively. We can then obtain the reconstructed signal (including the common and innovation
components) by applying the maximum a posteriori (MAP) estimation. The performance of the
algorithm is verified by both simulation on point targets, and experiment on real SAR data.

The main contribution of this paper is threefold. First, we model the received signals of the
dual-channel SAR-GMTI system in the JSM-1 model of DCS, by exploiting the correlation between the
two channels. Secondly, we propose a novel HVB-DCS algorithm for the JSM-1 model, which decouples
the common component from the innovation components by applying variational approximation.
The proposed HVB-DCS algorithm approximates the complex signal in a hierarchical framework.
Thirdly, we apply the proposed HVB-DCS algorithm for signal reconstruction in the dual-channel
SAR-GMTI system. In the framework of the JSM-1 model, the proposed algorithm can simultaneously
generate the stationary clutter (common component) and the moving targets (innovation components),
which omits the DPCA process adopted in the traditional GMTI system. The simulation and
experimental results show that the proposed HVB-DCS algorithm is capable of detecting multiple
moving targets while suppressing the clutter at a much lower data rate compared with the CS and
range-Doppler (RD) algorithms.

The organization of this paper is as follows. First, we briefly introduce the theory of DCS in
Section 2. We then present the signal model of dual-channel SAR system in Section 3. The DCS-based
dual-channel SAR-GMTI system is introduced in Section 4, where the echo signals of dual-channel
SAR-GMTI system are represented in the JSM-1 model. The HVB-DCS algorithm is proposed in
Section 5, which decouples the common component from the innovation components by applying
variational approximation, in a hierarchical framework. The simulation and experimental results are
shown in Section 6, and the conclusions are summarized in Section 7.

2. Brief Introduction to Distributed Compressed Sensing

CS [4] is an emerging field for signal and image processing. CS aims to recover a sparse signal
with a reduced number of linear measurements, which is significantly less than that required by the
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traditional bandwidth constraint based on the Shannon-Nyquist sampling theorem. CS theory has
been widely applied in various fields, such as magnetic resonance imaging [27], target tracking [28],
biomedical monitoring [29], computer-generated holography [30], machine learning [31], signal
acquisition in wireless sensor networks [32], image/video compression [33], etc.

As an important branch of CS, DCS [18] considers a scenario where correlated sparse signals are
captured from multiple sources. DCS aims to exploit the inter-signal and intra-signal correlations of
those sparse signals, so that the ensemble of signals can be reconstructed from fewer measurements
than the standard CS approach requires. Baron et al. in [18] propose three various joint sparsity models
(JSMs) for the correlated signals, namely JSM-1, JSM-2 and JSM-3. Among them, JSM-1 is capable of
modeling a wide range of scenarios where large-scale phenomena affect all signal sources and local
phenomena affect specific individual source. In this work, we focus on the JSM-1 model.

2.1. Joint Sparsity Model-1

In the JSM-1 framework, an ensemble of vectors (signals) {xj}J
j=1 are jointly sparse if each vector

is sparse and comprised of a common component and an innovation component, as

xj = zc + zj, j ∈ {1, 2, · · · , J}, (1)

where zc ∈ <N denotes the common component of sparse vector xj, and zj ∈ <N denotes the
innovation component of xj. Both zc and zj are supposed to be sparse.

The DCS problem consists in reconstructing jointly sparse vectors from their measurements,
which are obtained by

yj = Ajxj, (2)

where Aj ∈ <Mj×N is the measurement matrix, yj ∈ <Mj is the measurement vector, and Mj is the
number of measurements.

2.2. The Joint Recovery Strategy for the JSM-1 Model

JRS is the first proposed algorithm for the JSM-1 model. The main idea is to stack the common
component zc and all innovation components {zj}J

j=1 together to form one sparse vector z̃ with multiple

dimension (J + 1)N, and the similar process for measurement vectors {yj}J
j=1 and measurement

matrices {Aj}J
j=1, as

z̃ :=


zc

z1

z2
...

zJ

 , ỹ :=


y1

y2
...

yJ

 , Ã :=


A1 A1 0 · · · 0
A2 0 A2 · · · 0
...

...
...

. . .
...

AJ 0 0 · · · AJ

 . (3)

The J measurement Equations (2) can be formulated in one compact form as

ỹ = Ãz̃, (4)

resulting in the formulation of a standard CS problem. Then the sparse vector z̃ is reconstructed
based on Equation (4) via well developed algorithms of CS, such as orthogonal matching pursuit
(OMP) and BP. Finally, the jointly sparse vectors {xj}J

j=1 are reconstructed by adding the reconstructed
common component to each reconstructed innovation component.

However, the computational costs of JRS for the JSM-1 model increase dramatically when the
dimension of sparse vector increases. So it is necessary to develop another more efficient recovery
strategy for the JSM-1 model.
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3. Signal Model of the Dual-Channel SAR System

This section introduces the signal model of a dual-channel SAR system, which is the same as that
in [34]. The readers can refer to [34] for more details about the signal model. The geometry relationship
between the flying platform and moving target is shown in Figure 1, where v and H denote velocity
and height of the platform respectively. Channel one periodically transmits and receives pulses, while
channel two receives pulses. The distance between the two channels is d. tm is the slow time in azimuth.
PRF represents the pulse repetition frequency. The target is denoted by P. RB denotes the nearest
slant range between the platform and target, whereas R1(tm) is the instantaneous slant range between
channel one and the moving target, and the similar definition for R2(tm).

m

Figure 1. Geometry of the dual-channel SAR system.

In order to facilitate the analysis, the slant range history geometry of the moving target is shown
in Figure 2. va and vr denote the along-track and cross-track velocities of the moving target on the
slant range plane, respectively. The instantaneous slant ranges R1(tm) and R2(tm) are respectively
defined as

R1(tm; RB) =

√
(vtm − vatm)

2 + (RB − vrtm)
2 ≈ RB − vrtm +

(v− va)
2

2RB
t2
m, (5)

and

R2(tm; RB) =

√
(vtm − vatm − d)2 + (RB − vrtm)

2 ≈ RB − vrtm +
[(v− va)tm − d]2

2RB
, (6)

where
tm ∈ {t1, t2 · · · , ti, · · · , tM} −

t1 + tM
2

,

and M denotes the number of pulses transmitted by antennas.
For channel one, the received signal of moving target after demodulation and range compression

can be expressed as

s1(t, tm) = σGsinc
(

∆B
(

t− 2R1 (tm; RB)

c

))
ωa (tm) exp

(
−j

4π

λ
R1 (tm; RB)

)
. (7)

The received signal for channel two is similarly defined as

s2(t, tm) = σGsinc
(

∆B
(

t− R1(tm ;RB)+R2(tm ;RB)
c

))
ωa (tm) exp

(
−j 2π

λ (R1 (tm; RB) + R2 (tm; RB))
)

. (8)
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In the above expressions, t is the fast time in range, σ denotes the complex reflectivity of the
target, and G is the range compression gain. ∆B is the bandwidth of transmitted signal. sinc(·) is the
envelope after range compression. ωa(·) is the azimuth windowing function. c and λ represent the
speed of light and the wavelength of transmitted signal, respectively.

Figure 2. Slant range history geometry of the moving target.

4. Distributed Compressed Sensing Based Dual-Channel SAR-GMTI System

4.1. Sparse Representation for Individual Channel

In this section, the random sampling mode in the azimuth direction [34] is adopted for the
dual-channel SAR system, which is shown in Figure 3. In this mode, the pulses in azimuth are
randomly transmitted and received, which results in time gaps within a coherent processing interval
(CPI) where no echoes are recorded. Moreover, we assume that the sensors remain still between
transmission and reception of a pulse.

m

Figure 3. Random sampling mode in the azimuth direction.
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For channel one, we can obtain Equation (9) by substituting Equation (5) into Equation (7).

s1(t, tm) = σGsinc
(

∆B
(

t− 2RB
c

))
ωa (tm) exp

(
−j

4π

λ
RB

)
exp

(
j2π fdctm + jπγm (RB) t2

m

)
, (9)

where fdc = 2vr/λ is the Doppler centroid frequency and γm(RB) = −2(v− va)2/(λRB) is the
corresponding Doppler chirp rate. Thus Equation (9) can be expanded as

s1(t, tm) = σGsinc
(

∆B
(

t− 2RB
c

))
ωa (tm) exp

(
−j

4π

λ
RB

)
exp

(
j2π

v2
r RB

λ(v− va)
2

)

× exp

−j2π
(v− va)

2

λRB

(
tm −

vrRB

(v− va)
2

)2
 .

(10)

Assuming that the cross-track velocity of the moving point target is relatively slow, the range
migration through resolution cells does not take place.

Remark: If the cross-track velocity of the moving target is high enough, the Doppler centroid
frequency fdc may exceed the limit of PRF, which induces the Doppler ambiguity problem and an
additional range walk [35]. For the condition of high cross-track velocity, an additional range walk
correction step is required after range compression. As the cross-track velocity is unknown, it is
required to search the Doppler ambiguity number and estimate the cross-track velocity. In recent years,
many algorithms have been proposed to estimate the Doppler ambiguity number and the cross-track
velocity, e.g., the road slope-aided algorithm [36] and the range walk correcting-based algorithm [37].
In the future work, we will combine the proposed HVB-DCS algorithm and the above-mentioned
estimation algorithms to tackle the high cross-track velocity problem.

The received signal at a given range bin data, after demodulation and range compression, can be
rewritten as

s1(tm) = ρ(1)ωa(tm) exp

−j2π
(v− va)

2

λRB

(
tm −

vrRB

(v− va)
2

)2
 , (11)

where

ρ(1) = σGsinc
(

∆B
(

t− 2RB
c

))
exp

(
−j

4π

λ
RB

)
exp

(
j2π

v2
r RB

λ(v− va)
2

)
. (12)

We assume that there are no more than N0 scattering centers which can be distinguished in
the synthetic aperture time T0. The coordinates of these scatterers in the azimuth direction are
xn(n = 1, 2, · · · , N0). The received signal at a given range bin data, after demodulation and range
compression, can then be represented as a combination of the echo signals from N0 scattering centres as,

s1(tm) =
N0

∑
n=1

ρ
(1)
n ωa(tm − xn/v) exp

−j2π
(v− va)

2

λRB

(
tm − xn/v− vrRB

(v− va)
2

)2
 , (13)

where

ρ
(1)
n = σnGsinc

(
∆B
(

t− 2RB
c

))
exp

(
−j

4π

λ
RB

)
. (14)

The along-track velocity of the target defocuses the image, thus in order to facilitate the analysis,
we only consider the cross-track velocity and let va = 0.
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Next, we represent the signal received by channel one in a standard CS framework. We first build
the measurement matrix according to Equation (13), as

Φ1 =
[
s0(−N

2 + 1), s0(−N
2 ), · · · , s0(0), · · · , s0(

N
2 − 1), s0(

N
2 )
]

M×N
, (15)

where,
s0(i) = [s0(t1 − i∆τ), s0(t2 − i∆τ), · · · , s0(tM − i∆τ)]TM , (16)

s0 (tm − i∆τ) =

 exp
(

jπγm (RB) (tm − i∆τ)2
)

, |tm − i∆τ| ≤ T/2,

0 , |tm − i∆τ| > T/2,
(17)

i ∈
{
−N

2
+ 1, · · · , 0, · · · ,

N
2

}
,

γm(RB) = −2(v− va)2/(λRB), T is the full synthetic aperture time, ∆τ = 1/PRF, and
N ≥ (T0 + T)/∆τ. N is the number of samples in the azimuth direction. M is far less than N.
The measurement matrix captures the contribution to the received signal of a point target.

We then define the measurement vector s1 ∈ CM as the received signal for a given range bin after
range compression by channel one, s1 = [s1(t1), s1(t2), · · · , s1(tM)]T , and the sparse vector ρ1 ∈ CN as

the complex image for a given range bin, ρ1 =
[
ρ
(1)
1 , ρ

(1)
2 , · · · , ρ

(1)
N

]T
. Thus we can obtain the standard

equation in CS for channel one as
s1 = Φ1ρ1. (18)

Similarly, for channel two, Equation (6) is substituted into Equation (8), resulting in

s2 (t, tm) = σGsinc
(

∆B
(

t− 2RB

c

))
ωa (tm) exp

(
−j

4π

λ
RB

)
exp

(
j2π

v2
r RB

λ(v− va)
2

)
exp

(
−jπ

d2

2λRB

)

× exp

−j2π
(v− va)

2

λRB

(
tm −

vrRB

(v− va)
2 −

d
2 (v− va)

)2
 exp

(
j
2π

λ

vrd
(v− va)

)
.

(19)

Comparing Equation (19) (for channel two) with Equation (10) (for channel one), we can find
that there is a phase difference exp

(
−jπd2/ (2λRB)

)
and a time delay d/ (2 (v− va)) between the two

channels. Thus the measurement matrix for channel two can be represented as

Φ2 =
[
s0
′
(
−N

2 + 1
)

, s0
′
(
−N

2

)
, · · · , s0

′ (0) , · · · , s0
′
(

N
2 − 1

)
, s0
′
(

N
2

)]
M×N

, (20)

where,
s′0 (i) =

[
s′0 (t1 − i∆τ) , s′0 (t2 − i∆τ) , · · · , s′0 (tM − i∆τ)

]T
M , (21)

s0
′(tm − i∆τ) =


exp

(
jπγm (RB)

(
tm − i∆τ − d

2 (v− va)

)2
)

,
∣∣∣∣tm − i∆τ − d

2(v− va)

∣∣∣∣ ≤ T/2,

0 ,
∣∣∣∣tm − i∆τ − d

2(v− va)

∣∣∣∣ > T/2,

(22)

i ∈
{
−N

2
+ 1, · · · , 0, · · · ,

N
2

}
.

We define the measurement vector s2 ∈ CM as the received signal for a given range bin after
range compression by channel two, s2 = [s2(t1), s2(t2), · · · , s2(tM)]T and the sparse vector ρ2 ∈ CN as

ρ2 =
[
ρ
(2)
1 , ρ

(2)
2 , · · · , ρ

(2)
N

]T
. Thus, we obtain the standard equation in CS for channel two as

s2 = Φ2ρ2. (23)
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As we can see, the measurement matrices are built using the echo signal models of moving targets
as in Equations (13) and (19). In practice, it is difficult to construct the measurement matrices since the
along-track velocity va and cross-track velocity vr of the moving target are unknown. Thus, in order to
facilitate the analysis and construction of the measurement matrices, we set the values of va and vr to
zero. The effects of the nonzero cross-track velocity and nonzero along-track velocity on SAR imaging
are analyzed in detail through simulations performed in Section 6.1.

4.2. JSM-1 Model

For the ith scattering center, its corresponding reflection coefficients in channel one and channel
two can be respectively represented as

ρ
(1)
i = σiGsinc

(
∆B
(

t− 2RB
c

))
exp

(
−j

4π

λ
RB

)
exp

(
j
2πv2

r RB

λv2

)
, (24)

and

ρ
(2)
i = σiGsinc

(
∆B
(

t− 2RB
c

))
exp

(
−j

4π

λ
RB

)
exp

(
j
2πv2

r RB

λv2

)
× exp

(
−jπ

d2

2RBλ

)
exp

(
j
2π

λ

(
vr

d
v

))
.

(25)

Equations (24) and (25) demonstrate the close connection between the two channels, i.e.,
except the items of a fixed phase difference exp

(
−jπd2/ (2λRB)

)
, and a varying phase difference

exp
(

j 2π
λ

(
vr

d
v

))
changing with cross-track velocity in Equation (25), the other items on the reflection

coefficients of the two channels are the same.
First, we consider compensating for the fixed phase difference on the ith reflection coefficient of

channel two, ρ
(2)
i .

ρ
(2)′

i = ρ
(2)
i exp

(
jπd2/2λRB

)
= σiGsinc

(
∆B
(

t− 2RB
c

))
· exp

(
−j

4π

λ
RB

)
exp

(
j
2πv2

r RB

λv2

)
exp

(
j
2π

λ

(
vr

d
v

))
, i = 1, · · · , N.

(26)

The compensating procedure in Equation (26) is repeated for N reflection coefficients of channel

two, resulting in a new sparse vector, i.e., ρ′2 =
[
ρ
(2)′

1 , ρ
(2)′
2 , · · · , ρ

(2)′
N

]T
, namely the compensated

reflection coefficient vector. Furthermore, we can obtain the relationships between the reflection
coefficient vectors of channel two, respectively after and before the compensating procedure, together
with the reflection coefficient vector of channel one, as[

ρ1
ρ′2

]
=

 I 0

0 exp
(

jπ
d2

2λRB

)
I

 [ ρ1
ρ2

]
, (27)

where I denotes an identity matrix of appropriate size.
Secondly, we build the JSM-1 model based on the original reflection coefficient vector of channel

one, ρ1, and the compensated reflection coefficient vector of channel two, ρ′2. The nonzero elements of
ρ1 consist of the reflection coefficients from both the stationary clutter and moving targets, which are

denoted as ρ
(1)
s and ρ

(1)
m , respectively. Similarly, the nonzero elements of ρ′2 consist of the reflection

coefficients from both the stationary clutter and moving targets, which are denoted as ρ
(2)′
s and ρ

(2)′
m ,

respectively. On the one hand, the reflection coefficients of stationary clutter are common to both ρ1

and ρ′2, since vr = 0 and we have ρ
(1)
s = ρ

(2)′
s . On the other hand, the reflection coefficients of moving

targets are different for channel one and channel two, since vr 6= 0, thus ρ
(1)
m 6= ρ

(2)′
m . Let zc denote
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the vector consisting of the reflection coefficients of stationary clutter, z1 and z2 denote the vectors
consisting of the reflection coefficients of moving targets observed in channel one and channel two,
respectively. Then we have [

ρ1
ρ′2

]
=

[
I I 0
I 0 I

]  zc

z1

z2

 . (28)

We define y =
[
sT

1 sT
2
]T , and can obtain

y =

[
Φ1 0
0 Φ2

] [
ρ1
ρ2

]
=

[
Φ1 0
0 Φ2

]  I 0

0 exp
(
−jπ

d2

2λRB

)
I

 [ ρ1
ρ′2

]

=

[
Φ1 0
0 Φ2

]  I 0

0 exp
(
−jπ

d2

2λRB

)
I

 [ I I 0
I 0 I

]  zc

z1

z2


=

[
Φ1 Φ1 0

Φ2 exp
(
−jπ d2

2λRB

)
0 Φ2 exp

(
−jπ d2

2λRB

) ]
 zc

z1

z2


. (29)

In Equation (29), the first equality is based on Equations (18) and (23), and the second equality
holds considering the inverse of Equation (27).

Equation (29) is a standard JSM-1 model. By jointly reconstructing the common and innovation
components of the above, the moving targets z1 and z2 can be separated. However, the computational
costs of some existing algorithms for solving the above model increase dramatically when the
dimension of sparse vector increases. So we develop a more efficient recovery strategy for this
JSM-1 model.

5. The Hierarchical Variational Bayesian Based DCS Algorithm

5.1. Proposed Algorithm

In Bayesian modeling, all unknowns are treated as stochastic quantities with assigned probability
distributions. Considering the effects of noise, the standard JSM-1 model can be presented as

yk = Ak(zc + zk) + vk, (30)

where yk ∈ <M, Ak ∈ <M×N and vk ∈ <M denote the measurement vector, the measurement matrix
and noise vector, of channel k, respectively; zc, zk ∈ <N denote the common component and the
innovation component respectively.

By applying a suitable prior distribution to zc and zk, the sparsity can be guaranteed. However, it is
important to allow the flexibility to model local characteristics of the signal, as the simple stationary sparse
prior distribution is unable to meet the demand. For this reason, we propose an HVB-DCS algorithm for
the JSM-1 model.

We adopt zero-mean Gaussian prior distributions for the common component and innovation
components, respectively, which are given as

p (zc|αc) =
N

∏
n=1
N
(

zn
c |0, (αn

c )
−1
)

, (31)

and

p (zk|αk) =
N

∏
n=1
N
(

zn
k |0, (αn

k )
−1
)

, (32)
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where zn
c , zn

k , αn
c , and αn

k are the nth element of zc, zk, αc, and αk, respectively. The precision parameters
αc and αk are constrained by treating them as random variables, with Gamma prior distributions as

p (αc; a, b) =
N

∏
n=1

Gamma (αn
c |a, b), (33)

and

p (αk; ck, dk) =
N

∏
n=1

Gamma (αn
k |ck, dk). (34)

Furthermore, we assume that the mth element of noise vector, vm
k (m = 1, · · · , M), obeys an

independent and identically distributed (i.i.d) zero-mean Gaussian distribution with inverse variance
β, i.e., vm

k ∼ N (vm
k |0, β−1). Thus we can obtain the posterior distribution of noise vector vk as the

product of that of the individual element as,

p(vk|β) =
M

∏
m=1
N (vm

k |0, β−1). (35)

We further assume a Gamma distribution as prior for the noise inverse variance β

p(β; e, f ) = Gamma(β|e, f ), (36)

where e and f represent the shape and scale parameters of the Gamma distribution, respectively.
We define Y = {y1, y2, ..., yk}, Z={zc, z1, ..., zk, αc, ..., αk,β}, and θ = {a, b, c1...ck, d1...dk, e, f} as

the sets of measurement vectors, the hidden variables, and the hyperparameters of the imposed
prior, respectively. Figure 4 describes the relationships among the measurements (indicated as a
doubly circled node), the hidden variables (indicated as single circled nodes) and the hyperparameters
(indicated as square nodes). The directed edges of the graphical model represent the dependencies
among the variables. For instance, the measurements Y relies on the hidden variables zc, z1, z2, · · · , zk
and β, while the hidden variable zc stochastically depends on the hidden variable αc, and αc further
relies on the model parameters a, b.

Figure 4. Graphical model for the JSM-1 model. Doubly circled node represents measurements,
while single circled nodes represent hidden variables. Nodes denoted with squares correspond to
hyperparameters. The directed edges represent the dependencies among the variables.
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Next, we are to pursuit the posterior distribution of the hidden variable, p(Z|Y; θ). In [24], VB
introduces a variational distribution q(Z) to approximate the true posterior distribution p(Z|Y; θ).
First, the log marginal likelihood log p(Y; θ) can be represented as

log p (Y; θ) = F (q (Z) , θ) + KL (q (Z) ||p (Z|Y; θ)) , (37)

where F (q (Z) , θ) is the free energy,

F (q (Z) , θ) =
∫

q (Z) log
(

p (Z, Y; θ)

q (Z)

)
dZ, (38)

and KL (q (Z) ||p (Z|Y; θ)) is the Kullback-Leibler (KL) divergence between the true posterior p(Z|Y; θ)

and the variational distribution q(Z),

KL (q(Z)||p(Z|Y; θ)) =
∫

q(Z)log
(

q(Z)
p(Z|Y; θ)

)
dZ. (39)

The goal is to approximate the true posterior distribution by minimizing the KL. Due to the fact
that KL (q(Z)||p(Z|Y; θ)) ≥ 0, that objective can be achieved by maximizing F (q(Z), θ). For the JSM-1
model, we should not only find separable functions that approximate the posterior distribution of zc

and zk, but also make the integral F (q(Z), θ) tractable.
In order to meet the requirements, we can assume that q(Z) has a factorized form Equation (40).

This factorized form stems from theoretical physics where it is called mean field theory [38].

q(Z)= q(zc)q(z1) · · · q(zk)q(αc)q(α1) · · · q(αk)q(β). (40)

Optimizing the free energy in Equation (38) is realized by taking functional derivatives with
respect to each of q(·) distributions while fixing the other distributions and setting ∂F(q)/∂q(·) = 0.

Furthermore, the computation of ∂F(q)/∂q(·) = 0 (Assuming that q (Z) =
K
∏
i=1

q(zi)) can be expressed as

q(zj) ∝ exp
(
〈ln p(Y, Z; θ)〉i 6=j

)
, (41)

where 〈·〉i 6=j denotes an expectation with respect to all factors except q(zj).
Next, the approximate posterior distribution of each part in Equation (40) is calculated according to

Equation (41). We first calculate the variational distribution for common component zc, via Equation (42).

q (zc) ∝ exp
(
〈ln p (Y, Z; θ) 〉q(Z)/q(zc)

)
∝ exp

(
∑K

k=1〈ln p (yk|zc, zk, β) 〉q(zk)q(β) + 〈ln p(zc|αc)〉q(αc)

)
∝ N (zc; µc, Σc) .

(42)

Thus zc is confirmed to be Gaussian distributed, with covariance matrix Σc and mean vector µc, where

Σc =

(
K
∑

k=1
〈β〉AT

k Ak + Λ〈αc〉

)−1

, (43)

µc = 〈β〉Σc
K
∑

k=1
AT

k (yk −Akµk). (44)

In the above equations, Λ〈αc〉 ∈ <
N×N is a diagonal matrix with hyperparameters αn

c (n = 1, ..., N),
and K is the number of channels.

Secondly, we calculate the variational distributions for innovation components zk, k = 1, · · · , K
via Equation (45).
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q (zk) ∝ exp
(
〈ln p (Y, Z; θ)〉q(Z)/q(zk)

)
∝ exp

(
〈ln p (yk|zc, zk, β)〉q(zc)q(β) + 〈ln p(zk|αk)〉q(αk)

)
∝ exp

(
−〈β〉

2

〈
‖yk −Ak (zc + zk)‖2

2

〉
q(zc)
− 1

2
zT

k Λ〈αk〉zk

)
∝ N (zk; µk, Σk) .

(45)

Thus, zk is also Gaussian distributed, with covariance matrix Σk and mean vector µk, where

Σk =
(
〈β〉AT

k Ak + Λ〈αk〉

)−1
, (46)

µk = 〈β〉ΣkAT
k (yk −Akµc) . (47)

In the above equations, Λ〈αk〉 ∈ <
N×N is a diagonal matrix with hyperparameters αn

k (k = 1, ..., K;
n = 1, ..., N).

Thirdly, we calculate the variational distribution for the prior of common component.

q (αn
c ) ∝ exp

(
〈ln p (zn

c |αn
c ) + ln p (αn

c ; a, b)〉q(zc)q(β)

)
∝ exp

(
1
2

ln αn
c −

1
2

〈
(zn

c )
2
〉

αn
c + (a− 1) ln αn

c − bαn
c

)
∝ exp

((
1
2
+ a− 1

)
ln αn

c −
(

b +
1
2

〈
(zn

c )
2
〉)

αn
c

)
∝ Gamma

(
αn

c ; ã, b̃n
)

.

(48)

Thus αn
c is distributed as Gamma(αn

c ; ã, b̃n), where

ã = a +
1
2

, b̃n = b +
1
2

〈
(zn

c )
2
〉

. (49)

Similarly, we can obtain the variational distributions for the prior of innovation components, as

q(αn
k ) ∝ Gamma(αn

k ; c̃k, d̃n
k ), (50)

where
c̃k = ck +

1
2

, d̃n
k = dk +

1
2

〈
(zn

k )
2
〉

. (51)

Finally, we calculate the approximate posterior distribution for the parameter of inverse variance β.

q (β) ∝ exp
(
〈ln p (Y, Z; θ)〉q(Z)/q(β)

)
∝ exp

(
∑K

k=1 〈ln p (yk|zc, zk, β)〉q(zc)q(zk)
+ ln p (β|e, f )

)
∝ exp

(
KM

2
ln β− β

2

K

∑
k=1

〈
‖yk −Ak (zc + zk)‖2

2

〉
q(zc)q(zk)

+ (e− 1) ln β− f β

)
∝ Gamma

(
β; ẽ, f̃

)
.

(52)
Thus β is distributed as Gamma(β; ẽ, f̃ ), where

ẽ = e +
KM

2
,

f̃ = f +
1
2

(
K

∑
k=1

〈
‖yk −Ak(zc + zk)‖2

2

〉
q(zc)q(zk)

)
.

(53)

The variational optimization proceeds by iteratively updating Equations (42), (45), (48), (50),
and (52) until convergence occurs to hyperparameters θ. Finally, we can obtain the reconstructed
signal by applying the maximum a posteriori estimation.

ρ̂k = arg max
zc+zk

p(Z|Y; θ) = arg max
zc

q(zc) + arg max
zk

q(zk) = µc + µk, k = 1, 2, · · · , K.

The proposed HVB-DCS algorithm for solving the JSM-1 reconstruction problem is summarized
in Algorithm 1.
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Algorithm 1: HVB-DCS Algorithm

Input: A set of measurement vectors {y1, y2, · · · , yK} and corresponding measurement matrices
{A1, A2, · · · , AK}, k = 1, · · · , K.
Output: The reconstructed signal ρ̂k = µc + µk, k = 1, · · · , K.
Initialize the hyperparameters. Set the initial values of the variables (a, b, {ck, k = 1, · · · , K},
{dk, k = 1, · · · , K}, e, f ) as 10−6.
Compute the variational distribution for the common component.

Compute Σc =

(
K
∑

k=1
〈β〉AT

k Ak + Λ〈αc〉

)−1

, and µc = 〈β〉Σc
K
∑

k=1
AT

k (yk −Akµk).

Compute the variational distribution for the prior of the common component.
Update q(αn

c ), compute

ã = a +
1
2

, b̃n = b +
1
2

〈
(zn

c )
2
〉

.

Compute the variational distributions for the innovation components.

Compute Σk =
(
〈β〉AT

k Ak + Λ〈αk〉
)−1

, and µk = 〈β〉ΣkAT
k (yk −Akµc).

Compute the variational distributions for the prior of the innovation components.
Update q

(
αn

k
)
, compute

c̃k = ck +
1
2

, d̃n
k = dk +

1
2

〈
(zn

k )
2
〉

.

Compute the variational distribution for the prior of noise vector.
Update q(β), compute

ẽ = e +
KM

2
,

f̃ = f +
1
2

(
K

∑
k=1

〈
‖yk −Ak(zc + zk)‖2

2

〉
q(zc)q(zk)

)
.

Iterate steps 2 , 3 , 4 , 5 and 6 until convergence occurs to hyperparameters.
Output ρ̂k = µc + µk for k = 1, · · · , K.

5.2. Complexity Analysis

We present the computational complexity of the proposed HVB-DCS algorithm, as well as the
comparison to the CS-based joint sparsity recovery algorithm and the RD algorithm. The computational
complexity of the HVB-DCS algorithm at each iteration is dominated by the inversion operations
on an N × N matrix in Equations (43) and (46), and the multiplications of a matrix and a vector in
Equations (44) and (47). The computational complexities of the matrix inversion and matrix-vector
multiplication are O

(
N3) and O

(
N2), respectively. By using matrix inversion lemma [39],

the complexity of the matrix inversion can be reduced to O(M3). Thus the overall computational
complexity of the HVB-DCS algorithm isO

(
Nt (K + 1) M3), where Nt is the total number of iterations.

The small values of Nt and M will result in acceptable computational complexity. In contrast, a large
N will lead to high computational complexity, which makes the HVB-DCS algorithm impractical.
To circumvent the high computational complexity problem, we can resort to a number of accelerating
algorithms [40,41] to develop a more computationally efficient algorithm in the future work.

For the CS-based joint sparsity recovery algorithm, the dimensions of the sparse vector and the
measurement vectors are 3N and 2M, respectively. Thus the computational complexity of the CS-based
algorithm is O(12NM2). For the RD algorithm, the computational complexity is dominated by the
fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT), which have computational
complexities of O(Mlog2M) and O(M/2log2M), respectively. Thus, the overall computational
complexity of the RD algorithm is O (K (3N/2 + 1) Mlog2M).

6. Simulations and Experiments

In this section, the performance of the proposed HVB-DCS algorithm is verified through both
simulations and experiments. First, the effects of along-track and cross-track velocities on the SAR
images reconstructed using the HVB-DCS algorithm are analyzed in Section 6.1. Secondly, the proposed
HVB-DCS algorithm is compared with some classical GMTI algorithms, e.g., the RD [42] and CS [43]
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algorithms, based on point target simulation, in Section 6.2. Thirdly, the effects of problem size and
data rate on complexity of the HVB-DCS algorithm are analyzed in Section 6.3. Finally, in Section 6.4,
the proposed HVB-DCS algorithm is applied to the real background cluttered environment, where the
real SAR data are collected by RADARSAT-1 satellite in the Vancouver region [42].

6.1. The Effects of Along-Track and Cross-Track Velocities on SAR Imaging

6.1.1. The Effect of Cross-Track Velocity

First, we consider the influence of cross-track velocity on SAR imaging and take channel one as
an example. The parameters of the simulated SAR radar system are listed in Table 1. Suppose that a
moving target is at (RB, x0), with a given cross-track velocity vr and along-track velocity va = 0 m/s.
The received signal of the moving target by channel one, after demodulation and range compression,
which is presented in Equation (13), is rewritten as

s1 (tm) = ρ
(1)
0 ωa (tm − k∆τ) exp

(
−j2π

v2

λRB

(
tm − k∆τ − vrRB

v2

)2
)

, (54)

where k∆τ = x0/v. Since the CS-based SAR imaging algorithm applied in the azimuth direction is
essentially searching the most matched atom from a redundant dictionary Equation (15) to s1(tm), the
degree of match is mainly affected by the exponential term in Equation (54), whereas the minor shift of
the azimuth windowing function has little influence. Assuming that the most matched atom in the
redundant dictionary Φ1 is

s0(tm − k′∆τ) = ωa(tm − k′∆τ) exp
(
−j2π v2

λRB
(tm − k′∆τ)2

)
. (55)

When k′∆τ = k∆τ +
vrRB

v2 , s1(tm) matches the atom most, resulting in k′ = k +
vrRB

v2∆τ
.

Obviously, for a stationary clutter with vr = 0 m/s, the reflection coefficient of the stationary clutter
locates at the (N/2 + k)th pixel in the azimuth direction. For a moving target with vr 6= 0, the

cross-track velocity of the moving target leads to an azimuth deviation of
vrRB

v2∆τ
pixels, compared with

that of the stationary clutter, on the SAR image reconstructed using the HVB-DCS algorithm.
The influence of cross-track velocity is demonstrated in Figure 5. In Figure 5, a static scattering

center and a moving scattering center with the cross-track velocity of vr = 0.5 m/s and the along-track
velocity of va = 0 m/s are both at (7071, 0) m. The amplitude of reflection coefficient of the moving
target is half that of the stationary clutter. The moving target has a deviation of 47 pixels in the azimuth
direction compared with that of the stationary clutter on SAR image, which completely conforms

to
vrRB

v2∆τ
.

Table 1. SAR radar system parameters for simulation.

Parameter Value

Wavelength (m) 0.03
Range bandwidth (MHz) 150

Platform height (m) 5000
Platform velocity (m/s) 150

Incidence angle (◦) 45
PRF (Hz) 300

Aperture size (m) 2
Channel distance (m) 1
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Figure 5. The influence of cross-track velocity on SAR image.

6.1.2. The Effect of Along-Track Velocity

For the analysis on along-track velocity, it is assumed that the moving target is at (RB, 0), with a
given along-track velocity va and cross-track velocity of vr = 0 m/s. Thus the received signal of the
moving target, after demodulation and range compression, can be written as

s1 (tm) = ρ
(1)
0 ωa (tm) exp

(
−j2π

(v− va)
2

λRB
t2
m

)
. (56)

Similarly, for channel one, the received signal after range compression can be represented linearly
by the atoms in the redundant dictionary Φ1, as

s1 (tm) =
N/2
∑

i=−N/2+1
C(1)

i ωa (tm − i∆τ) exp
(
−j2π v2

λRB
(tm − i∆τ)2

)
, (57)

where C(1)
i denotes the reconstructed reflection coefficient in channel one. Substituting Equation (56)

into Equation (57), and dividing both sides by the item exp
(
−j2π

v2

λRB
t2
m

)
, results in

ρ
(1)
0 ωa (tm) exp

(
−j2π

(
v2

a − 2vva
)

λRB
t2
m

)
=

N/2
∑

i=−N/2+1
D(1)

i ωa (tm − i∆τ) exp (−jiωtm) , (58)

where ω =
−4πv2

λRB
∆τ, and D(1)

i = C(1)
i exp

(
−j

2πv2

λRB
(i∆τ)2

)
. When the along-track velocity va of

the moving target equals zero, from Equation (58), we can see that the left side of the equation equals
a constant. Thus on the right side of the equation, the most sparse solution is D(1)

i = 0 (i 6= 0)

and D(1)
0 = ρ

(1)
0 . In general, the along-track velocity of the target is much less than that of the

flying platform, resulting in a slow variation of the terms on the left side of Equation (58). Thus the
left side of Equation (58) contains only a few low frequency components. With the increase of left
side of Equation (58), the high frequency component increases slowly. D(1)

i can be approximated to
the coefficients of expansion of the slowly varying function under different frequency components.
Therefore, with the increase of the left side of the Equation (58), the nonzero value D(1)

i will spread

to both sides, centering at D(1)
0 , which leads to the defocus of the moving target on the SAR image.

The influence of along-track velocity can be shown in Figure 6, where va is set as different values of
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0 m/s, 1 m/s and 2 m/s. It can be seen from Figure 6 that as the along-track velocity increases, the
azimuth defocus of the moving target on the SAR image becomes more serious.
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Figure 6. The influence of along-track velocity on SAR image: (a) va = 0 m/s; (b) va = 1 m/s;
(c) va = 2 m/s.

The defocus of the moving target on the SAR image can be treated as a basis mismatch
problem [44]. In this work, the measurement matrices are built based on the echo signal models of
two channels (Equations (13) and (19) in Section 4.1), assuming that the along-track velocity va equals
zero. However, in practice, this assumption does not always hold true. In this case, the constructed
measurement matrix does not exactly match the underlying true one, leading to the basis mismatch
problem. A parameter βd is defined in [44] to quantitatively evaluate the difference between the
assumed basis and the true one. The larger the absolute value of va is, the higher the mismatch level of
the constructed measurement matrix will be, resulting in a higher βd. Moreover, the defocus effect
can be evaluated by the reconstruction error of the sparse vector recovered with mismatched basis.
Based on [44], an upper bound of the `1-norm reconstruction error is defined as:

‖ρk − ρ̂k‖1 ≤ Nβd‖ρk‖q, (59)

where ρk and ρ̂k denote the true and reconstructed sparse vector respectively, N is the dimension of
the sparse vector, ‖·‖q represents the `q-norm, and 1 ≤ q ≤ ∞. Thus, the azimuth defocus on the SAR
image is bounded given va. In addition, please refer to [45,46] for more analyses of basis mismatch
problem in CS-based SAR imaging and the methods to deal with it.
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Furthermore, the effect of va on the azimuth defocus is analyzed through simulation. The degree
of azimuth defocus is represented by the relative reconstruction error, which is defined as

err , ‖ρk − ρ̂k‖1/‖ρk‖1. (60)

Figure 7 shows the relative reconstruction error err versus va. The result illustrates that the
reconstruction error err is low when the absolute value of va is relatively small.
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Figure 7. Relative reconstruction error versus along-track velocity.

6.2. The Simulation on Point Targets

In this section, the performance of the HVB-DCS algorithm is verified by simulations on
point targets. The nearest slant range RB is set as 7071 m. Four scattering centers are located at
the range bin RB = 7071 m, including three static scattering centers, and a moving scattering center
with cross-track velocity of vr = 0.5 m/s and along-track velocity of va = 0 m/s. The three stationary
targets are located at −5 m, 0 m, +5 m in the azimuth direction, and the moving target is located at
0 m in the azimuth direction. The amplitudes of reflection coefficient of three stationary targets are the
same, which are twice that of the moving target. The parameters of the simulated SAR radar system
are the same as those listed in Table 1.

In the field of SAR-GMTI, the proposed HVB-DCS algorithm is compared to the RD [42] and
CS [43] algorithms. The flow charts of the RD based GMTI system, the CS-based GMTI system, and
the HVB-DCS based GMTI system are shown in Figures 8–10, respectively. For the RD based GMTI
system and CS-based GMTI system, an additional DPCA [47] procedure is needed for moving-target
indication, which is shown in both Figures 8 and 9. DPCA can effectively suppress clutter and
detect slow moving targets. In contrast, in the HVB-DCS based GMTI system, the moving targets
(the innovation components) and the stationary targets (the common component) can be directly
distinguished using the DCS framework. Thus the DPCA is no longer required in the HVB-DCS based
GMTI system and removed (Figure 10). This significantly simplifies the architecture of the GMTI
system, and saves the computing time.

Figure 8. Flow chart of the RD based GMTI system.
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Figure 9. Flow chart of the CS-based GMTI system.

Figure 10. Flow chart of the HVB-DCS based GMTI system.

Figures 8–10 show that all the three algorithms, i.e., RD, CS and HVB-DCS algorithms,
can effectively identify the moving target. For the RD algorithm, we use the oversampled raw
data to image. The result of the RD algorithm is shown in Figure 11. As a widely used SAR imaging
algorithm, the RD algorithm has very high running speed, but the on-board memory required by
the sampling rate is large. For the CS algorithm, the simulated radar system works in the random
sampling mode introduced in Section 4.1. In our experiment, we choose randomly half of transmitted
pulses in azimuth and recover the complex-valued SAR image based on the CS algorithm. The result is
shown in Figure 12, which shows that the image reconstructed by using the CS algorithm is more clear,
and the side-lobes are effectively suppressed. However, the computational cost of the CS algorithm is
relatively high. For the HVB-DCS algorithm, we further drop randomly 62.5% of the transmitted pulses
in azimuth to recover the SAR image. In our experiment, we reduce to about 37.5% of the original
samples in the azimuth direction and reconstruct the SAR image using the HVB-DCS algorithm.
The result is shown in Figure 13, which shows that the HVB-DCS algorithm has a great suppression
effect on stationary clutter and is capable of identifying the moving target accurately. The effects
of both the data rate in azimuth, and noise/clutter level on the detection performance of moving
targets are tested by simulations. The adopted metric is the improvement factor (IF), which is defined
as IF = SCNRout/SCNRin, where SCNRin and SCNRout are the signal-to-clutter-noise ratios of input
signal and output signal, respectively. We test the HVB-DCS and CS algorithms to detect moving
targets by varying the data rate in the azimuth direction, at different SCNRin levels, except that the
performance of RD algorithm is tested at different SCNRin levels with data rate 100%. The IFs averaged
over 100 Monte Carlo trials are shown in Figure 14. For the HVB-DCS algorithm, at the same SCNRin

level, the IF first increases dramatically with the data rate in azimuth. When the data rate in the
azimuth direction exceeds 37.5%, the IF grows slowly. For the CS algorithm, at the clutter/noise levels
of SCNRin = −11 dB and SCNRin = −6 dB, the IF is negative infinite when the data rate in azimuth is
lower than 37.5%. Furthermore, at the clutter/noise level of SCNRin = −2 dB, the IFs are negative
infinite when the data rate in azimuth is lower than 25%. With the data rate in azimuth approaching
37.5%, the IF increases to a value larger than zero. When the data rate in the azimuth direction increases
to more than 50%, the IF gradually increases with the data rate in azimuth at the same SCNRin level.
The main reason is that when the data rate in azimuth decreases, the reconstruction error increases
gradually, thus affecting the performance of clutter suppression. Moreover, it is noted that the IFs of
HVB-DCS algorithm with the data rate 37.5% in azimuth are almost at the same level with those of CS
algorithm with the data rate 50% in azimuth. The IFs of RD algorithm (indicated by asterisks) are the
lowest among the three algorithms. This verifies that the proposed HVB-DCS algorithm outperforms
the CS and RD algorithms in terms of clutter suppression and moving target detection performance.
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Figure 11. RD based reconstruction results: (a) channel 1 with oversampled raw data; (b) channel 2
with oversampled raw data; (c) DPCA with oversampled raw data.
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Figure 12. CS-based reconstruction results: (a) channel 1 with data rate 50% in azimuth; (b) channel 2
with data rate 50% in azimuth; (c) DPCA with data rate 50% in azimuth.
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Figure 13. HVB-DCS based reconstruction results with data rate 37.5% in azimuth: (a) static scattering
centers; (b) moving target in channel one; (c) moving target in channel two.
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Figure 14. IFs of the RD, CS and HVB-DCS algorithms, based GMTI system for the varying data rates
in azimuth and different SCNRin levels.

To examine the reconstruction accuracy of the proposed HVB-DCS algorithm, we introduce the
reconstruction error, which is defined as

erec =
∑L

l=1 ‖x̂l − xl‖2

∑L
l=1 ‖xl‖2

, (61)

where L is the number of range bins, xl and x̂l denote the true and reconstructed sparse vector at
the lth range bin, respectively. The reconstruction errors of the RD, CS and HVB-DCS algorithms,
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are calculated by varying data rates in azimuth, at different SCNRin levels. The results are shown in
Figure 15. The reconstruction error of the HVB-DCS algorithm is lower than 0.2 when the data rate is not
less than 37.5%, whereas the reconstruction error of the CS algorithm is lower than 0.3 when the data rate
is not less than 50%. In addition, compared to the CS algorithm, the HVB-DCS algorithm has smaller
reconstruction errors when the data rate exceeds 37.5%. The main reasons are due to the following two
aspects. First, the DCS exploits both intra-signal and inter-signal correlations, which ensures a good
correlation between the channels in the case of lower data rate. Secondly, the hierarchical structure
is more suitable for complex models. Moreover, the higher the noise/clutter level is, the larger the
reconstruction errors are, which shows that the detection performance degrades with the increase of the
noise/clutter level.
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Figure 15. Reconstruction errors of three algorithms, i.e., RD, CS and HVB-DCS algorithms, based
GMTI system for the varying data rates in azimuth and different SCNRin levels.

6.3. Effects of Problem Size and Data Rate on Complexity of HVB-DCS

The goal of this section is to analyze the computational complexity of the HVB-DCS algorithm
in terms of problem size and data rate using simulations. The computational complexity of the
HVB-DCS algorithm is further compared with those of the RD and CS-based algorithms. First, we set
the data rate as 37.5% and 50% for the HVB-DCS and CS-based algorithms respectively, and 100%
for the RD algorithm. Meanwhile, we vary the dimension of sparse vector N (also, the number of
samples in the azimuth direction) in the range of [100, 900]. We plot the runtime (averaged over
100 trials) of the HVB-DCS, RD and CS-based algorithms versus N in Figure 16a. The results show
that the RD algorithm achieves the shortest runtime. When the data rate is at the level of 37.5%
and N ≤ 500, the proposed HVB-DCS algorithm takes almost the same runtime with the CS-based
algorithm to perform moving target indication. When the data rate is at the level of 37.5% and N > 500,
the proposed HVB-DCS algorithm takes longer runtime than the CS-based algorithm. When the data
rate is at the level of 50%, the runtime of HVB-DCS is shorter than that of the CS-based algorithm in
the range of [100, 900].

In addition, we examine the runtime of the HVB-DCS and CS-based algorithms versus data
rate when setting N at different levels, i.e., 100, 500 and 900 respectively. The data rate varies in the
range of [12.5%, 100%] for the two algorithms. The results are shown in Figure 16b. When N = 100,
the runtime of HVB-DCS is shorter than that of the CS-based algorithm at any data rate in the range of
[12.5%, 100%]. When N = 500 and the data rate is larger than 37.5%, HVB-DCS takes shorter runtime
than that of the CS-based algorithm, and the similar result occurs when N = 900 and the data rate is
larger than 50%.



Sensors 2018, 18, 2377 23 of 27

100 200 300 400 500 600 700 800 900

 Dimension of sparse vector N

0

1

2

3

4

5

6

7

8

R
u

n
ti
m

e
 (

s
)

CS, 37.5% data rate

HVB-DCS, 37.5% data rate

CS, 50% data rate

HVB-DCS, 50% data rate

RD, 100% data rate

(a)

12.5% 25% 37.5% 50% 62.5% 75% 87.5% 100%

Data rate M/N (%)

0

2

4

6

8

10

12

14

R
u

n
ti
m

e
 (

s
)

CS,N=100

HVB-DCS,N=100

CS,N=500

HVB-DCS,,N=500

HVB-DCS,N=900

CS,N=900

(b)

Figure 16. Complexity comparisons of the RD, CS and HVB-DCS algorithms: (a) runtime versus sparse
vector dimension N; (b) runtime versus data rate M/N.

6.4. Experiment on Real SAR Data

In order to verify the performance of the proposed HVB-DCS algorithm in practice, we carry
out an experiment on data from a real background cluttered environment, which are collected by the
satellite RADARSAT-1 in the Vancouver region [42]. The parameters of RADARSAT-1 satellite are
shown in Table 2.

Table 2. RADARSAT-1 parameters.

Parameter Value

Slant range of scene center (km) 988.65
Beam squint angle (rad) 0.0279

Effective radar velocity (m/s) 7062
PRF (Hz) 1256.98

Sampling rate (MHz) 32.317
Range FM rate (MHz/µs) 0.72135

Pulse duration (µs) 41.75
Radar center frequency (MHz) 5300

In the experiment, the real SAR data from single-channel SAR system (RADARSAT-1) is
used to simulate dual-channel raw data. The detailed procedures are as follows. According to
the imaging geometry models for point targets as in Equations (13) and (19) in Section 4.1, there is a
phase difference exp

(
−jπd2/ (2λRB)

)
and a time delay d/ (2 (v− va)) between the received signals from

two channels. First, all the real data from the first channel is delayed ∆t time, and then multiplied with
exp

(
−jπd2/ (2λRB)

)
, to produce the raw data from the second channel of the simulated dual-channel

SAR system. Secondly, in order to simulate the channel imbalance, some random amplitudes and
phase errors are added to the raw data of the second channel. Finally, the echo signals of nine targets
(including five stationary targets and four moving targets moving) are added to the raw data of both
channels. Based on the raw data from the simulated dual-channel SAR system, three algorithms, e.g.,
the RD, CS and HVB-DCS algorithms, are utilized to detect the moving targets.

Figure 17 shows the SAR image of the observation scene, which contains the static clutter,
five stationary point targets and, four moving targets with the same cross-track velocity of vr = 5 m/s,
and the same along-track velocity of va = 5 m/s. The radar image covers an area of about 2.8 km
in azimuth and 1.9 km in range. The corresponding parameters of nine targets are listed in Table 3.
The four moving targets in full SAR RADARSAT-1 image are marked with the red rectangles in
Figure 17. We use the oversampled raw data in azimuth for the RD algorithm, and 50% of the
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oversampled raw data in azimuth for CS algorithm and 37.5% of the oversampled raw data in azimuth
for the HVB-DCS algorithm.
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Figure 17. Ground truth scene containing the static clutter, five stationary targets and four targets
with same cross-track velocity of vr = 5 m/s, and same along-track velocity of va = 5 m/s. The red
rectangle indicates the moving target.

Table 3. Simulation parameters of five stationary targets and four moving targets.

No. Azimuth Nearest Slant Along-Track Across-Track
Coordinate (m) Range (km) Velocity va (m/s) Velocity vr (m/s)

1 −500 0.8 5 5
2 −400 987.65 0 0
3 800 987.65 0 0
4 200 988.17 0 0
5 −1100 988.17 5 5
6 100 988.17 5 5
7 −500 988.73 5 5
8 −400 988.73 0 0
9 800 988.73 0 0

GMTI results (Figure 18) show that all of the three algorithms can distinguish the moving targets
from the stationary clutter successfully. Moreover, the final SCNRout of the three algorithms are
calculated to evaluate detection performance. The initial SCNRin equals −69 dB. The SCNRouts of the
SAR image recovered based on the RD, CS and HVB-DCS algorithms are −13 dB, −12 dB and −5 dB,
respectively. Note that, there is an obvious increase in the SCNR. The RD algorithm has the lowest
SCNRout. The SAR image of CS-based algorithm has a much lower SCNRout (−12 dB) compared
with the proposed HVB-DCS algorithm (−5 dB). This is due to the reason that in the CS-based GMTI
system, the mismatch between channels leads to the failure in energy cancelation of static targets
and clutters, whereas the proposed HVB-DCS algorithm takes advantage of the correlation between
two channels and suppresses the clutter and noise efficiently, even at a much lower data rate in the
azimuth direction.
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Figure 18. GMTI results: (a) RD with oversampled raw data; (b) CS with 50% of the oversampled raw
data; (c) HVB-DCS with 37.5% of the oversampled raw data. The red rectangle indicates the moving
target. The partial enlarged result is shown in the upper right corner of the SAR image.

7. Conclusions

In this paper, we propose a novel HVB-DCS algorithm for GMTI using the dual-channel
SAR system. The results from both the simulation on point targets and the experiment on data from the
real background cluttered environment show that the proposed HVB-DCS algorithm can successfully
detect multiple moving targets, while suppressing the clutter efficiently. The proposed algorithm
achieves better detection performance for the GMTI system, in the metric of IF and reconstruction
error, compared with the RD and CS algorithms.
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