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Abstract: Emergency flood monitoring and rescue need to first detect flood areas. This paper provides a
fast and novel flood detection method and applies it to Gaofen-3 SAR images. The fully convolutional
network (FCN), a variant of VGG16, is utilized for flood mapping in this paper. Considering the
requirement of flood detection, we fine-tune the model to get higher accuracy results with shorter
training time and fewer training samples. Compared with state-of-the-art methods, our proposed
algorithm not only gives robust and accurate detection results but also significantly reduces the
detection time.
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1. Introduction

Floods frequently occur from June to September in south and northeast China, causing a great
deal of economic losses and disaster-induced diseases. According to the statistics from China National
Commission for Disaster Reduction, there were 43 large-scale heavy rainfall events in 2017, which
made 10 provinces in China suffer from heavy flood disasters. Consequently, it is necessary and urgent
to cope with the flood disasters quickly. As the fundamental task of flood monitoring and rescue,
flood detection needs to be accurate and fast.

With the rapid development of remote sensing sensors, many satellites have been launched,
providing overall and continuous land cover information for disaster monitoring and damage
assessment. Optical sensors, such as Landsat and SPOT, have been widely used for flood detection
and inundation mapping. However, they are severely limited by meteorological conditions and cannot
work at night due to their passive imaging characteristics. Unlike optical sensors, Synthetic Aperture
Radar (SAR) sensors are active sensors and capable of working in all weather conditions and at all
times of the day [1], which make emergency disaster monitoring through rain and clouds possible.
Due to the coherent imaging mechanism and long revisit interval, SAR images are limited by speckle
noise and data volume. Consequently, it is difficult but imperative to utilize SAR images for flood
monitoring and rescue.

In the past decades, flood detection methods based on SAR images have been thoroughly studied.
Some papers have made detailed summaries of these methods [1,2]. Flood detection methods can
be mainly divided into four classes: thresholding, region growing, active counter, and hydrologic
method.

Based on the assumption that flood SAR images have bimodal histograms, many automatic
thresholding procedures are proposed [3,4]. Thresholding is the most classical method to distinguish
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flooded and non-flooded areas in SAR images. In thresholding method, pixels with radar backscatter
values lower than a given threshold are assigned to the class “flood” [5,6]. Owing to relatively low
computational cost, thresholding methods can meet real-time needs. However, since the decision
threshold is affected by many factors such as atmospheric disturbances [7] and polarization mode [4],
it has to be fine tuned by manual trial-and-error operations for each image. However, this assumption
is not always true. Thresholding methods face a fundamental problem that not all pixels with low
backscatter values are water and vice versa. Pulvirenti team presented some methods to overcome
this problem [8–10]. One is to use change detection with InSAR data to deal with flood mapping in
vegetated and urban areas [8]. Another way is a fuzzy logic method solving the interference of heavy
rain or wet snow cover. Segmentation and classification are carried out successively with necessary
ancillary data consisting of DEM, land cover map and optical image [9,10]. Although these methods
are effective, the necessary auxiliary data are not always available.

Region growing is an iterative clustering method based on seed pixels. Adjacent pixels which
have similar features with seed pixels are selected as new seed pixels. This process iterates until the
stopping conditions are reached. Then, all these seed pixels are classified as water. There are two
ways to initialize seed pixel or group seed pixels. One way used in practical engineering is to select
seed pixels manually which is accurate but time-consuming, especially when flood regions are broken
discontinuity. To solve this problem, another way is proposed to select seed pixels automatically.
In these automatic methods, thresholding methods are used to give a threshold of seed pixels [11–13].
Therefore, these methods still suffer from the problems of thresholding methods.

Active contour model maps flood area by constructing an energy function and searching the
minimum. By minimizing the energy function, the contour curve gradually approaches to the edge of
interested object, and finally the target is segmented. For flood detection, the most commonly used
active contour model is snake, an edge based model [14]. Although snake is useful to smooth edges
and make them continuous, it can only process boundaries that have been defined by a gradient [15].
Another usual active contour model is level set method, a modified method of snake. Both snake and
level set methods need a manual selection of the initial curves [16].

Hydrologic methods are also extensively used for flood mapping. All these methods use auxiliary
data such as digital elevation model (DEM), hydrographic data, or topography information [2,17–19].
To achieve a better result, auxiliary data need to be high-precision and even be obtained during the
flood [20]. It is difficult to acquire these data in time especially, when the informations is area oriented.

Although these methods have achieved some valuable results, even several automatic methods,
they still have some limitations. First, these methods are sensitive to speckle noise, so they need to filter
images with pre-processing. However, all filters now available will cause information loss. Besides,
these methods are time consuming. To apply in emergency rescue, accurate results and real-time
processing are both important. In addition, hydrologic method need extra auxiliary data, such as high
accuracy DEM and water level information to get a better result, but these additional data are not
always available.

In recent years, computer vision methods based on deep learning networks have developed
rapidly and made great progress in image segmentation. At ILSVRC 2015, the best one, ResNet,
achieved 3.57% error on the ImageNet test set, better than human eye recognition with 5.1% error [21].
Neural network has been used in SAR domain, such as ship detection [21], road extraction [22], and
land cover classification [23], and achieved good results. However, we have not found any studies
focused on deep-learning based flood detection methods in SAR images.

In this paper, we introduce a fully convolutional network (FCN) for flood detection which is
based on classical deep learning method VGG16. FCN retains convolution layers and pooling layers in
VGG16 to extract features, but replaces fully connected layers with transpose convolution layers to
map flood areas. Our method is robust to speckle noise with no need for filtering. Furthermore, FCN
can process single image of arbitrary polarization without auxiliary data, so it has good generalization.
The contributions of this paper are given as follows:
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1. To the best of our knowledge, this is the first paper to introduce fully convolution network (FCN)
for flood detection in SAR images.

2. We verified that FCN is robust to speckle noise in SAR image.
3. For the needs of SAR image flood detection, we fine-tuned the classical FCN in three points.

The rest of this paper is organized as follows. The study areas and data used in this paper are
described in Section 2. Section 3 contains three parts, the pre-processing of data, the method for making
the dataset and the flood mapping method. We illustrate and analysis experimental results in Section 4.
The conclusions are drawn in Section 5.

2. Study Area

According to the information from China National Commission for Disaster Reduction, there
are five heavy floods in China among the ten worst natural disasters in 2017. Floods and geological
disasters in 2017 influenced 69.512 million people in China, among which 674 people died, 75 people
are missing and 3.975 million people were resettled in an emergency. These disasters caused a total
direct economic loss of 190.99 billion yuan.

Gaofen-3 satellite (GF-3) is China’s first self-developed C-band multi-polarized SAR, launched
in August 2016. GF-3 can obtain full-polarization, dual-polarization and single-polarization images.
Gf-3 has twelve imaging modes with 1–500 m resolution and 5–650 km imaging bandwidth. The design
life of GF-3 is eight years. All these characters make GF-3 competent for numerous applications such as
monitoring the global ocean and land resources [24]. Flood mapping is one of the import applications.
We chose three scenes of GF-3 images from three different flood disasters in 2017 China for our study.
These images were imaged in three different modes.

Scene 1 was imaged in fine stripmap 2 (FSII) mode on July 3 in dual polarization with 10 m
resolution covering 10,894.8 square kilometers. This scene is about the flood in Hunan province caused
by continuous heavy rainfall. The image center is located in (E109.9, N27.3). The two images of HH
and HV are shown in Figure 1a,b. We also present the optical image obtained from Google Earth as
a reference in Figure 1c. Except water, the land cover classifications also contain mountain forests,
croplands, cities and small towns. Figure 1d–f shows the selected parts in Figure 1a–c. City, airport,
highway and part of water are marked by yellow, red, blue and green frames, respectively. Limited by
the image resolution, the inner structure of city is impossible to distinguish. Thus, we do not consider
the influence of street and building shadows in city. Airport and highway have similar reflectivity
with water which may cause false alarms.

(a) (b) (c)

Figure 1. Cont.
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(d) (e) (f)

Figure 1. (a) HH; and (b) HV are dual polarization GF-3 images of Hunan province (3 July 2017)
imaged in FSII mode with 10 m resolution covering 10,894.8 square kilometers. Image size is 10,996
× 9908 pixels. (c) The optical image of the same area obtained from Google Earth. (d–f) Selected
areas of (a–c). City, airport, highway, and part of water are marked by yellow, red, blue and green
frames, respectively.

Scene 2 was imaged in scan SAR (SS) mode on July 13 in dual polarization with 25 m resolution
covering 83,359.2 square kilometers. This scene is about the flood in Jilin province. The image center is
located in (E126.3, N43.5). The two images of HH and HV are shown in Figure 2a,b. We also present
the optical image obtained from Google Earth as a reference in Figure2c. The land cover classifications
are the same as Scene 1. We can see evident difference between HH and HV polarization in Figure 2a,b.
We select one of the most obvious areas to show in Figure 2d–f. Main building areas are marked with
red frames and the rest is cropland. The building areas in HH polarization image are almost the same
as croplands while they have obvious different intensities in HV polarization image.

Scene 3 was imaged in Quadrupolarization Stripmap One (QPSI) mode on August 17 in full
polarization with 8 m resolution covering 884.7 square kilometers. This scene is about the flood in
YueYang city, the second heavy flood in Hunan in 2017. The image center is located in (E113.5, N29.0).
The four images of HH, HV, VH and VV are shown in Figure 3a–d. The reference optical image is
shown in Figure 3e. Different from Scenes 1 and 2, there is no big city in Scene 3. Although Scene 3 has
the highest resolution, buildings in small towns still cannot be recognized, as shown in Figure 3f,g.

(a) (b) (c)

Figure 2. Cont.
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(d) (e) (f)

Figure 2. (a) HH; and (b) HV are full polarization GF-3 images of Jilin province (13 July 2017) imaged
in SS mode with 25 m resolution covering 83,359.2 square kilometers. Image size is 10,953 × 12,177
pixels. (c) The optical image of the same area obtained from Google Earth. (d–f) Selected areas of (a–c).
Areas in red mark are buildings and the rest is cropland.

(a) (b) (c) (d)

(e) (f) (g)

Figure 3. (a) HH; (b) HV; (c) VH; and (d) VV are fully polarimetric GF-3 images of YueYang city in
Hunan province (17 August 2017) imaged in QPSI mode with 8 m resolution covering 884.7 square
kilometers. Image size is 3859 × 3582 pixels. (e) The optical image of the same area obtained from
Google Earth. (f,g) Selected areas of (a,e). Buildings are fused with other classifications.

3. Methodology

In this section, we introduce the pre-processing for making the datasets, the selecting method for
the datasets and the structure of our model. Pre-processing plays an important role in our model to
acquire a good result. It contains two procedures, radiation correction and data unification. We give
a new selecting method for datasets in Section 3.2. In the last section, we introduce each part of our
model in detail.



Sensors 2018, 18, 2915 6 of 22

3.1. Pre-Process

In general, the GF-3 data are Level-1 product (L1A), i.e. 16-bit complex data that cannot be used
for flood mapping directly. We should convert the complex data to digital number (DN). The intensity
image is obtained by:

DN =
√

I2 + Q2, (1)

where I and Q, respectively, represent the real part and virtual part of L1A data. The intensity image
has a problem that the water area of DN is different in different scenes. Thus, we need to perform
radiation correction on L1A data and convert it into a figure of ground scattering coefficient σ0 by:

σ0 =

(
I

32,767 ∗Quali f y
)2

+
(

Q
32,767 ∗Quali f y

)2

Kconst
, (2)

where Quali f y is the Qualify Value which can be found in xml document of L1A data and Kconst is the
calibration constant which is get by radiometric calibration. Kconst is different for different imaging
model, different band and different polarization.

After radiation correction, we need to scale the σ map to 0:65,535. Due to the existence of speckle
noise, directly using linear scaling is not suitable for useful ground scattering coefficients, being
compressed to a very small range. In this way, we can only get almost black images. To solve this
problem, we set a threshold. σ values greater than the threshold are set to the threshold. We choose
the threshold by ensuring more than 90% of values are lower than the threshold. Although some
effective σ values are abandoned, flood detection is not influenced because flood pixels have low σ

values. The same ground feature has a lower σ value in cross-polarization than in co-polarization.
Thus, we choose the threshold depending on polarization to unify data. After experiments, we found
some feasible thresholds, as given in Table 1, with which different polarization images have similar σ

values for same classification. This is useful for model training. Finding the most universal threshold
requires analyzing more data and we will do this in future.

Table 1. The thresholds of different polarization.

Polarization HH HV VH VV

Threshold 0.6 0.1 0.1 0.6

Due to coherent imaging mechanism, SAR images are limited by speckle noise. However, we do
not use filtering. As we all know, adding noise is a common data augmentation skill for deep
learning training sample making to make model more universal. Thus, speckle noise is similar to data
augmentation for SAR image. In addition, filtering is bound to cause loss of details in images and
bring extra computational cost. Thus, we train our model directly without filtering. This completes the
pre-processing explanation. We verify the effectiveness of pre-processing and filtering in Section 4.4.

3.2. Dataset Making

Now, we have eight original images (relative to slice set) to make datasets. For training
set and validation set, we use Scenes 1 and 2 and keep the same proportion of positive samples
(samples having water pixels) and negative samples (samples having no water pixels) in both sets.
We slice these four images into patches with a size of 256 × 256 pixels and a stride of 192 pixels.
We randomly select a certain percentage (marked as p) of positive samples with the same amount of
negative samples as training set. The remaining positive samples with the same amount of negative
samples serve as validation set. We use one image in Scene 2 as instance. By slicing, we can
getb(10, 953− 256)/192 + 1c ∗ b(12, 177− 256)/192 + 1c = 3528 samples containing 1136 positive
samples and 2392 negative samples. In Section 4.2, we select p = 80%. Then, we randomly select
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1136 ∗ p = 908 samples from positive samples and 908 samples from negative samples. We use these
1816 samples as training set. In the same way, we use the rest 1136− 908 = 228 positive samples
and 228 negative samples randomly selected from the rest 1484 negative samples as validation set
(total 456 samples).

For the test set, we have found that test sets in previous papers are small areas with only a few
hundred to a few thousand pixels [11,12,15,20]. Besides, the part of test set is captured in the same
image with training set. We think there are three problems with these test sets.

1. The selected part of test set is too small. As SAR images resolution becomes higher and higher,
only thousands of pixels cannot cover a large complete water area, while the 256 × 256 pixels
patch used in our training set has more than 60 thousand pixels.

2. Selecting a particular part as test set has a great randomness. The purpose of training is to map
the flood area in whole image. However, the result on a small area is difficult to evaluate the
effect of the model on the whole image.

3. These test sets cannot fully reflect the generalization ability of model. Since the test set is captured
in the same image with the training set, we have no way to know the model performance on
other scenes. That is exactly the most important objective of our training model.

To overcome the aforementioned problems, we propose a new test set selection method for
supervised learning method. We test the model performance on the four original images in Scenes 1
and 2 to avoid the first and second problems. In addition, we make a test on Scene 3, a new group of
data never participating in training, to validate the generalization ability of model. Moreover, we want
to know whether our model has a similar performance on different polarization images after the
pre-process.

3.3. FCN

Traditional network can only process images having the same size with training samples limited
by the fixed numbers of parameters in fully connected layers. In common, neural networks choose
small sizes (e.g., 256 × 256 pixels) training samples to improve training effect. Thus, traditional
networks are inefficient when process large size images. Fully convolutional networks (FCN) replace
fully connected layers in traditional neural networks with convolutions. Thus, one advantage of FCN
is that it can handle images of any size after it has been trained, which improves the efficiency of
network.

Shellamer et al. [25] introduced a FCN model for semantic segmentation on optical images that is
based on the structure of classical network VGG16 [26]. This network contains two parts: convolution
layers which are same with VGG16 and transpose convolution layers which are substitutes of fully
connected layers in VGG16. To make a distinction with our model, we still call this model FCN. Based
on FCN, we propose a fully convolutional network for flood detection on SAR images, which we
called it FCN16. The structures of FCN and FCN16 are compared in Table 2. We also show the training
processes of FCN and FCN16 in Figure 4. The selection bases of the layers are given in follow.

Convolution layer: Traditional networks use big size kernels to get large receptive fields. As we
all know, the smallest kernel size is 3 × 3 to capture the information of a pixel and its surrounding
pixels. Karen Simonyan et al gave an opinion that a stack of 3× 3 kernel can get the same size receptive
fields with big size kernels with fewer parameters [26]. For example, a single 7 × 7 layer (1 × 7 × 7 =
49 parameters) can be replaced by a stack of three 3 × 3 layers (3 × 3 × 3 = 27 parameters) with the
receptive fields 7 × 7 unchanged. Another advantage is that a stack structure has two more activation
functions which improve the expression ability of the model. Thus, we keep this structure in FCN16.
Moreover, we use rectified Linear Unit (ReLU) activation function for every convolution layer except
conv8. Actually, we have tried other improved variants of ReLU, such as ELUs [27] and SELU [28],
but the results had no improvement or were even worse.
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The difference between FCN and FCN16 is in conv6, where FCN16 uses 3 × 3 kernels instead of
7 × 7 kernels in FCN. In the original VGG16 network, the transition from convolution layer to fully
connected layer can be treated as a 7 × 7 convolution, so FCN network replaces this transition with a
7 × 7 convolution layer in conv6. We replace these 7 × 7 kernels with 3 × 3 kernels in our model for
two reasons. First, although a big kernel can increase the number of features, it also makes the model
more complex and difficult to train for tending to be overfitting. Considering that flood detection is
only a binary classification problem and we want to get a model which can be trained with fewer
samples and shorter time, the model should not be too complex, so we replace 7 × 7 kernels with
3 × 3 kernels. In this way, the model parameters in conv6 reduce from 108 M to 19 M and this will
greatly speed up the model training. Second, the single node in the first fully connected layer has
the information of all pixels in the original image, i.e., the receptive field is bigger than the sample
size. For this purpose, a 3 × 3 kernel with a 276 × 276 pixels receptive field is sufficient for 256 × 256
pixels training samples and a 7 × 7 kernel with a 404 × 404 pixels receptive field cannot give more
information. Thus, we use 3 × 3 kernels replace 7 × 7 kernels.

Table 2. Comparison of structures between FCN and FCN16 (The column Num in Layer is the number
of convolutions in convolution layer).

Layer FCN FCN16

Name Num Kernel Size Stride Feature Dimensions Kernel Size Stride Feature Dimensions

input 256 × 256 × 1 256 × 256 × 1
conv1 2 3 × 3 1 256 × 256 × 64 3 × 3 1 256 × 256 × 64
pool1 2 × 2 2 128 × 128 × 64 2 × 2 2 128 × 128 × 64
conv2 2 3 × 3 1 128 × 128 × 128 3 × 3 1 128 × 128 × 128
pool2 2 × 2 2 64 × 64 × 128 2 × 2 2 64 × 64 × 128
conv3 3 3 × 3 1 64 × 64 × 256 3 × 3 1 64 × 64 × 256
pool3 2 × 2 2 32 × 32 × 256 2 × 2 2 32 × 32 × 256
conv4 3 3 × 3 1 32 × 32 × 512 3 × 3 1 32 × 32 × 512
pool4 2 × 2 2 16 × 16 × 512 2 × 2 2 16 × 16 × 512
conv5 3 3 × 3 1 16 × 16 × 512 3 × 3 1 16 × 16 × 512
pool5 2 × 2 2 8 × 8 × 512 2 × 2 2 8 × 8 × 512
conv6 1 7 × 7 1 8 × 8 × 4096 3 × 3 1 8 × 8 × 4096

dropout 8 × 8 × 4096
conv7 1 1 × 1 1 8 × 8 × 4096 1 × 1 1 8 × 8 × 4096

dropout 8 × 8 × 4096
conv8 1 1 × 1 1 8 × 8 × 2 1 × 1 1 8 × 8 × 2
tconv1 4 × 4 2 16 × 16 × 512 4 × 4 2 16 × 16 × 512
fuse1 1 × 1 1 16 × 16 × 512 1 × 1 1 16 × 16 × 512

tconv2 4 × 4 2 32 × 32 × 256 4 × 4 2 32 × 32 × 256
fuse2 1 × 1 1 32 × 32 × 256 1 × 1 1 32 × 32 × 256

tconv3 16 × 16 8 256 × 256 × 2 16 × 16 8 256 × 256 × 2

Pooling layer: Pooling layer, commonly maximum pooling, is used to reduce the dimension of
data. For this purpose, we can remove pooling layer and add the stride of former convolution layer to
2. In this way, network training time can be further reduced. However, Springenberg et al. indicated
that pooling layer is unnecessary but simply removing pooling layer leads to a poor performance
of classification, because only top-left feature is considered [29]. In other words, max-pooling uses
top-left feature as default. Thus, we keep the pooling layers and compare two methods in subsequent
section.

Dropout layer: Dropout layer can suppress overfit to some extent which was demonstrated by
Srivastava N [30] and Xavier Bouthillier [31] from different arguments. We add dropout layers after
the conv7 and conv8. The dropout rate is fixed as 0.5. Since overfitting is not a serious problem in our
experiment, the effect of dropout layers is limited.

Transpose convolution layer: Transpose convolution (also called deconvolution in some papers)
is used to upsample images, playing a crucial role in FCN. Shellamer et al. demonstrated that using
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three transpose convolution layers to upsample final convolution result to original size was the most
effective way [25]. We also verified this conclusion by changing the number of transpose convolution
layers and the size of kernel.

Fusion layer: FCN uses skip structures (e.g., U-net) to fuse local features from shallower layers
with global features from deeper layers. We call this structure fusion layer. In Figure 4a, we can see
that fusion layers in FCN contain two steps. First, it uses a 1 × 1 convolution to further extract features
from the shallower layer (pool4 or pool3). Then, it adds this result with the deeper layer (tconv1 or
tconv2). This is similar to adding an exclusive bias for each pixel in these new features, although this
bias depends on the deeper layer. We think simply using global features as biases in the corresponding
pixel cannot efficiently utilize global features, so we incorporate the deeper layers into convolution
process in FCN16. As shown in Figure 4b, we still use a 1× 1 convolution, but the input of convolution
is the concatenation of the shallow layer and deep layer. In this way, we extract new features using
both local features and global features. FCN can be seen as a particular case that the convolution
weights corresponding to deeper layer are fixed to (1, 0, 0, ..., 0, 0), (0, 1, 0, ..., 0, 0), ... , (0, 0, 0, ..., 0, 1).
Thus, our model has a better expressive ability. In addition, we add a ReLU function after convolution
to further improve the expressive ability of the model.

(a)

(b)

Figure 4. The training processes of the two models: (a) FCN; and (b) FCN16. The number of grids
reveals relative spatial coarseness. Convolution numbers of ConvX are given in Table 2. Both models
upsample stride 32 predictions back to pixels in three steps. Tconv1 and Tconv2 achieve double
upsampling and Tconv3 achieves eight times upsampling. Different structures between the two models
are marked with red. The number under layer name is channel number.

Loss function: We only use cross entropy loss function, a commonly used loss function in
classification task. Except this function, FCN also uses L2 regular function (regular factor is 5× 10−4)
as part of total loss function. L2 regular function is usually used to overcome overfitting. L2 regular
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function suppresses overfitting by reducing weights to simplify the model, which is not suitable for
our use because overfitting is not a serious problem in flood detection, especially after we simplified
the model by reducing the feature amount. Thus, we replace the L2 regular function with dropout
layers to prevent possible overfitting. Actually, adding L2 regular function will make result worse
instead. We show this in Section 4.4.

4. Results and Discussions

Four experiments were designed to evaluate the detection performance. In the first experiment,
the proposed detection method was compared with FCN and a traditional automatic method M1. In the
second experiment, the influence of training sample numbers was studied. In the third experiment, we
analyzed the effectiveness of pre-process and L2 regular function. In the last experiment, we explored
the performance of removing the pooling layer.

4.1. Assessment Criteria

Confusion matrix or criteria based on it are the most commonly used tools for evaluating flood
detection ability [12,15,32]. We chose four criteria based on confusion matrix. The confusion matrix
used in this paper is given in Table 3. T is true, F is false, P is positive (i.e., regarding pixel as water)
and N is negative (i.e., regarding pixel as other classification). The four criteria are accuracy (A), recall
(R), precision (P), and F1 score (F1). The mathematical formulation are:

A = TP+TN
TP+FN+FP+TN ,

R = TP
TP+FN ,

p = TP
TP+Fp ,

F1 = 2∗R∗P
R+P .

(3)

where A represents the proportion of correctly classified pixels in the total number of pixels.
R represents how many water pixels are correctly detected. P represents the correct proportion
of pixels classified as water. The best effect of model is both R and P are large, but in fact, we always
need to make a balance between these two criteria. Thus, we use criterion F1 to measure this balance.

Table 3. Confusion matrix.

Confusion Matrix Prediction

Water Other

Truth Water TP FN

Other FP TN

4.2. Comparison of Three Methods

In this section, we compare our model with two methods. One is the FCN shown in Table 2.
Another model is a state-of-the-art automatic flood mapping method called M1 [11]. We chose M1
because this method only uses one image to detect floods which is the same as our method. Although
Matgen et al. [11] introduced another method M2, which performs better than M1, and there exist
some methods that further improve M2 (e.g., [12,13]), all these methods need an extra image (i.e.,
multi-temporal data) to obtain the result. M1 is a hybrid method combining thresholding and region
growing based on the assumption that flood images have binodal histograms. However, influenced by
speckle noise, the original SAR images do not have binodal histograms. Thus, Gauss filter is used for
M1 to generate bimodal histograms. Based on bimodal histogram, M1 uses thresholding to generate
seed pixels for region growing automatically. Then, region growing is used to map all water areas
in image.
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In this section, p is set to 80% to ensure there are sufficient training samples to get a satisfactory
result. Learning rate and iteration are, respectively, fixed as 10−4 and 30 k in this and the following
section for both FCN and FCN16. The results of Scenes 1–3 are shown in Figures 5–7, respectively.
The first column (Label) in each figure is the real flood map manually marked.

Figure 5. Results comparison of Scene 1: (a) Label; (b) FCN16; (c) FCN; and (d) M1.

Figure 6. Results comparison of Scene 2: (a) Label; (b) FCN16; (c) FCN; and (d) M1.

We can see that the FCN16 gives the best results and M1 is the worst, especially in Scene 1. For all
methods, performances on HH, HV, and VH are better than the performance on VV. A possible reason
is that VV polarization provides less information for the application of flood mapping than other
polarizations [4].

In Scene 1, the flood images of FCN has more errors in lower right corner than FCN16. We can
see in original images that this part is a mountainous area with shadow. The results of M1 is much
worse than FCN16. It seems that M1 is not robust to mountain shadow. In Scene 2, we can see more
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messy points caused by small shadow areas in FCN and M1 than FCN16. It is obvious that the results
of M1 are still the worst. In Scene 3, the results are similar with Scene 2. We can also find that M1 is
sensitive to speckle noise, although Gauss filter has been used. The noise points in top right corner of
the large flood area are all kept in flood map of M1. FCN16 and FCN overcome this problem.

To clearly analyze the effectiveness of FCN16, we compared the quantitative indices in Table 4.
FCN16 acquires the best results in almost all indices for every image. For A, all values of FCN16 are
more than 0.99; 0.0015–0.0058 more than FCN and 0.0029–0.0871 more than M1. The improvement of
A is not very remarkable if we ignore the results of Scene 1, after all the values of A are very close to 1.
For F1, all values except the VV in Scene 3 of FCN16 are more than 0.9; 0.0308–0.1550 more than FCN
and 0.0646–0.6631 more than M1. FCN16 makes a great progress in F1, which means FCN16 achieves a
good balance between R and P while improving both criteria.

Figure 7. Results comparison of Scene 3: (a) Label; (b) FCN16; (c) FCN; and (d) M1.
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Table 4. The indices of three different methods. A is accuracy, R is recall, P is precision, and F1 is F1
score, given in Equation (3). The best results are in bold.

Scene 1 Scene 2 Scene 3

HH HV HH HV HH HV VH VV

A
FCN16 0.9964 0.9963 0.9957 0.9958 0.9914 0.9912 0.9912 0.9905

FCN 0.9905 0.9914 0.9907 0.9910 0.9893 0.9894 0.9897 0.9848
M1 0.9093 0.9587 0.9830 0.9875 0.9877 0.9873 0.9883 0.9844

R
FCN16 0.8946 0.8906 0.9344 0.9368 0.9066 0.9141 0.9168 0.8569

FCN 0.7955 0.8006 0.8531 0.8749 0.8666 0.9021 0.9114 0.7052
M1 0.8101 0.7712 0.7189 0.7298 0.7681 0.7381 0.7766 0.6982

P
FCN16 0.9306 0.9293 0.9601 0.9599 0.9068 0.9011 0.9001 0.9216
FCN 0.7226 0.7537 0.8935 0.8853 0.8694 0.8459 0.8461 0.8989
M1 0.1472 0.2789 0.8068 0.9227 0.9159 0.9356 0.9235 0.8932

F1
FCN16 0.9123 0.9095 0.9471 0.9482 0.9067 0.9076 0.9083 0.8881

FCN 0.7573 0.7765 0.8728 0.8801 0.8680 0.8731 0.8775 0.7904
M1 0.2492 0.4097 0.7603 0.8150 0.8355 0.8252 0.8437 0.7838

Moreover, we compare the training time and test time in Table 5. We trained and tested FCN16 and
FCN on a single NVIDIA GeForce GTX 1080Ti GPU. Compared with FCN, we reduced training time
by more than half and only needed 1 h 8 min to train a new model. As for test time, processing eight
images with FCN16 only needed about 2 min while M1 needed 30 min. Thus, a pre-trained FCN16 is
more in line with real-time processing requirements. In summary, FCN16 has more practicability than
the other two methods.

Table 5. Time consumed for training and test.

FCN16 FCN M1

Training time (seconds) 4064.408 9734.3609
Test time (seconds) 120.7649 157.4427 1834.186

4.3. Analyses of Training Sample Numbers

There is a common problem with all supervised training models on FCN16 that these models
cannot process new data with significant characteristic differences. The only way to solve this problem
is to use new data to train a new model. However, marking label manually is a time consuming task.
It will be a large progress if we can train model with as few training samples as possible on a premise
of obtaining a satisfactory result. In Section 4.2, we have achieved a good result with 80% positive
patches contained in training set and compared the superiority of FCN16 over FCN and M1. We tested
the efficiency of FCN16 under different training sample numbers. In other words, we tested how many
training samples are necessary to acquire a acceptable result.

In this experiment, we changed parameter p to 50%, 25%, 20% and 10%, respectively, to train
FCN16. We list the results of flood maps in Figures 8–10. The difference among each image is not very
obvious in view.
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Figure 8. Results comparison of Scene 1 with different p: (a) p = 50%; (b) p = 25%; (c) p = 20%; and
(d) p = 10%.

Figure 9. Results comparison of Scene 2 with different p: (a) p = 50%; (b) p = 25%; (c) p = 20%;
and(d) p = 10%.
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Figure 10. Results comparison of Scene 3 with different p: (a) p = 50%; (b) p = 25%; (c) p = 20%; and
(d) p = 10%.

The comparisons of the indices are shown in Figure 11. We can see that the results of Scene 3 are
more stable than Scenes 1 and 2. This is easy to understand ,as complicated images need more training
samples to learn enough features.

Although the indices of FCN16 decrease as the training samples decrease, even the worst result
with 10% positive samples is still better than the result of M1. To see this clearly, we list the results
of these two experiments in Table 6. Except the precision of HH, HV, and VH in Scene 3, all indices
of FCN16 are better. Compared with FCN16, M1 sacrifices more recall to get a better precision. This
is verified by the F1 scores. Thus, we can conclude that FCN16 has potential to achieve satisfactory
results with fewer training samples. If there is only one image to map flood area with a new model,
we recommend that the positive patches in training set are better than 20% of all flood areas in image.
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(a) (b)

(c) (d)

Figure 11. The comparison of four indices under different training set sizes: (a) accuracy; (b) recall;
(c) precision; and (d) F1 score. In each figure, the horizontal axis represents different images and the
vertical axis represents the corresponding index.

Table 6. Index comparison between FCN16 with p equal to 0.1 and M1. A is accuracy, R is recall, P is
precision, and F1 is F1 score, given in Equation (3). The better results are in bold.

Scene 1 Scene 2 Scene 3

HH HV HH HV HH HV VH VV

A FCN16 0.9926 0.9938 0.9917 0.9922 0.9907 0.9906 0.9908 0.9873
M1 0.9093 0.9587 0.9830 0.9875 0.9877 0.9873 0.9883 0.9844

R FCN16 0.8224 0.8178 0.8466 0.8615 0.8603 0.8663 0.8780 0.7463
M1 0.8101 0.7712 0.7189 0.7298 0.7681 0.7381 0.7766 0.6982

P FCN16 0.7930 0.8435 0.9267 0.9251 0.9066 0.8992 0.8938 0.9251
M1 0.1472 0.2789 0.8068 0.9227 0.9159 0.9356 0.9235 0.8932

F1 FCN16 0.8074 0.8304 0.8848 0.8922 0.8828 0.8825 0.8858 0.8261
M1 0.2492 0.4097 0.7603 0.8150 0.8355 0.8252 0.8437 0.7838

4.4. Analyses of the Pre-Process and L2 Regualr Fuction

We compared the results of FCN16 in three different conditions. The first used data that were
not pre-processed for training to verify the effectiveness of pre-processing, marked as FCN16-pre.
The second added filtering in pre-processing to verify its necessity, marked as FCN16+filter. The third
added L2 regular function in loss function to verify the conclusion in Section 4.3 that using L2 regular
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makes result worse, marked as FCN16+L2. Thr parameters are the same as in Section 4.2. The results
are shown in Figures 12–14 and Table 7.

Figure 12. The results of FCN16 in three different conditions of Scene 1: (a) FCN16 without pre-process;
(b) FCN16 with filtering after pre-process; and (c) FCN16 using L2 regular in loss function.

Figure 13. The results of FCN16 in three different conditions of Scene 2: (a) FCN16 without pre-process;
(b) FCN16 with filtering after pre-process; and (c) FCN16 using L2 regular in loss function.
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Figure 14. The results of FCN16 in three different conditions of Scene 3: (a) FCN16 without pre-process;
(b) FCN16 with filtering after pre-process; and (c) FCN16 using L2 regular in loss function.

In Table 7, nearly all indices of FCN16-pre are worse than FCN16 with a clear gap, which means
pre-processing plays an important role in improving the result.

Although recall of FCN16+filter is better than FCN16, this comes at the expense of accuracy.
The worse F1 score indicates that this interchange is inadvisable. A possible reason is that filtering
leads to the loss of details. Thus, we do not recommend filtering. This contrast experimental result can
also be a useful reference for the subsequent segmentation and extraction of SAR image using FCN.

For FCN + L2, nearly all indices are worse than FCN16. As we have mentioned, this is because L2
regular function limits the model expression ability. To see this clearly, we compared the loss values
of training samples and validation samples during the training period in three cases: using dropout
(i.e., FCN16), using L2 regular function and using nothing (reduce dropout in FCN16). We show this
in Figure 15. Compared to the other two cases, the curve using L2 regularization is maintained at
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a large loss, i.e., the model expression ability is limited. Thus, we do not use the L2 regular function in
our model.

Table 7. The indices of different conditions. A is accuracy, R is recall, P is precision, F1 is F1 score, given
in Equation (3). The results better than FCN16 are in bold.

Scene 1 Scene 2 Scene 3

HH HV HH HV HH HV VH VV

A
FCN16-pre 0.9931 0.9935 0.9935 0.9938 0.9870 0.9873 0.9876 0.9805

FCN16 + filter 0.9963 0.9962 0.9958 0.9959 0.9908 0.9905 0.9905 0.9903
FCN16 + L2 0.9903 0.9924 0.9900 0.9908 0.9896 0.9900 0.9907 0.9839

R
FCN16-pre 0.8799 0.8451 0.9284 0.9000 0.8689 0.7428 0.7565 0.5504

FCN16 + filter 0.8993 0.8945 0.9479 0.9510 0.9150 0.9227 0.9253 0.8643
FCN16 + L2 0.7599 0.7351 0.7767 0.7977 0.7986 0.8122 0.8367 0.6276

P
FCN16-pre 0.7760 0.8127 0.9017 0.9315 0.8213 0.9307 0.9243 0.9476
FCN + filter 0.8998 0.8988 0.9402 0.9397 0.8656 0.8543 0.8532 0.8940
FCN + L2 0.7303 0.8384 0.9480 0.9480 0.9366 0.9318 0.9259 0.9613

F1
FCN16-pre 0.8247 0.8286 0.9149 0.9155 0.8444 0.8262 0.8320 0.6963
FCN + filter 0.8995 0.8966 0.9440 0.9453 0.8896 0.8872 0.8878 0.8788
FCN + L2 0.7448 0.7834 0.8538 0.8664 0.8621 0.8679 0.8790 0.7594

Figure 15. The loss value curves of training samples and validation samples during the training period
in three cases: using dropout (i.e., FCN16), using L2 regular function and using nothing (reduce dropout
in FCN16).

4.5. Analyses of the Necessity of Pooling Layer

In this experiment, we wanted to see if we could further improve the efficiency of network
training. Without changing the number of network parameters, the only way we could consider is to
remove the pooling layers. As mentioned in Section 3.3, this change will make the result worse, but
we wanted to know if the deterioration of the result is acceptable. Thus, we used 80% positive samples
training the model with no pooling layers. All parameters are the same as FCN16 in Section 4.2.

Training time of the simplified model was 3791.373 s and test time was 108.3594 s. Compared
with FCN16, the training time decreased 273.0354 s. We give the results of the simplified model and
the difference ∆ with FCN16 in Table 8. Positive ∆ means reducing pooling layer is a better choice.
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We can see the decrement of recall values are much more than the increment of precision in Scenes
1 and 2. Nearly all indices in Scene 3 become worse. In other words, the simplified model has poor
generalization ability. The deterioration is more seriously than the improvement when only a little
training time is reduced. Thus, we recommend using the pooling layers.

Table 8. Index comparison for FCN16 with and without pooling layer. A is accuracy, R is recall, P is
precision, and F1 is F1 score, given in Equation (3). Positive ∆ (in bold) means reducing pooling layer
is a better choice.

Scene 1 Scene 2 Scene 3

HH HV HH HV HH HV VH VV

A Simplified model 0.9945 0.9947 0.9926 0.9929 0.9896 0.9902 0.9905 0.9853
∆ 0.0032 0.0035 0.0014 0.0025 −0.0061 −0.0056 −0.0059 −0.0110

R Simplified model 0.7593 0.7715 0.8477 0.8560 0.8116 0.8430 0.8563 0.6858
∆ −0.1473 −0.1426 −0.0691 −0.0010 −0.1228 −0.0937 −0.0383 −0.2048

P Simplified model 0.9344 0.9329 0.9497 0.9513 0.9066 0.8992 0.8938 0.9339
∆ 0.0276 0.0318 0.0496 0.0297 −0.0375 −0.0515 −0.0271 0.0047

F1 Simplified model 0.8378 0.8446 0.8958 0.9011 0.8635 0.8745 0.8792 0.7909
∆ −0.0575 −0.0470 0.0046 0.0114 −0.0850 −0.0746 −0.0240 −0.1111

5. Conclusions

This paper introduces a fully convolutional network FCN16 based on the classical FCN for flood
mapping. For the needs of SAR image flood detection, we fine-tuned the classical FCN in three points:
(1) We simplified the model by replacing 7 × 7 kernels with 3 × 3 kernels so it can be trained with
fewer samples and shorter time. (2) To improve the model expression ability, we used dropout layers
to prevent overfitting instead of the L2 regular function in classical FCN. (3) We changed the structure
of fusion layers to improve the model expression ability. FCN16 was tested and evaluated against
FCN and a traditional automatic algorithm M1 on three scenes. In this paper, the three scenes we used
are imaged by three different modes of GF-3 which are usually used for disaster reduction. FCN16
makes a small improvement in accuracy of 0.0015–0.0058 more than FCN and 0.0029–0.0871 more
than M1. This is because the accuracy is very close to 1 and even the worst one is more than 0.98.
The important thing is that FCN16 makes very large improvement in F1 score of 0.0308–0.1550 more
than FCN and 0.0646–0.6631 more than M1. This means that FCN16 has achieved excellent overall
performance. Moreover, time used for processing images with a trained FCN16 is far less than M1.
It is almost real-time processing. Besides, our model does not need to filter images, so we can keep as
much original information as possible. We have also demonstrated that FCN16 was able to achieve a
satisfactory result with only a short training time and few training samples. Thus, we can quickly train
a new model to deal with new data that are quite different with existing data. In actual use, operators
only need to manually mark a few samples, which greatly improves the work efficiency.

In our future work, we will consider improving the ability of model transfer learning to make the
model more practical. Besides, inspired by some traditional methods, we will study the flood transit
area mapping method based on deep learning networks in future work [33,34].

Author Contributions: W.K. and F.W. conceived and designed the experiments; W.K. and L.W. performed the
experiments; F.W. and H.Y. supervised the research and contributed to the article’s organization; W.K. and F.W.
carried on the comparative analysis; and W.K. and Y.X. drafted the manuscript, which was revised by all authors.
All authors read and approved the final manuscript.

Funding: National Key R&D Program of China (Grant No. 2017YFB0502901).

Acknowledgments: We wish to acknowledge the support of the National Disaster Reduction Center of the
Ministry of Civil Affairs of the People’s Republic , who provided us flood images and labels. This work was
supported by the National Key R&D Program of China under Grant 2017YFB0502901.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2018, 18, 2915 21 of 22

References

1. Manavalan, R. SAR image analysis techniques for flood area mapping–literature survey. Earth Sci. Inf.
2016, 10, 1–14. [CrossRef]

2. Musa, Z.N.; Popescu, I.; Mynett, A. A review of applications of satellite SAR, optical, altimetry and DEM
data for surface water modelling, mapping and parameter estimation. Hydrol. Earth Syst. Sci. Discuss.
2015, 12, 4857–4878. [CrossRef]

3. Bazi, Y.; Bruzzone, L.; Melgani, F. Image thresholding based on the EM algorithm and the generalized
Gaussian distribution. Pattern Recognit. 2007, 40, 619–634. [CrossRef]

4. Martinis, S.; Twele, A.; Voigt, S. Towards operational near real-time flood detection using a split-based
automatic thresholding procedure on high resolution TerraSAR-X data. Nat. Hazards Earth Syst. Sci.
2009, 9, 303–314. [CrossRef]

5. Pulvirenti, L.; Chini, M.; Marzano, F.S.; Pierdicca, N.; Mori, S.; Guerriero, L. Detection of Floods and
Heavy Rain Using Cosmoskymed Data. In Proceedings of the Riunione Nazionale Di Elettromagnetismo,
Padua, Italy, 15–18 September 2012.

6. Cian, F.; Marconcini, M.; Ceccato, P. Normalized Difference Flood Index for rapid flood mapping: Taking
advantage of EO big data. Remote Sens. Environ. 2018, 209, 712–730. [CrossRef]

7. Danklmayer, A.; Doering, B.J.; Schwerdt, M.; Chandra, M. Assessment of Atmospheric Propagation Effects
in SAR Images. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3507–3518. [CrossRef]

8. Pulvirenti, L.; Marzano, F.S.; Pierdicca, N.; Mori, S.; Chini, M. Discrimination of Water Surfaces, Heavy
Rainfall, and Wet Snow Using COSMO-SkyMed Observations of Severe Weather Events. IEEE Trans. Geosci.
Remote Sens. 2014, 52, 858–869. [CrossRef]

9. Pulvirenti, L.; Chini, M.; Pierdicca, N.; Boni, G. Use of SAR Data for Detecting Floodwater in Urban
and Agricultural Areas: The Role of the Interferometric Coherence. IEEE Trans. Geosci. Remote Sens.
2016, 54, 1532–1544. [CrossRef]

10. Pulvirenti, L.; Chini, M.; Marzano, F.S.; Pierdicca, N.; Mori, S.; Guerriero, L.; Boni, G.; Candela, L. Detection
of floods and heavy rain using cosmo-skymed data: The event in northwestern Italy of November 2011.
In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
Munich, Germany, 22–27 July 2012; pp. 3026–3029.

11. Matgen, P.; Hostache, R.; Schumann, G.; Pfister, L.; Hoffmann, L.; Savenije, H.H.G. Towards an automated
SAR-based flood monitoring system: Lessons learned from two case studies. Phys. Chem. Earth 2011,
36, 241–252. [CrossRef]

12. Giustarini, L.; Hostache, R.; Matgen, P.; Schumann, J.P.; Bates, P.D.; Mason, D.C. A Change Detection
Approach to Flood Mapping in Urban Areas Using TerraSAR-X. IEEE Trans. Geosci. Remote Sens.
2013, 51, 2417–2430. [CrossRef]

13. Lu, J.; Giustarini, L.; Xiong, B.; Zhao, L.; Jiang, Y.; Kuang, G. Automated flood detection with improved
robustness and efficiency using multi-temporal SAR data. Remote Sens. Lett. 2014, 5, 240–248. [CrossRef]

14. Mason, D.C.; Horritt, M.S.; Dall’Amico, J.T.; Scott, T.R.; Bates, P.D. Improving River Flood Extent Delineation
From Synthetic Aperture Radar Using Airborne Laser Altimetry. IEEE Trans. Geosci. Remote Sens.
2007, 45, 3932–3943. [CrossRef]

15. Tong, X.; Luo, X.; Liu, S.; Xie, H.; Chao, W.; Liu, S.; Liu, S.; Makhinov, A.N.; Makhinova, A.F.; Jiang, Y.
An approach for flood monitoring by the combined use of Landsat 8 optical imagery and COSMO-SkyMed
radar imagery. ISPRS J. Photogramm. Remote Sens. 2018, 136, 144–153. [CrossRef]

16. Sui, H.; An, K.; Xu, C.; Liu, J.; Feng, W. Flood Detection in PolSAR Images Based on Level Set Method
Considering Prior Geoinformation. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1–5. [CrossRef]

17. Song, Y.S.; Sohn, H.G.; Park, C.H. Efficient Water Area Classification Using Radarsat-1 SAR Imagery in
a High Relief Mountainous Environment. Photogramm. Eng. Remote Sens. 2015, 73, 285–296. [CrossRef]

18. Cooper, E.S.; Dance, S.L.; Garcia-Pintado, J.; Nichols, N.K.; Smith, P.J. Observation impact, domain length
and parameter estimation in data assimilation for flood forecasting. Environ. Model. Softw. 2018, 104, 199–214.
[CrossRef]

19. Matgen, P.; Schumann, G.; Henry, J.B.; Hoffmann, L.; Pfister, L. Integration of SAR-derived river inundation
areas, high-precision topographic data and a river flow model toward near real-time flood management.
Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 247–263. [CrossRef]

http://dx.doi.org/10.1007/s12145-016-0274-2
http://dx.doi.org/10.5194/hessd-12-4857-2015
http://dx.doi.org/10.1016/j.patcog.2006.05.006
http://dx.doi.org/10.5194/nhess-9-303-2009
http://dx.doi.org/10.1016/j.rse.2018.03.006
http://dx.doi.org/10.1109/TGRS.2009.2022271
http://dx.doi.org/10.1109/TGRS.2013.2244606
http://dx.doi.org/10.1109/TGRS.2015.2482001
http://dx.doi.org/10.1016/j.pce.2010.12.009
http://dx.doi.org/10.1109/TGRS.2012.2210901
http://dx.doi.org/10.1080/2150704X.2014.898190
http://dx.doi.org/10.1109/TGRS.2007.901032
http://dx.doi.org/10.1016/j.isprsjprs.2017.11.006
http://dx.doi.org/10.1109/LGRS.2018.2810122
http://dx.doi.org/10.14358/PERS.73.3.285
http://dx.doi.org/10.1016/j.envsoft.2018.03.013
http://dx.doi.org/10.1016/j.jag.2006.03.003


Sensors 2018, 18, 2915 22 of 22

20. Mason, D.C.; Speck, R.; Devereux, B.; Schumann, J.P.; Neal, J.C.; Bates, P.D. Flood Detection in Urban Areas
Using TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2010, 48, 882–894. [CrossRef]

21. An, Q.; Pan, Z.; You, H. Ship Detection in Gaofen-3 SAR Images Based on Sea Clutter Distribution Analysis
and Deep Convolutional Neural Network. Sensors 2018, 18, 334. [CrossRef] [PubMed]

22. Shi, Q.; Liu, X.; Li, X. Road Detection from Remote Sensing Images by Generative Adversarial Networks.
IEEE Access 2017, 6, 25486–25494. [CrossRef]

23. Chen, W.; Gou, S.; Wang, X.; Li, X.; Jiao, L. Classification of PolSAR Images Using Multilayer Autoencoders
and a Self-Paced Learning Approach. Remote Sens. 2018, 10. [CrossRef]

24. Zhang, Q. System Design and Key Technologies of the GF-3 Satellite. Acta Geod. Cartogr. Sin. 2017.
[CrossRef]

25. Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. 2017, 39, 640–651. [CrossRef] [PubMed]

26. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv
2014, arXiv:1409.1556.

27. Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and Accurate Deep Network Learning by Exponential
Linear Units (ELUs). arXiv 2015, arXiv:1511.07289.

28. Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-Normalizing Neural Networks. arXiv 2017,
arXiv:1706.02515.

29. Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for Simplicity: The All Convolutional
Net. arXiv 2014, arXiv:1412.6806.

30. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

31. Bouthillier, X.; Konda, K.; Vincent, P.; Memisevic, R. Dropout as data augmentation. arXiv 2015,
arXiv:1506.08700.

32. Bioresita, F.; Puissant, A.; Stumpf, A.; Malet, J.P. A Method for Automatic and Rapid Mapping of Water
Surfaces from Sentinel-1 Imagery. Remote Sens. 2018, 10, 217. [CrossRef]

33. Wang, W.; Yang, X.; Li, X.; Chen, K.; Liu, G.; Li, Z.; Gade, M. A Fully Polarimetric SAR Imagery Classification
Scheme for Mud and Sand Flats in Intertidal Zones. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1734–1742.
[CrossRef]

34. Ding, X.; Li, X. Monitoring of the water-area variations of Lake Dongting in China with ENVISAT ASAR
images. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 894–901. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TGRS.2009.2029236
http://dx.doi.org/10.3390/s18020334
http://www.ncbi.nlm.nih.gov/pubmed/29364194
http://dx.doi.org/10.1109/ACCESS.2017.2773142
http://dx.doi.org/10.3390/rs10010110
http://dx.doi.org/10.11947/j.AGCS.2017.20170049
http://dx.doi.org/10.1109/TPAMI.2016.2572683
http://www.ncbi.nlm.nih.gov/pubmed/27244717
http://dx.doi.org/10.3390/rs10020217
http://dx.doi.org/10.1109/TGRS.2016.2631632
http://dx.doi.org/10.1016/j.jag.2011.06.009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Study Area
	Methodology
	Pre-Process
	Dataset Making
	FCN

	Results and Discussions
	 Assessment Criteria
	Comparison of Three Methods
	Analyses of Training Sample Numbers
	Analyses of the Pre-Process and L2 Regualr Fuction
	Analyses of the Necessity of Pooling Layer

	Conclusions
	References

