
sensors

Article

Real-Time Task Assignment Approach Leveraging
Reinforcement Learning with Evolution Strategies for
Long-Term Latency Minimization in Fog Computing

Long Mai 1, Nhu-Ngoc Dao 2 ID and Minho Park 1,*
1 Department of Information Communication, Materials, and Chemistry Convergence, Soongsil University,

Seoul 06978, Korea; longmaisg@ssu.ac.kr
2 School of Computer Science and Engineering, Chung-Ang University, Seoul 06974, Korea;

dnngoc@uclab.re.kr
* Correspondence: mhp@ssu.ac.kr; Tel.: +82-2-828-7176

Received: 30 June 2018; Accepted: 22 August 2018; Published: 27 August 2018
����������
�������

Abstract: The emerging fog computing technology is characterized by an ultralow latency response,
which benefits a massive number of time-sensitive services and applications in the Internet of things
(IoT) era. To this end, the fog computing infrastructure must minimize latencies for both service
delivery and execution phases. While the transmission latency significantly depends on external
factors (e.g., channel bandwidth, communication resources, and interferences), the computation
latency can be considered as an internal issue that the fog computing infrastructure could actively
self-handle. From this view point, we propose a reinforcement learning approach that utilizes
the evolution strategies for real-time task assignment among fog servers to minimize the total
computation latency during a long-term period. Experimental results demonstrate that the proposed
approach reduces the latency by approximately 16.1% compared to the existing methods. Additionally,
the proposed learning algorithm has low computational complexity and an effectively parallel
operation; therefore, it is especially appropriate to be implemented in modern heterogeneous
computing platforms.

Keywords: real-time task assignment; fog computing; reinforcement learning; evolution strategies;
long-term latency minimization

1. Introduction

Fog computing was developed to act as an intermediate between a remote cloud computing
environment and Internet of Things (IoT) devices. It is a novel architecture that extends the cloud to the
edge of the network [1,2]. In fog computing, latency-sensitive tasks can be executed at the fog servers,
near the devices, while delay-tolerant and computationally intensive applications can be offloaded
to the cloud. Fog computing also provides additional advantages such as the ability of processing
applications at specific locations. Owing to these advantages, the fog computing infrastructure is
increasingly utilized for handling real-time IoT services and applications [3–5].

While fog computing deployment provides substantial benefit over cloud computing, it exposes
a critical challenge in terms of task assignment problem [6,7]. If tasks are not assigned to suitable
servers, some servers may suffer from a burden in processing while others with rich resources relax [8].
Particularly, the imbalance in resource utilization is heightened in scenarios where a large number of
IoT devices are present. Consequently, efficient task assignment techniques in real-time are inevitable
for fog networks, especially over a long-term period to achieve system stability.

To overcome the aforementioned issues, we proposed a real-time task assignment approach, which
leverages reinforcement learning (RL) [9–11] with evolution strategies (ES) training method [12,13] for

Sensors 2018, 18, 2830; doi:10.3390/s18092830 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-1565-4376
http://www.mdpi.com/1424-8220/18/9/2830?type=check_update&version=1
http://dx.doi.org/10.3390/s18092830
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 2830 2 of 19

long-term latency minimization in fog computing. In this approach, a central scheduler that performs
task assignment among fog servers considers the fog computing infrastructure as a trainable neural
network (NN) [14,15]. In the NN, fog computing resources, remaining tasks in the buffers of fog
servers, and demand of the offloaded task make up various states of the system. The number of system
states is extremely huge; therefore, the ES algorithm has been utilized for learning operations for
obtaining a fast optimization of long-term latency minimization as a training reward.

We experiment task assignment in the fog computing of a factory, where IoT devices are frequent
but have noise interference. The system includes 200 IoT devices and 10 fog servers with different
capabilities of task processing. Although the complexity of real-time task assignment problem is high,
the proposed reinforcement learning model with evolution strategies algorithm reaches the objective
of optimizing long-term latency and has 16.1% higher reward than the greedy method, which is the
baseline in real-time task assignment. The contributions of this study are as follows.

1. We propose a reinforcement learning model for the real-time task assignment in fog networks
with the objective of minimizing long-term latency. The method for crafting states of the system
is novel and is an important contribution to the success of the model.

2. We propose the evolution strategies as a learning method for the reinforcement learning model
for optimizing the server selection function, i.e., the trainable neural network. The algorithm has
low computational complexity and simplicity in implementation. Additionally, the algorithm is
remarkably parallel due to the independence in evaluation of its children. Therefore, it is suitable
for modern computers with parallel CPUs.

3. We prove by comprehensive experiments that the proposed model is scalable when the system
escalates the number of IoT devices or the number of fog servers. The model attains 15.3% higher
reward than the greedy method in a system with 100 IoT devices and five fog servers; and 16.1%
with 200 IoT devices and 10 fog servers.

The rest of the paper is organized as follows. Section 2 surveys work related to the fog computing
paradigm and real-time task assignment problem. In Section 3, we propose the reinforcement learning
model and how to craft the states of the system. Section 4 introduces the evolution strategies as
a learning algorithm for the proposed model. Section 5 shows the experiment results for proving
the efficiency of the proposed model and exploring the effectiveness of the parameters of the model.
Section 6 concludes the study.

2. Related Work

Literature reviews [16,17] revealed a great contribution of research communities for improving
fog computing performances in terms of latency, energy consumption, resource utilization, service
availability, their variants, and hybrid solutions [2,18–22]. In the latency minimization objective,
the state-of-the-art solutions, however, mainly considered the fog computing on the basis of time
intervals. Meanwhile, the effective real-time operations that require immediate reaction immediately
after the tasks arrive at the fog computing infrastructure have not yet been significantly taken
into account.

For instance, Chamola et al. [23] proposed a load balancing scheme among fog servers
for minimizing the total computation latency in the entire system during an observed period.
The developed latency optimization function was relaxed to be a convex problem for making it
resolvable. Although a total latency reduction is achieved, this work did not consider the offloaded task
complexity, which has significant effects on the fog computing performance. Moreover, the algorithmic
complexity restricts the scheme to be applied to a large-scale environment. In [24], a pattern-identified
online task scheduling (PIOTS) mechanism has been proposed for industrial IoT services in multitier
fog computing systems. The PIOTS mechanism learned task arrival based on historial task data using
the self-organizing map (SOM) technique and further applied the Hungarian assignment method for
the identified task patterns. Based on that, incoming tasks arriving at the fog computing system are



Sensors 2018, 18, 2830 3 of 19

matched into these patterns and applied to the appropriate assignment policies for obtaining the total
system latency minimization. However, the dimension of the SOM is constant; therefore, the PIOTS
mechanism does not flexibly adapt to time-varying task arrivals. In [25], Ali et al. considered the
latency-aware cloudlet selection in a fog network as a many-to-one matching game, where the IoT
devices and cloudlets rank each other for latency minimization. A distributed and self-organizing
method was proposed for solving the matching game to obtain the objective function. However,
the latency in this work considered the system operation per timeslot, which is not truly a real-time
environment. On the contrary, Dao et al. [26] proposed an adaptive resource balancing (ARB) scheme
by migrating user services among fog servers (located at fog radio access nodes). The ARB orchestrates
workload in the entire system using the backpressure algorithm so as to minimize the computation
latency (i.e., serviceability maximization). Similar to the mentioned studies, the ARB scheme has
limitations due to its timeslot-based optimization approach. The optimization for the time intervals
requires that tasks generated by IoT devices have to be divided into fragments with a fixed size to
be uploaded in time intervals, which is not a trivial process [1]. Additionally, the approach assumes
that the servers have to complete the assignments and their buffers are cleared after each time period,
which is not practical.

By contrast, the greedy method is commonly used while considering real-time processing.
The function of this method is illustrated in Figure 1. At t0 (Figure 1a), there are some servers
in processing. When a task is uploaded at t1 (Figure 1b), some tasks have been done and there are tasks
remaining from the previous task list in the buffers. This method determines the demand of a task and
the status of buffers for selecting a server with the objective of minimizing latency at that moment. In
Figure 1, server Fog3 has the lowest latency in processing the remaining tasks and the new task, e.g.,
the new task is assigned to the server. Although the greedy method is more realistic compared to time
interval approach, it is not functional toward long-term latency optimization. Section 3.1 shows an
extreme case that the greedy method does not achieve the minimal latency in the long-term, which
proves that the method is not sufficient for real-time task assignment.

Fog1

Fog2

t0

Fog3

Fog4

Fog5

Timeline

Remaining tasks
in buffer at t0

Fog1

Fog2

t0

Fog3

Fog4

Fog5

Timeline
t1 (A new task is uploaded)

Remaining tasks
before t1

New task
added at t1

Remaining tasks in buffer
if the new task is assigned

Done

(a) Latency of fog servers at t0 (b) Latency of fog servers when a task is uploaded at t0

Figure 1. Real-time task assignment considering buffer status of fog servers.

In summary, almost all related works lack the truly real-time consideration and a flexible task
arrival adaptation. Therefore, an effective solution, which aims at resolving these problems, is crucial
for the fog computing system.



Sensors 2018, 18, 2830 4 of 19

3. System Model

3.1. Real-Time Task Assignment Problem

In the real-time task assignment problem, we define a system to be a fog network that includes
IoT devices that generate tasks, fog servers with various capabilities in processing a task, and a task
assignment module that chooses servers where the tasks are executed. The tasks are uploaded in
real-time in the system, which means that a time interval between two consecutive tasks is in the
range [0, ∞]. Each fog server has a buffer for remaining tasks with unlimited capacity. For the sake of
simplicity, we assume that an IoT device always generates tasks with the same size and complexity.
In this study, we consider a scenario in a factory where tasks uploaded by IoT devices are frequent
but occasionally have an interference of random noise. As there are many devices that continuously
upload tasks, traffic reaching to fog servers is extremely noisy and the complexity of the problem is
high. Table 1 lists the explanation of terms used in the study.

Table 1. Explanation of terms in the study.

Term Explanation Unit

Fog(n) n-th fog server
Exp(n) n-th experiment
Capability (i.e., frequency) of Fog(n) Number of cycles that Fog(n) can complete per second Hz
Size of a task Number of bits in a task bit
Complexity of a task Number of cycles needed to solve a bit of the task cycles/bit
Remaining tasks in a buffer Tasks in the buffer at a given time

Latency of Fog(n)
Computational latency of Fog(n) for completing the
remaining tasks in its buffer second

System latency Maximum latency among all fog servers second

It is observed that the total latency consists of propagation, execution, and buffering. To adapt
to various networking environments, we consider the IoT task arrival as a random and independent
process on the communication channels between the IoT devices and fog servers. In other words,
the propagation latency is omitted in the scope of this study. Let 〈si, ci, τi〉 denote a three-dimensional
characteristic vector of the i-th task, where si, ci, and τi are the size, complexity, and latency threshold
of the task, respectively. In addition, let f j and bj denote the CPU frequency and current buffer size of
the j-th fog server, respectively. Assume that the i-th task is assigned to the j-th fog server, and then the
latency of i-th task is given by

Lij =
sici + bj

f j
. (1)

Based on the system described above, we define a real-time task assignment problem as selecting
a fog server for assigning a task to minimize the computation latency of the system during its
operational time, which is referred to as long-term latency optimization. To mathematically express
this problem, let xij denote the case when the i-th task is assigned to the j-th fog server. The latency
minimization function at timeslot t is defined by

P(t) , min
Ω(t)

∑
i=1

Ψ

∑
j=1

xijLij (2)

s.t.
Ω(t)

∑
i=1

xij = 1, ∀j ∈ Ψ, (3)

Lij ≤ τi, ∀j ∈ Ψ, (4)

xij ∈ {0, 1}, ∀i ∈ Ω(t), ∀j ∈ Ψ, (5)



Sensors 2018, 18, 2830 5 of 19

where Ω(t) and Ψ are the sets of the IoT tasks and fog servers, respectively. Therefore, the long-term
latency minimization function (F ) is given by

(F ) lim
t→∞

1
t

t

∑
i=1

P(i). (6)

To clearly demonstrate the problem, we consider an extreme case in Figure 2 when there are only
two fog servers: Fog1 and Fog2, and three tasks are uploaded in order. In addition, the buffer in fog
servers are assumed to operate with first-come-first-serve (FIFO) policy. The heart of the system is a
task assignment module, a.k.a task scheduler, for deciding servers where the tasks are to be executed.
At t1, Task1 is uploaded and assigned to Fog1. The dark bar represents a time span needed by Fog1
to process Task1. Computational latency of the system is considered to be the maximum latency
among fog servers to completely process the uploaded tasks. At t2, Task2 is uploaded and the module
chooses Fog2 for processing the task. The module makes decision by using the greedy method, which
minimizes the latency of the system at the moment when a task is uploaded. It is worth noting that at
t2, a part of Task1 is completed by Fog1 and the remaining task is in the buffer of the server; this is
indicated by a bar with a dashed dotted choke. Adopting the greedy policy, Task3 is uploaded and
assigned to Fog1 since the current buffer of Fog2 is larger than Fog1’s at t3. Consequently, the buffer
of Fog1 contains both the remaining tasks of Task1 and the new task of Task3, whereas the buffer of
Task2 contains the remaining task of Task2. At that moment, system latency is caused by Fog1.

Fog1

Task assignment
module

Fog2t1

Fog1

t2

Task assignment
module

Fog2t1

Latency

Fog1

t2 t3

Task assignment
module

Fog2t1

Task1

Task2

Task3

Task1 Task2 Task3

t1

t2t1

t2 t3t1

Latency

Latency

Remaining task

Figure 2. Task assignment overview.

In the extreme case mentioned above, we used the greedy method for task assignment. We now
present an example in Table 2a for explaining the details about the method. As shown in the table,
expected latency is the time that a fog server needs to solve a task; Fog(n) latency is the time that
the server Fog(n) needs to process all remaining tasks in its buffer. The capability of Fog1 is 2 GHz,
i.e., the server has the ability to process two gigacycles of tasks in a second. Right before the moment
0 ms, all buffers are empty and the system latency is 0. Task1 is uploaded at 0-ms time point. There are
1 Mbits × 10 cycles/bit = 10 Megacycles needed to process the task. Therefore, Fog1 and Fog2 need
5 ms and 10 ms for the task, respectively. In the real-time task assignment, the greedy method chooses
a fog server for the task assignment with an objective of minimizing system latency at the moment the
task is uploaded. Thereby, Task1 is assigned to Fog1. At this moment, Fog1 and Fog2 need 5 ms and
0 ms, respectively, to finish all the tasks in their buffers. Here, the system latency is 5 ms.



Sensors 2018, 18, 2830 6 of 19

Table 2. An example of real-time task assignment.

(a) Greedy methods.

Time Task
Size

(Mbits)
Complexity
(Cycles/bit)

Expected latency
(Fog1-Fog2)

Fog1
latency

Fog2
latency

System
latency

0 ms 0 0 0
Task1 1 10 5 ms–10 ms 5 ms 0 5 ms

2 ms 3 ms 0
Task2 1 7 3.5 ms–7 ms 6.5 ms 0
Task3 1 8 4 ms–8 ms 6.5 ms 8 ms 8 ms

(b) Long-term latency optimization.

Time Task
Size

(Mbits)
Complexity
(Cycles/bit)

Expected latency
(Fog1-Fog2)

Fog1
latency

Fog2
latency

System
latency

0 ms 0 0 0
Task1 1 10 5 ms–10 ms 5 ms 0 5 ms

2 ms 3 ms 0
Task2 1 7 3.5 ms–7 ms 3 ms 7 ms
Task3 1 8 4 ms–8 ms 7 ms 7 ms 7 ms

At 2-ms time point, Fog1 needs 3 ms to finish the remaining tasks in its buffer. Task2, which needs
3.5 ms and 7 ms by Fog1 and Fog2 to process it, respectively is consecutively uploaded. If Task2 is
assigned to Fog1, the server needs 3 ms + 3.5 ms, i.e., 6.5 ms to finish the tasks. In case Task2 is assigned
to Fog2, the server needs 7 ms to finish the tasks. Following the greedy method, Task2 is assigned
to Fog1, and its latency is 6.5 ms. Task3 is uploaded right after that moment; it needs 4 ms by Fog1
and 8 ms by Fog2 to process it. In case Task3 is assigned to Fog1, the latency of Fog1 is 6.5 ms + 4 ms,
i.e., 10.5 ms. However, in case Task3 is assigned to Fog3, then the latency of Fog2 is 8 ms. Therefore,
Task3 is assigned to Fog2 and the system latency becomes 8 ms, corresponding to the latency of Fog2.

However, the greedy method is not suitable for long-term latency optimization. In the example
above, if focusing on long-term latency, we can propose a better solution to the task assignment
problem as shown in Table 2b. In the table, when Task2 is assigned to Fog2, system latency is 7 ms,
which is an increase from the latency of 6.5 ms in case of the greedy method. However, Task3 is
assigned to Fog1; this causes the latency of the system to be 7 ms. As a result of the change in task
assignment, system latency right after the moment 2 ms reduces (7 ms compared to 8 ms when we
apply the greedy method). Intuitively, given the state of a system, which includes task demand
(size and complexity) and status of server buffers, the action of assigning a task to a server changes the
state of the system at that moment, and a reward is returned, e.g., an inverse of latency. Since the tasks
that are uploaded are not totally random but frequently with noise, there should also exist a reward
pattern when the determined system states are given. Therefore, in this study, we utilize reinforcement
learning for exploiting the pattern of the pair state-reward to minimize the latency of the system in the
real-time task assignment.

3.2. Reinforcement Learning Model

Reinforcement learning (RL) is a class of machine learning, besides supervised learning and
unsupervised learning [15,27]. The objective of an RL problem is automation and control of a system
for adapting to an unknown environment [9,28–30]. In our problem, the training environment is the
system consisting of fog servers and their buffers. It is worth noting that the environment is consistent,
e.g., for each condition, it expresses a unique state. In other words, a state is representative of the
environment at the moment we observe it. At the center of the RL model is the action selection function,
briefly, the action function (i.e., task assignment module in the central scheduler). The function selects
actions based on the states of the system. Each time the system conducts an action, the condition of
the environment changes and a new state is expressed. A reward is also assigned to the system for



Sensors 2018, 18, 2830 7 of 19

indicating its adaptation. Thereby, the objective of the model is to maximize the rewards received,
e.g., maximize the adaptation of the system to the environment. In turn, the action function has to
reinforce itself to enhance its ability in choosing actions efficiently by harnessing the rewards. When a
new state is expressed, the learning loop continues and the action selection function is continuously
reinforced. In the proposed model, the action selection function is a trainable neural network [14] and
the learning rule of the function follows the algorithm mentioned in Section 4.

In this paper, we aim to construct a novel approach to craft states of the system in the problem
as follows. Given a system presented in Section 3.1, at a moment that a task is uploaded (but still
not yet assigned), there are values that can express the state of the system: (1) demand (e.g., size and
complexity) of the task, (2) remaining tasks in the buffers of the servers, (3) time span from the last
moment of uploading the task to the current moment, (4) a chain of demands from the last tasks.
As the third factor is affected by noise and the last factor could cause a burden to the computers used
in training the model, only the first and second factors are chosen to define the state. We craft a state of
the system from the two factors as follows. At the moment when a task is uploaded, there are some
remaining tasks in the buffers of the servers. First, we measure time durations that the servers have
to complete the remaining tasks, e.g., computation latency of the servers, and present the values in
a vector of size [n× 1]. Next, we calculate time durations that the servers will spend if the arrived
task is assigned, then the values are stored in another vector of the same size [n× 1]. Combining the
above-mentioned two vectors, we obtain a vector of size [2n× 1], which represents the state of the
system at a given moment.

Figure 3 illustrates a state in the experiments discussed in Section 5. In the figure, there are
three tables. The first table presents five fog servers and their frequencies. The second table lists
the remaining tasks in the buffers of the servers at the moment a task is uploaded. We measure the
computation latency of the servers for completing the remaining tasks in microseconds (µs). The task
requires 1 megacycle for its completion, which leads to a variation in the expected latency among the
servers. Based on the latency in processing the remaining tasks, and the expected latency in completion
of the task, we craft the state of the system at this moment as a vector of size [10× 1].

Fog server

Fog1

Fog2

Fog3

Fog4

Fog5

Buffer (Megacycles)Freq (GHz)

1.2

1.4

1.6

1.8

2.0

10

12

13

14

17

8333

8571

8125

7777

8500

Expected latency (µs)

833

714

625

556

500

Latency (µs)

Task

1 Megacycles

State

8333

8571

8125

7777

8500

833

714

625

556

500Remaining work

New task

Figure 3. An example of a state.

3.3. Action Selection Function

Action selection function in the RL model is a trainable machine learning (ML) function that
reinforces its ability in action selection through rewards. Among various ML functions that are applied
to the RL model, the neural network (NN) is the most popular [13–15]. Since the NN is a universal
approximation function, it can fit well to various types of RL problems [31]. Additionally, a combination
of the RL and NN has also shown the ability to surpass human level in many applications such as the
game of Go [32]. Therefore, NN is chosen to be the action selection function in the proposed RL model.

An example of the NN is demonstrated in Figure 4, which has three layers. The state of the system
is an input to the NN. Since a state has size [2n× 1], input layer of the NN also has 2n nodes, which are



Sensors 2018, 18, 2830 8 of 19

denoted as x(i), i = {1, ..., n}. All nodes in the input layer connect to all nodes in the hidden layer.
Given that the hidden layer has m nodes, we denote them as h(j), j = {1, ..., m}. Therefore, there are
[m× n] connections between the input and the hidden layers. Given that each connection has a weight,
there exists a matrix W(1) with the capacity of storing all weights. Weight W(1)

i,j at row i and column j

represents a connection between the two nodes x(i) and h(j). The value of a node h(j) in the hidden
layer is a sum of all the products of weights and inputs.

hj =
2n

∑
i=1

(w(1)
i,j × x(i)) (7)

The number of nodes in the hidden layer can affect the training process; therefore, it is carefully
explored in the experiments in Section 5. All nodes in the hidden layer are connected to the softmax
layer, which is also the output layer of the NN. Size of the output layer is [n× 1]. A matrix W(2) which
has size [m× n] stores all weights of connections between the two layers. Thereby, the value of a node
ŷ(k) in the last layer is calculated as follows.

ŷ(k) =
m

∑
j=1

(w(2)
j,k × x(i)) (8)

After the values of all nodes are calculated, the probability that a fog server Fog(i) is selected, where
i = 1, · · · , n is derived by the softmax function as follows.

PFog(i) =
ŷ(i)

n

∑
k=1

ŷ(k)
(9)

The server that has the highest probability is chosen for assigning the uploaded task.

8333

8571

556

500

PFog1

PFog2

PFog(n−1)

PFog(n)

Input
layer

Hidden
layer

n: # of fog servers

State
[2n× 1]

Softmax layer
[n× 1]

Figure 4. Neural network in reinforcement learning.

The NN is trained by updating its weight matrices, e.g., W(1) and W(2), to maximize the feedback
from the environment. A popular method for updating the weight matrices is through backpropagation,
which has proven effective in some RL applications such as the game of Go [14,33,34]. However,
the method requires the feedback to be scaled to integer levels of {0, 1}, which is not efficient in
this problem, where the latency is a floating value. Therefore, in this study, we choose a neural
network evolution algorithm [12], which is a rival of backpropagation algorithm, for training the NN.
The algorithm is successfully utilized in RL problems of OpenAI and UberLab [13,35].



Sensors 2018, 18, 2830 9 of 19

4. Evolution Strategies

To train an ML model, we define an objective function for measuring how well the model is
performing in a problem and optimize the ML model based on the function. Given the RL to solve the
task assignment problem, our objective is choosing an action for minimizing the long-term latency of
the system. However, the RL is defined to train for maximizing rewards from the system. Consequently,
a reward is an inverse of the system latency. More precisely, a reward from the system after choosing
an action a(t) is defined as follows.

Reward =
1

L(t)
, (10)

where L(t) = L(t− 1) + Lij(t), L(0) = 0, and Lij(t) is the latency generated by the action a(t), which
assigns the incoming task (i-th task) to the j-th fog server. It is seen that when t → ∞, L(t) → ∞
and the Reward→ 0. Coordinating with the function F in Equation (6), the objective of minimizing
the long-term latency of the system can be relaxed into minimizing latency over n consecutive tasks,
changes into the objective of maximizing the average of rewards over n recent actions. Therefore, the
Reward function is given by

Reward =
1

t

∑
k=t−n

Lij(k)

(11)

To optimize the RL model following the rewards, we update the NN to enhance the ability of the
model in choosing actions for task assignments.

Backpropagation is the most popular algorithm for updating the NN. The algorithm calculates
the derivatives of the objective function given by weights of the NN and updates the network toward
maximizing the objective. However, in our problem, if we update the NN following the current
action but not future actions, we cannot attain long-term optimization. Some backpropagation-based
paradigms are proposed for optimizing the long-term reward (e.g., Deep Q-Learning [36]). However,
in practice, such paradigms only work well if the reward received from the environment is either 1 or
0 (which means winning or losing the game). The following drawbacks hinder the algorithms’ success
in the real-time task assignment problem since the reward from the environment (e.g., the inversed
latency of the system) is arbitrarily floating values.

Neuroevolution (NE), i.e., neural network evolution, which is inspired by biological evolution,
is another approach for training neural networks [12]. In nature, evolution begins when parents
produce an offspring with random deviation. Among the children, those who fit the environment
have better opportunity to survive and reproduce their genomes. As a result of the selection, the next
generation enhances the fitness to the environment. The concept of NE is similar to evolution in nature.
Given an NN, for each of its iterations, a new generation is produced from the NN, which includes
derivations of the NN. The children that have the highest rewards are chosen and the NN is updated
based on the rewards. The method to update the NN is conducted in evolution strategies (ES), which
is the most well-known algorithm that applies the NE approach [13,35].

Algorithm 1 describes the process for updating the NN by ES. For each iteration, m children of
the NN are produced by adding Gaussian noise to each weight in the network. Each child NN plays
a role as task assignment module in the RL model with n consecutive tasks and receives an average
reward over n actions. Since an average reward is the feedback of the system to the actions chosen
by the child, it is also the fitness of the child to the environment. We calculate the mean reward of m
children and differences of the rewards of children with the mean reward, which is also the gain of the
children over the root network. If a child has a gain, it has better fitness than the root network and
should be encouraged to contribute more to the next generation. Following that idea, the root NN is
updated by adding weights of children to its weights toward the gain of the children.

W(i)
j,k = W(i)

j,k + η ×∑ gain(h) ×W(i)(h)
j,k , h = 1, · · · , m, (12)



Sensors 2018, 18, 2830 10 of 19

where h and η are the number of children and the learning rate (how fast should we update the
weights of the NN), respectively. It is worth noting that since the gain of a child is a difference between
the mean reward of m children and its reward, the gain can be negative. In that case, Equation (12)
discourages the child to contribute to the reproduction of the next generation.

Algorithm 1 Reinforcement learning with evolution strategies.

1: Given
2: Parent NN with weight matrix W(i) i = 1, 2
3: number of children m
4: learning_rate η

5: Start
6: for iteration in a predefined range do
7: for h in range m do
8: Child(h) =Parent NN + random noise (W(i)(h) = W(i) + noise)
9: Evaluate Child(h) → Reward(h)

10: Calculate Mean_reward
11: Gain(h) = Reward(h) −Mean_reward h = 1, ..., m
12: Parent NN→ Parent NN + η ×∑m

h=1 Gain(h) × Child(h) W(i) = η ×∑ Gain(h) ×W(i)(h)

13: Evaluate Parent NN
14: End

Return the highest performing Parent NN

In summary, by adding random noise to the copies of the NN, the ES algorithm generates
a population of networks in the nearby area of the NN. For each iteration, the NN moves toward the
area that offers high rewards (positive gain) and avoids the area that offers negative gain. Over several
iterations, the algorithm seeks the area that offers the best reward, e.g., the optimization of the RL
model for the task assignment problem.

Since the ES algorithm seeks the gain in the nearby area during each iteration, it is important
to control the deviation noise added to the children. If the area of a child is very near the root NN,
the network may be stuck in the small area. However, if a child is too far from the root NN, we may
skip the area that could be the solution to the problem. In the experiments in Section 5, the deviation
of the children is searched by a practical method. It is worth noting that the ES algorithm does not
depend on the derivative of the reward function, hence, it is not stuck in the local optima as the
back-propagation algorithm which is based on gradients. On the other hand, each child functions
independently from the others; therefore, the computation of the ES is parallel. This makes the ES
algorithm work efficiently in a modern computer, which has many parallel CPUs, whereas the Deep
RL models with backpropagation algorithm can only update in a single CPU environment.

5. Experiments

5.1. Experimental Setup

5.1.1. Data Collection

We set up a real-time task assignment system for conducting 11 experiments. There are 100–200
IoT devices in each experiment. All devices are active with task uploading frequencies in the range
[10, 250] ms. For each device, the probability that a task is uploaded with abnormal frequency, i.e.,
the task is uploaded at a sooner or later time than expected time, is 5%. This abnormal task uploading
represents a noise interference of the data. If a task is uploaded at a random time, it does not violate its
predecessor or successor. For instance, if a random task is uploaded at t1, then its predecessor and
successor are uploaded at t0 and t2, respectively. t1 guarantees that (t1 − t0) > 0 and (t2 − t1) > 0.



Sensors 2018, 18, 2830 11 of 19

With hundreds of IoT devices with 5% random and each device’s initials at different times, the number
of possibilities of system states is immense.

For each device, the size and complexity of each uploaded task are similar and do not change
during its lifetime. The sizes of tasks are in the range [1, 100] kbits and their complexities are in
the range [10, 200] cycles/bit. Consequently, the requirement for a task ranges from 10,000 cycles
to 10 Megacycles. Since we run the experiments with Python 3.6, the minimum time scale in the
experiments is 1 µs. This means if the uploading times of two tasks are not the same, then their
discrepancy is at least 1 µs. It is worth noting that the minimum timescale is practical, particularly
in factories.

We collect task uploading in one hour and save the tasks in a dataset along the uploading time.
The number of tasks uploaded is over 12 million. The average number of tasks uploaded in one second
is 2700, and the average task rate per second (which is a sum of requirements of all tasks in one second)
is 7.68 gigacycles.

5.1.2. Fog Server and System Setup

In the experiments, five fog servers are utilized for task assignment. We define the capability of
a server to be the number of cycles that the server can solve in one second. It is also the frequency
of the server. For instance, if a server has the frequency of 1 GHz, then it has a capability of solving
the tasks at a rate of 1 gigacycles per second. Total capability of all servers should be higher than the
average task rate so that the servers can solve all the uploaded tasks. In the experiments, five servers
are designed to have frequencies in the range {1.2, 1.4, 1.6, 1.8, 2.0} GHz; hence, the average task rate of
7.68 gigacycles is equal to 96% of the total capability of the servers. It is worth noting that the problem
of fairly allocating resources between fog servers is out of the scope of the study.

The system is simulated using Python 3.6. In the experiments, we suppose that the buffers of the
servers are unlimited. Computation latency, e.g., a time span for a server to execute remaining tasks in
its buffer, has the minimum scale in µs, and follows the smallest scale of time in Python 3.6. It is worth
noting that in the literature, we only consider computation latency in fog servers. Transmission delay
and queue delay are not covers in the study. The simulation runs on a single computer with a CPU
core i7-4770 3.4 GHz. The computer has 16 GB memory and no GPU is used in the simulation.

5.2. Experimental Method

We conducted 11 independent experiments, which are, i.e., at the beginning of an experiment,
buffers of the servers are empty, and the result of the experiment does not affect other experiments.
From the task uploaded dataset in Section 5.1.1, we divide 1 million tasks for testing and the rest for
training the RL model. (Since our objective to the real-time task assignment is to optimize long-term
latency, when we mention n tasks, it implies n consecutive tasks). Each experiment includes 10,000
iterations, where each iteration includes training and testing phases. In the training phase (Figure 5a),
600 tasks are randomly chosen for each iteration. The first 500 tasks are included in the chosen tasks
replayed and assigned to the servers using the greedy method. (When n consecutive tasks are replayed,
they exactly follow the uploading time, i.e., the time spans between task uploading times do not
change). The reason we apply the greedy method to the first 500 tasks is to make sure that the buffers
are in a normal status. If the buffers are empty, the latency of the system is low and it does not exactly
express long-term latency of the system. We store the status of the buffers at the moment right before
the task 501 is uploaded (which is the first task of the next 100 consecutive tasks).



Sensors 2018, 18, 2830 12 of 19

500 tasks 100 tasks

Greedy

Buffers

Child 1

Child 2

Child n

Reward

Reward

Reward

Training set

(a) Training process.

Greedy

Buffers

RL model

Greedy

Reward

Baseline

500 tasks 200 tasks

Testing set

(b) Testing process.

Figure 5. Training and testing process in the experiments.

We generate 10 children of the model following the method in Section 4. For each child, the initial
state is a combination of the stored buffer and the first task in the 100 consecutive tasks, which craft a
state as mentioned in Section 3.2. With each task assignment, the child receives a reward (which is the
inverse of the latency at that moment). The average reward after 100 task assignments is the reward
of the child. After all the children receive rewards, we update the system following the Algorithm 1.
As a consequence of the training, the RL model maximizes the reward of the system over every 100
consecutive tasks.

In the testing phase, we randomly choose 700 consecutive tasks in the testing set. Task assignment
method for the first 500 tasks is greedy, which is similar to the training phase. However, for the next
200 tasks, for each task, we observe the state of the system, and the trained RL model chooses a server
for task assignment based on the state. The average reward over 200 task assignments is the reward of
the testing (Figure 5b). We repeat the testing five times and the average reward over five times is the
reward of the system after the iteration. Each time the reward of the system after an iteration is higher
than the maximum reward of the system in the previous iterations, we store the weight matrices of the
RL model and discard the previously stored matrices. After 10,000 iterations, the RL model with the
stored weight matrices expresses the model that gives the maximum reward (Algorithm 1).

The rewards given by the testing are compared to the greedy algorithm. The greedy-based result
is calculated as follows. An average reward is received after a process that is similar to testing; however,
we apply the greedy method to the last 200 tasks (Figure 5b). The process is repeated 100 times and the
average reward over 100 times is the reward of the system with the greedy method.

5.3. Results

Table 3 is a summary of the parameters utilized in the experiments. The middle column lists all
possible values of a parameter, whereas the role of the value in the last column is not only the initial
value of the parameter but also an anchor when we explore the effectiveness of other parameters.
For instance, when the number of IoT devices changes in a range, the number of Fog servers is set to
5. In the case where the initial value of a parameter is fixed, the parameter does not change its value



Sensors 2018, 18, 2830 13 of 19

throughout the experiments. A fixed value of a parameter is the optimal value that makes the best
contribution to the results and is discovered by grid search.

Table 3. Simulation parameters.

Parameter Experiment Initial

# of Fog servers 5, 10 5
# of IoT nodes 100, 200 100
# of training tasks 50, 100, 150, 200 100
Learning rate 0.002 Fixed
# of children 5, 10, 15, 20 10
Deviation of children 0.2 Fixed
# of hidden nodes in NN 256, 512, 1024, 4096 1024

Based on the values of parameters in Table 3, 11 experiments were conducted. A summary of
the results of the experiments is listed in Table 4. In each part of the table, values corresponding to a
parameter are highlighted to indicate that we are changing the value of the parameter to discover its
effect on the final results. For this reason, other parameters are set to initial values. The only exception
is the number of IoT devices and the number of fog servers. Since the parameters are important in the
design of the system, we explore their roles with two different experiments.

Table 4. Experiments.

Experiment # of
Servers

# of IoT
Devices

# of
Training

Tasks

# of
Children

# of Hidden
Nodes in NN

Our
Model

Greedy
Method

Improvement
(%)

Average
Runtime

Per Iter (s)

1 5 100 100 10 1024 357.305 309.867 15.309 1.496
2 10 200 100 10 1024 346.509 298.455 16.101 1.667

3 5 100 50 10 1024 353.208 309.867 13.989 1.369
1 5 100 100 10 1024 357.305 309.867 15.309 1.496
4 5 100 150 10 1024 356.030 309.867 14.898 1.662
5 5 100 200 10 1024 357.2822 309.867 15.302 1.941

6 5 100 100 5 1024 352.169 309.867 13.652 1.345
1 5 100 100 10 1024 357.305 309.867 15.309 1.496
7 5 100 100 15 1024 359.002 309.867 15.857 1.659
8 5 100 100 20 1024 357.031 309.867 15.221 1.838

9 5 100 100 10 256 356.107 309.867 14.923 1.494
10 5 100 100 10 512 354.732 309.867 14.479 1.493
1 5 100 100 10 1024 357.305 309.867 15.309 1.496
11 5 100 100 10 4096 351.781 309.867 13.526 1.663

In experiment 1, the number of fog servers and IoT devices are set to five and 100, respectively.
We scrutinize the experiment by plotting the result of 10,000 iterations as shown in Figure 6a. In this
figure, the thin blue plot denotes the rewards in all iterations; the dashed red line is the greedy-based
results, i.e., the reward when we apply greedy method. Figure 6b has the same presentation but the
results of the first 1000 iterations only are shown. In the experiment, the proposed model overcomes
the greedy method after a few iterations more than the first 200 iterations and peaks near the 60,000-th
iteration (a magnified area). More specifically, Table 4 indicates that the proposed model outperforms
the greedy method by 15.309%.



Sensors 2018, 18, 2830 14 of 19

0 2000 4000 6000 8000 10000

200

250

300

350

Number of iterations

R
ew

ar
d

The proposed model
Greedy method

0 2000 4000 6000 8000 10000

200

250

300

350

Number of iterations

R
ew

ar
d

The proposed model
Greedy method

(a) Reward with 100,000 training iterations.

0 500 1000

200

250

300

350

Number of iterations

The proposed model
Greedy method

(b) Reward with first 2000
training iterations.

Figure 6. Reward with 100 IoT devices and five fog servers.

In experiment 2, the number of IoT devices increases to 200. Thereby, the average task uploading
rate is 19.95 Gigacycles per second. To maintain the ratio of the average task uploading rate and the
total capability of the servers at 0.96 (as in experiment 1), we increase the total capability to 20.8 GHz.
The number of servers in this experiment is 10, and the frequency of their processors’ servers ranges
from 1.56 GHz to 2.47 GHz. The improvement in experiment 2 is 16.101%, which is much higher than
the improvement in experiment 1. The reason for the significant increase in the improvement with
10 servers, is that the RL model has more options for assigning the tasks to be uploaded, i.e., the model
can find the better solution for the task assignment problem in general. However, an increase in the
number of fog servers impacts the training time of the model. The reason is that the model has to
calculate a probability that a server is chosen for task assignment among 10 servers, which takes more
time than choosing a server among five servers in experiment 1. More specifically, average runtimes
per iteration of experiments 2 and 1 are 1.667 s and 1.496 s, respectively, i.e., tasks in experiment 2
require 11% more time for each iteration than those in experiment 1.

Figure 7 illustrates a comparison of results in experiments 1 (exp1) and 2 (exp2). In the second
experiment, the RL needs more time to reach the greedy-based results than in experiment 1. In fact,
the model only reaches the greedy-based result after 1000-th iteration, which is five times compared
to the 200-th iteration in the model in experiment 2. The result expresses that the complexity of the
problem of task assignment in fog computing significantly increases in the case when the number
of IoT devices increases. Thereby, the number of fog servers and the total capability of a server
correspondingly increase. Consequently, the RL model takes more time to find the solution to the
problem. On the other hand, the RL in experiment 2 has an optimal solution to the problem after
5000-th iteration, which is not much different than experiment 1 that has the optimal solution after
6000-th iteration. In other words, the RL in experiment 2 incurs a burden with an increase in the
number of IoT devices in the system; however, it has the ability to find the optimal solution for the task
assignment problem as well. From the experiments, it can be confidently shown that the RL approach
works well with various fog computing systems.



Sensors 2018, 18, 2830 15 of 19

0 2000 4000 6000 8000 10000

90

100

110

Number of iterations

R
ew

ar
d

(%
)

Experiment 1
Experiment 2

Greedy method

Figure 7. Exploring efficiency with number of fog servers.

We explore the effectiveness of the number of training tasks in Figure 8. The blue line indicates the
improvement of the proposed model in the experiments 3, 1, 4, and 5 compared to the greedy-based
result, and the red line is the average run time per iteration of the experiments. The number of training
tasks n indicates the number of consecutive tasks that the RL model needs to find the optimal solution
(for task assignments). In other words, long-term latency optimization implies optimization in n
consecutive tasks. Therefore, in case the number of training tasks is large, the RL model can optimize
better. In contrast, the model may take more time to find the optimal solution, and in the worst case,
it cannot find the optimal solution with 10,000 iterations. Figure 8 expresses the analysis, in which the
result does not improve in case the number of training tasks is over 100, although the training time
increases significantly. Conclusively, this parameter should be set at 100 for attaining the best result in
the task assignment problem.

50 100 150 200

13

14

15

1.2

1.4

1.6

1.8

Number of training tasks

Im
pr

ov
em

en
t(

%
)

A
vg

.r
un

ti
m

e
pe

r
it

er
(s

).

Figure 8. Exploring efficiency with a number of training tasks.

The effectiveness of the number of children generated in each iteration by the ES algorithm is
explored in Figure 9. It is apparent that the runtime linearly grows corresponding to the number of
children, since for each child, the RL has to run the same training and testing procedure. On the other
hand, the improvements of the RL model peak for the population of 15 and decrease in the case of
a larger population. Since the ES algorithm explores a solution in a nearby area, it needs enough
samples to make a move toward the optimal area. This is the reason why the improvement grows
corresponding to the number of children in the range of five to 15. On the other hand, too many
samples do not help to improve the results, since it increases the risk of the NN getting stuck in the
local optima, i.e., the model cannot find the best solution to the problem.



Sensors 2018, 18, 2830 16 of 19

5 10 15 20

13

14

15

1.2

1.4

1.6

1.8

Number of children.

Im
pr

ov
em

en
t(

%
)

A
vg

.r
un

ti
m

e
pe

r
it

er
(s

)

Figure 9. Exploring efficiency with number of children.

In Figure 10, we explore the effectiveness of the number of hidden nodes in the NN to the
final result. Since a neural network is a universal approximation function, an NN with more nodes
approximates a function better than an NN with fewer nodes. Moreover, if the number of nodes in the
NN is too small, the result is not stable enough. However, if the number of nodes is large, it takes much
more time to train the network, and in the worst case, the NN cannot reach the optimal solution after
10,000 iterations. The figure clearly expresses the aforementioned analysis. The result fluctuates if the
number of nodes is low. The network peaks at 1024 nodes and performs poorly in case the number of
nodes is too large. It is worth noting that the number of hidden nodes only slightly affects the running
time. In fact, if the number of hidden nodes in the NN is low, it does not affect the running time at all.

28 29 210 212

13

14

15

1.2

1.4

1.6

1.8

Number of hidden nodes.

Im
pr

ov
em

en
t(

%
)

A
vg

.r
un

ti
m

e
pe

r
it

er
(s

)

Figure 10. Exploring efficiency with the number of hidden nodes in NN.

6. Conclusions

The long-term latency optimization of real-time task assignment is one of the most critical
problems in the fog computing. The problem is difficult due to its high complexity; therefore,
conventional optimization techniques do not work well. In this study, we resolve the problem with an
RL model and apply the ES algorithm to optimize the model. The experiments show that the proposed
model overcomes the greedy approach approximately 16.1% in terms of long-term latency for task
execution. Moreover, the ES algorithm avoids the incorrect convergence to local optima which appears
in most of the existing optimization methods based on the gradient. Additionally, the algorithm is
embarrassingly parallel in implementation. Hence, it can speed up the learning process, particularly
in practical frameworks and applications such as Omega, Mesos, Kubernetes, and Aneka [37–40].
To the best of our knowledge, the algorithm is applied to fog computing for the first time. This study
also opens a new direction of the real-time task assignment in fog computing based on the RL and
neuroevolution approach.

To extend our study, future works should consider an implementation of the proposed approach
to real-world data sets such as telehealth big data and smart city on a testbed system. Another possible
extension of this study is to use ES algorithm for simultaneously optimizing multiple utilities of the



Sensors 2018, 18, 2830 17 of 19

system in order to provide a balance between latency and energy consumption [10,11]. In addition,
transmission latency when uploading task to fog servers or responding from servers to IoT devices
should be taken into account.

Author Contributions: Conceptualization and experiment methodology, L.M. and N.-N.D.; Data analysis, L.M.
and N.-N.D., Software and validation, L.M.; Writing—original draft preparation, L.M.; Writing—review & editing,
N.-N.D. and M.P.; Supervision, project administration and funding acquisition, M.P.

Funding: This research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03933405).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mouradian, C.; Naboulsi, D.; Yangui, S.; Glitho, R.H.; Morrow, M.J.; Polakos, P.A. A Comprehensive Survey
on Fog Computing: State-of-the-art and Research Challenges. IEEE Commun. Surv. Tutor. 2017, 20, 416–464.
[CrossRef]

2. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile edge computing: A survey. IEEE Internet Things J.
2018, 5, 450–465. [CrossRef]

3. Dao, N.N.; Vu, D.N.; Lee, Y.; Park, M.; Cho, S. MAEC-X: DDoS prevention leveraging multi-access edge
computing. In Proceedings of the IEEE International Conference on Information Networking (ICOIN),
Chiang Mai, Thailand, 10–12 January 2018; pp. 245–248.

4. Shih, Y.Y.; Chung, W.H.; Pang, A.C.; Chiu, T.C.; Wei, H.Y. Enabling low-latency applications in fog-radio
access networks. IEEE Netw. 2017, 31, 52–58. [CrossRef]

5. Rahman, G.S.; Peng, M.; Zhang, K.; Chen, S. Radio Resource Allocation for Achieving Ultra-Low Latency in
Fog Radio Access Networks. IEEE Access 2018, 6, 17442–17454. [CrossRef]

6. Dao, N.N.; Lee, Y.; Cho, S.; Kim, E.; Chung, K.S.; Keum, C. Multi-tier multi-access edge computing: The role
for the fourth industrial revolution. In Proceedings of the IEEE International Conference on Information and
Communication Technology Convergence (ICTC), Jeju, Korea, 18–20 October 2017; pp. 1280–1282.

7. Peng, M.; Yan, S.; Zhang, K.; Wang, C. Fog-computing-based radio access networks: Issues and challenges.
IEEE Netw. 2016, 30, 46–53. [CrossRef]

8. Vu, D.N.; Dao, N.N.; Jang, Y.; Na, W.; Kwon, Y.B.; Kang, H.; Jung, J.J.; Cho, S. Joint energy and
latency optimization for upstream IoT offloading services in fog radio access networks. Trans. Emerg.
Telecommun. Technol. 2018, 29, e3497. [CrossRef]

9. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, UK, 1998; Volume 1.
10. He, Y.; Yu, F.R.; Zhao, N.; Leung, V.C.; Yin, H. Software-defined networks with mobile edge computing

and caching for smart cities: A big data deep reinforcement learning approach. IEEE Commun. Mag. 2017,
55, 31–37. [CrossRef]

11. He, Y.; Zhao, N.; Yin, H. Integrated Networking, Caching, and Computing for Connected Vehicles: A Deep
Reinforcement Learning Approach. IEEE Trans. Veh. Technol. 2018, 67, 44–55. [CrossRef]

12. Michalewicz, Z. Evolution strategies and other methods. In Genetic Algorithms + Data Structures = Evolution
Programs; Springer: Berlin, Heidelberg: 1996; pp. 159–177.

13. Salimans, T.; Ho, J.; Chen, X.; Sutskever, I. Evolution strategies as a scalable alternative to reinforcement
learning. arXiv 2017, arXiv:1703.03864.

14. Bishop, C.; Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995.
15. Nasrabadi, N.M. Pattern recognition and machine learning. J. Electron. Imaging 2007, 16, 049901.
16. Mahmud, R.; Kotagiri, R.; Buyya, R. Fog computing: A taxonomy, survey and future directions. In Internet of

Everything; Springer: Berlin, Heidelberg: 2018; pp. 103–130.
17. Mukherjee, M.; Shu, L.; Wang, D. Survey of Fog Computing: Fundamental, Network Applications, and

Research Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 1826–1857. [CrossRef]
18. Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading.

IEEE Commun. Surv. Tutor. 2017, 19, 1628–1656. [CrossRef]

http://dx.doi.org/10.1109/COMST.2017.2771153
http://dx.doi.org/10.1109/JIOT.2017.2750180
http://dx.doi.org/10.1109/MNET.2016.1500279NM
http://dx.doi.org/10.1109/ACCESS.2018.2805303
http://dx.doi.org/10.1109/MNET.2016.7513863
http://dx.doi.org/10.1002/ett.3497
http://dx.doi.org/10.1109/MCOM.2017.1700246
http://dx.doi.org/10.1109/TVT.2017.2760281
http://dx.doi.org/10.1109/COMST.2018.2814571
http://dx.doi.org/10.1109/COMST.2017.2682318


Sensors 2018, 18, 2830 18 of 19

19. Markakis, E.K.; Karras, K.; Sideris, A.; Alexiou, G.; Pallis, E. Computing, Caching, and Communication at
the Edge: The Cornerstone for Building a Versatile 5G Ecosystem. IEEE Commun. Mag. 2017, 55, 152–157.
[CrossRef]

20. Kim, S. 5G Network Communication, Caching, and Computing Algorithms Based on the Two-Tier Game
Model. ETRI J. 2018, 40, 61–71. [CrossRef]

21. Paščinski, U.; Trnkoczy, J.; Stankovski, V.; Cigale, M.; Gec, S. QoS-aware orchestration of network intensive
software utilities within software defined data centres. J. Grid Comput. 2018, 16, 85–112. [CrossRef]

22. Hu, Y.; Wang, J.; Zhou, H.; Martin, P.; Taal, A.; de Laat, C.; Zhao, Z. Deadline-aware deployment for
time critical applications in clouds. In Proceedings of the European Conference on Parallel Processing,
Compostela, Spain, 28 August–1 September 2017; pp. 345–357.

23. Chamola, V.; Tham, C.K.; Chalapathi, G.S. Latency aware mobile task assignment and load balancing
for edge cloudlets. In Proceedings of the IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), Kona, HI, USA, 13–17 March 2017; pp. 587–592.

24. Dao, N.N.; Vu, D.N.; Lee, Y.; Cho, S.; Cho, C.; Kim, H. Pattern-Identified Online Task Scheduling in Multitier
Edge Computing for Industrial IoT Services. Mob. Inf. Syst. 2018, 2018, 2101206. [CrossRef]

25. Ali, M.; Riaz, N.; Ashraf, M.I.; Qaisar, S.; Naeem, M. Joint Cloudlet Selection and Latency Minimization in
Fog Networks. IEEE Trans. Ind. Inform. 2018, 99. [CrossRef]

26. Dao, N.N.; Lee, J.; Vu, D.N.; Paek, J.; Kim, J.; Cho, S.; Chung, K.S.; Keum, C. Adaptive resource balancing for
serviceability maximization in fog radio access networks. IEEE Access 2017, 5, 14548–14559. [CrossRef]

27. Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques;
Morgan Kaufmann: Burlington, MA, USA, 2016.

28. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.;
Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015,
518, 529. [CrossRef] [PubMed]

29. Van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-Learning. In Proceedings
of the AAAI, Phoenix, AZ, USA, 12–17 February 2016; Volume 16, pp. 2094–2100.

30. Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.; Freitas, N. Dueling Network Architectures for Deep
Reinforcement Learning. In Proceedings of the International Conference on Machine Learning, New York,
NY, USA, 19–24 June 2016; pp. 1995–2003.

31. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators.
Neural Netw. 1989, 2, 359–366. [CrossRef]

32. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.;
Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural
networks and tree search. Nature 2016, 529, 484–489. [CrossRef] [PubMed]

33. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef] [PubMed]
34. Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, MA, USA, 2016;

Volume 1.
35. Such, F.P.; Madhavan, V.; Conti, E.; Lehman, J.; Stanley, K.O.; Clune, J. Deep Neuroevolution: Genetic

Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning.
arXiv 2017, arXiv:1712.06567.

36. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari
with deep reinforcement learning. arXiv 2013, arXiv:1312.5602.

37. Schwarzkopf, M.; Konwinski, A.; Abd-El-Malek, M.; Wilkes, J. Omega: Flexible, scalable schedulers for
large compute clusters. In Proceedings of the 8th ACM European Conference on Computer Systems, Prague,
Czech Republic, 14–17 April 2013; pp. 351–364.

38. Hindman, B.; Konwinski, A.; Zaharia, M.; Ghodsi, A.; Joseph, A.D.; Katz, R.H.; Shenker, S.; Stoica, I.
Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation, Boston, MA, USA, 30 March–1 April 2011;
Volume 11, p. 22.

http://dx.doi.org/10.1109/MCOM.2017.1700105
http://dx.doi.org/10.4218/etrij.2017-0023
http://dx.doi.org/10.1007/s10723-017-9415-1
http://dx.doi.org/10.1155/2018/2101206
http://dx.doi.org/10.1109/TII.2018.2829751
http://dx.doi.org/10.1109/ACCESS.2017.2712138
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442


Sensors 2018, 18, 2830 19 of 19

39. Bernstein, D. Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud Comput. 2014, 1, 81–84.
[CrossRef]

40. Vecchiola, C.; Chu, X.; Buyya, R. Aneka: A software platform for .NET-based cloud computing. High Speed
Large Scale Sci. Comput. 2009, 18, 267–295.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MCC.2014.51
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	System Model
	Real-Time Task Assignment Problem
	Reinforcement Learning Model
	Action Selection Function

	Evolution Strategies
	Experiments
	Experimental Setup
	Data Collection
	Fog Server and System Setup

	Experimental Method
	Results

	Conclusions
	References

