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Abstract: Aiming at the problem of poor robustness and the low effectiveness of target tracking
in complex scenes by using single color features, an object-tracking algorithm based on dual color
feature fusion via dimension reduction is proposed, according to the Correlation Filter (CF)-based
tracking framework. First, Color Name (CN) feature and Color Histogram (CH) feature extraction
are respectively performed on the input image, and then the template and the candidate region are
correlated by the CF-based methods, and the CH response and CN response of the target region are
obtained, respectively. A self-adaptive feature fusion strategy is proposed to linearly fuse the CH
response and the CN response to obtain a dual color feature response with global color distribution
information and main color information. Finally, the position of the target is estimated, based on the
fused response map, with the maximum of the fused response map corresponding to the estimated
target position. The proposed method is based on fusion in the framework of the Staple algorithm,
and dimension reduction by Principal Component Analysis (PCA) on the scale; the complexity of the
algorithm is reduced, and the tracking performance is further improved. Experimental results on
quantitative and qualitative evaluations on challenging benchmark sequences show that the proposed
algorithm has better tracking accuracy and robustness than other state-of-the-art tracking algorithms
in complex scenarios.

Keywords: feature fusion; self-adaptive feature fusion; principal component analysis; visual tracking;
correlation filter

1. Introduction

Visual object tracking is a very important branch of computer vision, and has been widely used in
many fields, such as video intelligent traffic monitoring, robotics, surveillance, and human-computer
interactions [1-5]. In recent years, discriminant tracking methods have gradually come to occupy
a dominant position by using both target information and the background information around the
target, in which tracking-by-detection methods [6-9] have provided excellent tracking performance.
Among the existing tracking-by-detection methods, Correlation Filter (CF)-based tracking methods
have attracted great attention, and have been widely used in visual target tracking, due to the
computational cost characteristics of correlation operations through fast Fourier transformation (FFT)
reduction algorithms in the frequency domain. In the MOSSE algorithm proposed by Bolme et al. [6],
the first introduces a CF into the field of visual object tracking, which achieves real-time tracking with
a speed of 669 frames per second. Furthermore, Henriques et al. proposed the CSK [7] tracker,
which made a breakthrough for CF-based tracking algorithm in the field of tracking; by cyclic
shifting, the sparse sampling is turned into dense sampling and combined with the Fourier transform,
which greatly reduces the computational complexity. Moreover, in 2014, Henriques et al. proposed a
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KCEF [8] tracker. They added a histogram of an oriented gradient (HOG) feature to CSK, instead of the
previous Gray feature. In the same year, Danelljan et al. proposed the DSST [9] tracker, based on the
KCF algorithm; a scale-dependent filter was added to estimate the target scale. However, the above
methods only extract the gray features of the image, or convert the gray features into HOG features
without considering the color information in the video, thus limiting the tracking accuracy of the
algorithm, where in complex tracking scenarios, the tracking robustness of the target is poor.

Color measurements are robust for illumination, shadow, shading, specularities, and object
geometrical variations, and have successfully been applied to image classification [10,11] and action
recognition [12]. It has been proved that sophisticated color features can provide excellent performance
for object recognition and detection. At the same time, the color feature is insensitive to the change
of image size, orientation, rotation, and scale. Thus, it has a certain stability. In the aspect of color
feature extraction, Swain and Ballad first proposed the color histogram [13]. Because of its simple
and effective characteristics, this has become the most commonly used method for extracting color
features. The Mean Shift algorithm [14] is a non-parametric kernel density estimation algorithm based
on color kernel density estimation. Using the color histogram as an input feature, the candidate
region with the largest similarity to the target probability density function is solved to achieve target
tracking. In 2014, Danelljan et al. proposed the Color Name (CN) [15] tracker. In the field of computer
vision, the operations of CN associate RGB with language color labels, mapping RGB values to
11-dimensional color representations. Using Principal Component Analysis (PCA) dimensionality
reduction technology can reduce the 11 dimensions to two dimensions, which reduces the complexity
of the algorithm, improves the computing speed, and promotes the wide application of color features
in the target-tracking field. In 2015, the DAT [16] tracker used color trackers to distinguish between
targets and backgrounds to achieve real-time tracking of online targets. Because a single color feature
cannot give consideration to both local and global information in a complex tracking scene, it is
susceptible to external interference, which leads to target-tracking drift or failure. The fusion of
multiple color features can improve the tracking accuracy and robustness. The convenience of color
feature reduces the computational costs of feature extraction. Many feature fusion algorithms use color
features, e.g., [17-20]. In 2016, Bertinetto et al. proposed the Staple [21] tracker, which combines color
features. This tracker greatly alleviates the influence of deformation on the tracking task, makes up
for the lack of a single feature, and improves the robustness of the algorithm to deformation. In 2017,
ECO [22] achieved excellent tracking performance by incorporating the CNN feature, HOG feature,
and CN color feature. Additionally, in 2018, CVPR’s excellent algorithm, STRCF [23], incorporated
spatial and temporal regularization into the DCF framework, and fused HOG features and CN color
features in the CF framework. This algorithm is more robust to occlusion and can be very good for
large changes in appearance.

In this work, we propose a Correlation Filter based tracker using a dual color feature fusion
strategy, which improve tracking performance. This is motivated by the observation that the fusion
color features alleviates the influence of deformation and occlusion. More specifically, we extract
the CN features to overcome illumination variance, and we use the CH features to reduce the loss
of tracking accuracy that occurs as a consequence of deformation and occlusion. In the tracking
phase, a huge challenge is how to determine the proportion of each feature response. A parameter
tuning task with a large workload is used for the traditional tracking algorithm, and through the
constant tuning of parameters to find the algorithm it can make characteristic responses that are
coefficient with the strongest generalization ability. To solve the above problems, we propose a method
to adaptively adjust the characteristic response coefficient, considering the target scene, which reduces
the tuning process in the fusion feature response stage. In order to further improve the performance of
the algorithm, this paper performs PCA dimensionality reduction on the scale, based on the fusion
of two-color features. The dimensionality reduction strategy is inspired by the fDSST [24] tracker.
The computational cost of the DSST is dominated by the FFT. The training and detection steps require
one FFT per feature dimension. In order to reduce the required number of FFT computations, the scale
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dimension is reduced to 17 dimensions by using a PCA dimension-reduction strategy. This strategy
can reduce the high dimension to a low dimension, reduce the redundant calculation, and improve
the operation speed and accuracy. We validate the proposed tracking method through quantitative
and qualitative evaluations on challenging benchmark sequences. The benchmark sequences are
sampled from both the fixed camera and moving platform. The experimental results show our method
outperforms other CF-based trackers using non deep features and perform a real-time tracking.

The rest of this paper is arranged as follows: in Section 2, we describe the framework of the
CF-based tracking algorithm. In Section 3, we describe the proposed tracking algorithm. Sections 3.1
and 3.2 describe the CN features and the color histogram features, respectively. Section 3.3 introduces
the color fusion strategy, while Section 3.4 introduces the scale reduction strategy. Section 4 provides
experimental evaluation and analysis. Section 5 summarizes the paper and points out future
research directions.

2. Correlation Filter (CF) Tracking

The CF-based tracking algorithm [6-9] is a multiple instance learning process. The basic samples
are cycle-shifted by a permutation matrix, and the target region is densely sampled to obtain a large
number of samples to train the classifier. By using a regularized least-squares classifier for a single
image block-learning target, a kernel function is used to calculate the candidates. Using the similarity
between the candidate region and the target region, the region with the maximum response is selected
as the new tracking target, and the Discrete Fourier Transform is used to improve the running speed
of the algorithm. The CF-based tracking algorithm mainly consists of three parts: classifier training,
object detection, and parameter update.

2.1. Classifier Training

The CF is trained by ridge regression. The ridge regression problem can be transformed into a
regularized least squares problem. For all training samples, X, and the expected output, Y, the classifier
weight w is solved by the optimization objective function (1). The purpose of training is to obtain a
filter w to represent the target model:

w = argngn(2|< P(xi ), w > —y(i,j)|2 +A<w,w>) (1)
ij

where, x; ; is the training sample obtained by a circulant shift; y; ; is the x; ; Gaussian label; w is the

weight coefficient; A is a regularization parameter; and ¢ is the mapping to the high-dimensional

feature space induced by the kernel K. Therefore, the solution of (1) can be expressed as:

w =7y a(i,j)(xi)) &)

i,j

where w is a linear low-dimensional spatial weight coefficient and « is mapped from a kernel function
to a nonlinear high-dimensional space coefficient, which is obtained by Equations (1) and (2):

F(y)

A=F) = F(k(x,x)) +A @)
where F(.) is the Discrete Fourier Transform (DFT) operator and k(x, x) is the kernel function,
where the idea of the kernel function is to map a linear indivisible problem in low dimensionality
to a high-dimensional space through a kernel function, making the problem linearly separable in
high-dimensional space. Suppose that H is a certain kind of feature space; if there is a certain mapping
¢(x) : x — H, the kernel function satisfies the inner product ¢7 (x)¢(x’) = k(x, x).
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2.2. Object Detection

The detection sample is the image block z of the same position in the next frame, and the classifier
responds to the output:
9=F (A®F(k(z %)) )

where ® denotes the convolution operation; F ~1 denotes an Inverse Fourier transform; and £ denotes
a target appearance model for online learning.

The position of the maximum response of all test sample response vectors i to the predicted
position of the object was found.

2.3. Parameter Update

To achieve object tracking that is robust to appearance changes, it is very important that the target
model is updated over time. The CF-based tracking algorithm generally uses linear interpolation to
update the target-apparent model £ and the classifier coefficient A. The formula is updated as follows:

=1 —7)%_1+7% (5a)

Ay=(1-7)A +~44A (5b)

where - denotes the learning rate; ¥; denotes the t-th frame target-apparent model; and A; denotes the
t-th frame classifier coefficient.

3. Proposed Algorithm

The framework of the proposed tracking method is shown in Figure 1. The framework of
the algorithm can be roughly divided into five parts: the extraction of CN features and CH features;
the dual color fusion of the CN response and the CH response that is obtained by the CF-based tracking
algorithm; the use of the fusion map to estimate the position of the target object; scale estimation with
the PCA dimension reduction technology; and the adaptive model update strategy.

Adaptive model update
CN
responses
A4 A4
Correlation N FBRion map N N(a\_)v >
filter position
A A
L Frame t+1
CH T ——— "
responses | Scale |
estimate |
_______ L I |
I I t |
CH | | PCA Scale
features | I reduction strategy |
| L__—_—_—_—___

Figure 1. Framework of the proposed tracking method.

3.1. Color Name (CN) Feature

The CN feature was proposed by Danelljan et al. [15]. The essence of the CN algorithm
is to extend CSK by color attributes. An adaptive dimension reduction method is proposed
to reduce 11-dimensional color features to two dimensions and to reduce the complexity of
high-dimensional calculations.

RGB is mapped to 11 basic color attributes of black, blue, brown, gray, green, orange, pink, purple,
red, white, and yellow. The original 11-dimensional color is reduced to a 2-dimensional main color
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attribute by using an adaptive dimensionality reduction technique. A suitable reduced-dimension
map for the current frame t is found by minimizing Equation (6):

t—1 .
t t ]

Mtot = Xt gata + Z D‘jﬂsmooth (6)

=1

where 71}, is the data item that only depends on the current frame and 17£ oot 18 the smooth term
related to the number of frames of weight ay, ... , as.

The appearance %' of D; dimensional learning finds a projection matrix, By, of D; X D, on a
standard orthogonal basis, and a new D, dimension appearance feature X' is calculated by linear
mapping x(i,j) = B} £!(i,),Vi,j. The data item consists of the reconstruction error of the current
appearance as follows:

Mot = g 2| 1) — BiBT )| @)
L

The minimization of the data item (7) is a process of PCA dimensionality reduction on the current
appearance. To obtain a more robust projection matrix, a smoothing term is added to Equation (6),

as follows: )

: D,
J — K| (k) T4, (k)
€smooth — Z /\] Hb] — BtBy b] ®)
k=1
where €]sm oorn denotes the smooth error between the new projection matrix B; and the previous

projection matrix Bj. The weight of each base vector p'" in B is )\](-k) > 0; the projection matrix is
calculated from the previous frame (j < p). Using the data term (7) and the smooth term (8), the loss
function (6) is minimized under the constraints B} B; = I to calculate the response score ¥ as follows:

§=F ' (A®F(k(zi;, %)) ©)

3.2. Color Histogram Feature

The Color Histogram Feature reflects the distribution of the color value of each pixel, which is a
type of statistic regarding color information [25-28]. It describes the proportion of different colors in
the whole picture, that is, which colors appear in the statistical image, and the probability of occurrence
of various colors. Swain and Ballard first proposed the use of color histograms as representations of
image color features. They also pointed out that the color histogram is insensitive to the geometric
transformation of the image with the rotation of the axis of view, as well as with the translation and
scaling of the amplitude, and color histograms are insensitive to changes in image quality, such as
blurring. This property of color histograms makes them more suitable for retrieving the global color
similarity of the image, that is, by comparing the differences in a color histogram to measure the
difference in the global distribution of the two images. In 2015, another kind of color histogram, DAT,
was proposed by Possegger et al. [16]. DAT is a global statistical feature that identifies the potential
interference areas in advance, effectively distinguishes between targets and backgrounds, and handles
deformation and illumination changes. Therefore, the color histogram feature proposed in this paper
adopts the color histogram feature in Ref. [16].

3.3. Dual Color Feature Fusion Strategy

CN is a language color label that describes color in human terms, and that describes the color
attributes at the pixel level. CN features describe the main color component of the target, which has the
characteristics of being insensitive to image size and direction. The CH is also a color feature; however,
when compared with the CN feature, it is obviously different. CH is a statistic on the color information
of the whole picture, regardless of the specific position of the color in the image, where colors appear
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in the statistical image and the probability of occurrence of various colors. Regardless of whether the
image is scaled, rotated, panned, etc., the color histogram is not affected.

The idea of the dual color feature fusion with dimension-reduced object tracking algorithm (CDPS)
proposed in this paper is derived from the 2016 Staple [21] tracker, which combines two color features
of CN features and CH features according to the method in the Staple. However, a huge challenge
concerns the determination of the proportion of each feature response. The traditional tracking
algorithm requires a large number of tuning parameters, through continuous tuning parameters,
to find the optimal feature response coefficient. In order to solve the redundant parameter adjustment
work, a method of adaptively adjusting the feature weight coefficient of the target scene is proposed.

The feature fusion flow chart of this paper is shown in Figure 2. In that figure, the input image is
firstly subject to feature extraction, CN features and CH features are respectively extracted, and then
CF processing is performed, i.e., the template and candidate region are convoluted by the CF method
to obtain the respective corresponding responses. Then, the adaptive feature fusion strategy is used to
adaptively fuse the CN response and the CH response to obtain a dual color fusion response.

Feature
Extraction

CN Features

CN Response Linear transformation
result graph

A

Input Imae

I i l . 4 Dual Color
|- —> . \‘ . —»  Fusion
T " ey A Response
CH Features e . o .
Linear transformation
CH Response result graph

Adaptive feature fusion strategy

Figure 2. Feature fusion flow chart. CF denotes the Correlation Filter operation.

According to the method in Ref. [21], a score function of the double-color features feojor(X) is
obtained by a linear combination of the CN score f., with the color CH score fpjg:

fcolor(x) = 'chan(x) + ')’histfhist(x) (10)

where, v, is the weight coefficient corresponding to the CN response; ;g is the weight coefficient
corresponding to the CH response.

(1) The score function of the CH is recorded as:
Suist(x; B) = 8(9x; B) (11)

This term is ¢, : H — RM  calculated from an M-channel feature image, obtained from image x,
and defined on the (different) finite grid H C Z2, where § is the histogram weight vector.
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The CH score is invariant for the spatial arrangement of its feature images, so that for any
permutation matrix I, g(¢) = g(Il¢). This paper uses a linear function of a (vector value) average
feature pixel, as shown in the following equation:

8(9:B) = 67 T glu) 12)

ueH

The average form of converting Equation (10) into a scalar fraction image is as follows:

8(91B) = o ¥ L 13)

ueH

where {(g ) [u] = BT[u], p[u] is a feature pixel. Since the feature transformation and translation have
a commutative law ¢7(,) = T(¢x), a single integral image can be used to obtain a histogram score,
which speeds up the calculation of the convolution operation.

(2) The score function is the response score function, so that the CN score function is:
fen(x) =9 = F 1 (A®@ F(k(z;}, %)) (14)

(3) The key step of the feature fusion strategy is how to adaptively obtain the weight coefficients ycn
and Ypigt- In the course of the experiment, we found that the color histogram feature weight score
was relatively large in any scene. Directly performing the dual color feature fusion to obtain the
tracking method is very sensitive to the color attribute, which easily leads to a failure in target
tracking. In order to solve this problem, we introduce a suppression term, y to the response of
the histogram feature to obtain the final color histogram weight coefficient.

The process of acquiring the adaptive weight coefficient is as follows. Let us 0cn = max(fen(x))
make and 0ji; = max( fhist(¥)), then yen and ypisr can be expressed as:

1—o0
Yn = % (15a)
V Ocn” + Ohist
1 — Chist (15b)

Yhist = H
V Ucrlz + U'histz

Here, y = % after obtaining the adaptive weight coefficient, and we can determine the final dual
color feature response score by Equation (8) and find the maximum response score of the double-color
feature to determine the target position of the next frame.

3.4. Scale Reduction

3.4.1. Principal Component Analysis

PCA is a kind of multivariate statistical analysis method based on multidimensional orthogonal
linear transformation which is often used to reduce the dimensionality of data and feature extraction of
signals [29-31]. Its essence is to analyze the main influencing factors from multivariate terms. To reveal
the essence of things and simplify complex problems, the projection method that best represents the
original data in the sense of the least mean square is found. This projection process is the process of
dimension reduction.

PCA is a statistical analysis method that is based on the principle of K-L transformation. After K-L
transformation, the sample space can be described by a small number of features. According to
the sample matrix X, the covariance matrix Q = XX T is calculated; then, the Q matrix eigenvalues
and eigenvectors are calculated, and the eigenvectors corresponding to the larger n eigenvalues are
taken to form the feature subspace W'. According to Y = WT X the sample X, the description can be



Sensors 2019, 19, 73 8 of 18

reduced from the original R-dimensional space to M-dimensional space (R >> M). After the dimension
reduction, the main information of the sample is retained, and the data amount is well obtained.
The specific model of compression is as follows:

Given a data set sample point set X = {x1, x2, ..., X, }, in that data set, there are n sample points
and each sample point contain p indicators, i.e., x; € RP,i =1,2,...,n, then:

X1 X2 ... X1p
X21 X2 . xzp

X=[x x ... xp]=] . . . (16)
Xpl X2 - Xnp

Principal component analysis is a linear combination of the original P indicators to obtain the
new p comprehensive indicators, namely:

yz-:wlix1+w2ix2+...+wpixp,i:1,2,...,;9 (17)

where x; and y; are N-dimensional. The coefficient w;; needs to satisfy the following three conditions
so that the random variable indicators obtained after the transformation are irrelevant with each other,
and the variances are successively decreased:

A. Yi,yj are not related, where (i # j,i,j=1,2,---,p);

B.  The variance of the variable y; is not less than the variance of v, and the variance of the variable
is gradually decreasing;

C.  From the above, a projection matrix of p x p can be obtained:

wi1+w%2+...+wip:1,k:1,2,...,p

w11 W12 . wlp
wWo1 W2 e wgp
W= | . . ) (18)
Wp1 Wpp ... Wpp
Thus, we obtain:
Y =[y,ya...,ypl = WX (19)

3.4.2. Scale Reduction Strategy

In this paper, the idea of the dimensional dimensionality reduction strategy is mainly derived
from fDSST [28]. The computational cost of DSST is dominated by the FFT. In the training and
detection steps, each feature dimension requires an FFT. In order to reduce the required number of FFT
computations, the dimension reduction strategy of PCA is used to reduce the number of dimensions
to 17.

Establishing a scale space CF, we obtain P; by minimizing the reconstruction error of the target
template y;, as shown in Equation (18). The projection matrix Py is d; x d, where d; is the dimensionality
of the compressed feature representation:

)

n

() — P Pra ()| (20)
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Equation (20) is minimized under the orthonormality constraint P! P; = I. A solution is obtained
by performing an eigenvalue decomposition of the autocorrelation matrix:

C = Zut(n)ut(n)T (21)

Using the same algorithm of the position filter Equation (1), the response output of the scale space
CF is obtained:

Y =F Y A®F(zX)) (22)

PCA dimension reduction technology, which can reduce high dimensions to low dimensions,
reduces redundant computation and improves the operation speed and accuracy. Therefore,
PCA dimension reduction technology was integrated into the Staple framework. The results of
the experiment (shown in Section 4) prove that scale reduction based on dual color fusion is better
than direct dual color fusion.

4. Experiment

4.1. Implementation Details

The experimental platform of this paper is shown in Table 1. In this paper, in addition to the fusion
of the characteristic response coefficient in the linear response phase of the characteristic response,
other parameter settings retained the same parameters as the original document in order to better
verify the effectiveness of the proposed method and avoid the innovation of the method proposed in
this paper due to the adjustment problem.

Table 1. Experimental environment.

System CPu Frequency System Type RAM Experimental Software
Windows 10 Intel i7-7700K 420 GHz 64 16.0 GB Matlab R2014a

4.2. Qualitative Analysis

In order to better verify the effectiveness of the proposed algorithm, the algorithm run on the
OTB-13 [32], and selected five challenging data sets for verification. These were used to compare
with current popular algorithms (Staple [21], DAT [16], CN [15], DSST [9]), as shown in Figure 3.
The selected image sequence set attributes are shown in Table 2.

Table 2. Experimental videos.

Video Number of Frames Main Challenges
Couple 1140 SV, DEF, OPR, IPR
Basketball 725 IV, DEF, OPR, IPR
Walking?2 500 OCC, SV
Deer 71 FM, MB
Singerl 351 1V, SV

IV—Illumination Variation; SV—Scale Variation;, OCC—Occlusion; FM—Fast Motion; OPR—OQut-of-Plane Rotation;
IPR—In-Plane Rotation; DEF—Deformation; MB—Motion Blur.

As shown in Figure 3, the algorithm was qualitatively compared with four CF-based tracking
algorithms (Staple, DAT, CN, DSST) in the five challenging data sets shown in Table 2. The tracking
results are analyzed as follows:
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(e) Singerl

CcDpS —— Staple ——— CN — DSST DAT ———

Figure 3. A comparison of our approach with the state-of-the-art trackers Staple, CN, DSST, and
DAT. The example frames are from the “Couple”, “Basketball”, “Walking2”, “Deer”, and “Singer1”

sequences, respectively. The results of Staple [21], CN [15], DSST [9], DAT [16], and our approach are
represented by green, blue, yellow, pink, and red boxes, respectively.

(1) Deformation: Figure 3a. The “Couple” sequence had a deformation in the process of motion.
From this sequence, CN and DSST were the earliest tracking failures, and then DAT and Staple
deviated from the target position. Tracking the target showed that the tracking method proposed
in this paper has the best tracking performance in the target deformation process, and Staple is
the second-best tracker.

(2)  Occlusion: Figure 3c. The target of the 195th frame in the “Walking2” sequence was obviously
occluded, and the DAT had a significant offset. At the 300th frame, the CN also drifted.
The proposed algorithm had better robustness.

(3) Fast motion, motion blur: A fast-moving situation is shown in Figure 3d, “Deer” sequence.
The target moved quickly during the tracking process. At the 15th frame, the DAT had deviated
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from the target position at the 25th and 35th frames. The target had moved and blurred. In the
figure, it was seen that Staple, CN, DSST, and DAT had large offsets. Only the algorithm did not
drift, which indicated that the algorithm had the best tracking performance under fast-moving
and moving-blur situations.

(4) Ilumination: Illumination changes were shown in the “Basketball” sequence (Figure 3b), and the
“Singerl” sequence (Figure 3e). During the tracking process, obvious illumination changes
occurred, and DAT found obvious drift. The results prove that the performance of the dual
color feature is greatly improved compared to the single color feature tracker in the illumination
change scenario.

(5) In-plane rotation and out-of-plane rotation: “Couple” sequence (Figure 3a) and “Basketball”
sequence (Figure 3b) produced internal and external rotation changes during the motion. From the
“Couple” sequence, it was seen that at the 30th frame the DSST tracker could not keep up. The
target, DAT, could not keep up with the 80th frame. At the 140th frame, only the algorithm
was left. From the “Basketball” sequence, it was seen that Staple and DAT were much cheaper,
and CN and DSST were also less expensive. The comparison results show that the proposed
algorithm performs better for internal and external rotation scenes.

4.3. Quantitative Analysis

In order to evaluate the performance of the target-tracking algorithm, two important evaluation
indicators—Distance Precision (DP) and Overlap Precision (OP)—were used Ref. [32]. The accuracy
DP was evaluated by the central position error, which was the Euclidean distance between the center
point of the real target frame and the center point of the target frame that was tracked and positioned.
The success rate OP was evaluated by the overlap accuracy. The overlap precision refers to the ratio
of the intersection of the tracked target frame area and the real target frame area to the union. In the
tracking process, if the center error value and the boundary overlap rate satisfied a certain threshold
(the DP threshold was usually set to 20, the OP set to 0.5) the tracking was successful.

4.3.1. Quantitative Analysis of Feature Comparison Experiments

In this paper, we refer to the proposed method that performed dual color fusion without PCA
as CNDAT. In CNDAT, the parameter y., is set to 0.8 and the ;4 is set to 0.2. Meanwhile, the
proposed algorithm based on the dual color fusion scale reduction was named CDPS. In the experiment,
we compared the simple color feature CN, the color histogram CH, the two-color fusion feature
CNDAT, and the final algorithm CDPS, on OTB-13 datasets. The comparison chart is shown in Figure 4.
It can be seen from this figure that CDPS performed the best, whether DP or OP were used. For DP
(Figure 4a), CDPS was 4.4% higher than CNDAT, 16.6% higher than CN, and 36.7% higher than CH;
for OP (Figure 4b), CDPS increased by 4.9% compared with CNDAT, and was 25.5% higher than
CN and 41.6% higher than CH. Experiments show that our algorithm was greatly improved in both
accuracy and success rate. There were two main reasons for this: first, the feature algorithm that
combines the two colors makes up for the lack of a single color feature; second, adding the dimension
reduction strategy to reduce the complexity of the algorithm can further improve the performance of
the algorithm.
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Figure 4. Feature comparison chart.

4.3.2. Comparative Analysis of Each Tracking Algorithm

In order to demonstrate the performance of our method, we plotted the experimental results
of different challenge attribute sequences on OTB-13, as shown in Tables 3 and 4. Tables 3 and 4
respectively show the accuracy and success rate of the four trackers Staple, DAT, CN, and DSST in
the qualitative analysis in Section 4.2, and the five data sets of the algorithm in Couple, Basketball,
Walking, Deer, and Singer1.

Table 3. Precision rates of the different methods.

Characteristic Staple [21] DAT [18] CN [15] DSST [9] CDPS
Mlumination 0.726 0.357 0.607 0.739 0.763
variation
In-plane rotation 0.747 0.427 0.624 0.618 0.810
Scale variation 0.725 0.403 0.556 0.721 0.728
Occlusion 0.735 0.387 0.571 0.698 0.746
Deformation 0.704 0.589 0.589 0.599 0.742
Out-of-plane rotation 0.723 0.395 0.619 0.697 0.726
Distance Precision 0.753 0.396 0.597 0.695 0.763

Table 4. Success rates of the different methods.

Characteristic Staple [21] DAT [18] CN [15] DSST [9] CDPS
Illumination variation 0.697 0.300 0.453 0.675 0.701
In-plane rotation 0.742 0.385 0.539 0.565 0.777
Scale variation 0.671 0.282 0.348 0.630 0.680
Occlusion 0.708 0.348 0.425 0.629 0.708
Deformation 0.692 0.448 0.432 0.556 0.717
Out-of-plane rotation 0.668 0.294 0.472 0.610 0.673
Overlap precision 0.714 0.309 0.470 0.636 0.725

The accuracy rate is obtained from the error between the true annotation value and the center
position of the measured value. It can be seen from Table 3 that the tracking method proposed in
this paper had the highest accuracy, especially in the cases of occlusion, illumination variation, target
external rotation variation, etc. The accuracy is high in the five datasets, which was obviously superior
to the comparison algorithm. It was seen that the algorithm was more stable in the above environments.
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The overlap rate is obtained from the truth box and the measurement frame through Table 4.
In the five data sets tested, the average accuracy of the tracking method proposed in this paper could
reach 0.7093, while the average overlap rates of Staple, DAT, CN, and DSST were 0.6963, 0.3428,
0.4448 and 0.6108, respectively. It can thus be seen that the proposed method has the best performance
compared with the other four tracking methods. Compared with the single color feature CN and CH
performances, the robustness and effectiveness of the proposed algorithm are proven.

4.3.3. Quantitative Analysis of the Dimensional Reduction of PCA Scale

In order to verify performance of the PCA Scale Dimension Reduction, in this experiment,
five datasets which are the most representative challenging attributes of scale variation (Trellis, Doll,
Dogl, Lemming, Liquor) were selected from the OTB-13 dataset. The real-time ability of the proposed
algorithm CDPS was compared with CNDAT (perform Dual Color Feature Fusion Strategy without
PCA scale reduction), and the state-of-the-art methods including Staple [21], DAT [18], CN [15],
DSST [9]. In Table 5, the average speeds (frame per second, fps) of algorithms running at datasets
are presented. It can be seen from Table 5, the CDPS is faster than the CNDAT, indicating that scale
reduction reduce the computational cost and improved the running speed; Compared with Staple,
DAT, and CN, running speed of the CDPS was lower, but it can still perform a real-time tracking.
Meanwhile, in terms of success rates and precision rates, the CDPS outperforms other tracker as shown
in Tables 3 and 4.

Table 5. Average speeds (frame per second) of the different tracking algorithms.

Staple [21] DAT [18] CN [15] DSST [9] CNDAT CDPS

Trellis 24.4318 33.7101 110.1833 21.2816 20.5840 21.4211
Doll 34.6974 31.6614 111.1300 21.5115 26.7379 27.6085
Dogl 44.2728 99.3431 220.2279 35.3933 34.9900 35.7940
Lemming 26.9557 27.2720 64.6727 12.3505 18.4105 24.0765
Liquor 22.4907 28.6155 35.9686 7.4456 20.9842 22.4102

Average 30.56968 44.1204 108.4365 19.5965 24.34132 26.13898

4.3.4. Overall Tracking Performance

Due to the complex scene, the effect of the object tracking algorithm was usually greatly related
to the datasets. In order to further prove the effectiveness of the proposed algorithm, extensive
experiments were performed on OTB-13 datasets; our method obtained the top rank in performance,
outperforming nine state-of-the-art trackers on OTB. Figure 5 shows a graph of the accuracy and
success rate of the algorithm and of the nine state-of-the-art trackers on different attribute sequences of
the OTB-13. It can be seen from Figure 5 that the algorithm achieved good tracking results on these
seven attributes, especially in the target deformation sequence, that the CDPS tracker in this paper
was 4% more accurate than Staple, and that the success rate increased by 2.5%. In the motion blur
sequence, the CDPS was 5.2% more accurate than Staple, and the success rate improved by 4.6%. In the
in-plane ration sequence, the tracker CDPS accuracy improved by 6.3% compared to Staple, and the
success rate increased by 3.5%. By analyzing the results in Figure 5, it can be seen that compared with
other tracking algorithms, the tracking method proposed in this paper reached the level of current
mainstream algorithms in terms of tracking performance.
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Figure 5. Attribute-based evaluation of precision and success plots comparing algorithms with
10 CF-based trackers over seven challenges of deformation: in-plane ration, scale variation, out-of-plane
ration, occlusion, motion blur, and illumination variation. The number of sequences for each attribute
is shown in brackets.

5. Conclusions

In this paper, based on the Correlation Filter framework, two different performance color features,
CN features and CH features, are merged. At the same time, the proposed feature response fusion
stage adopts the proposed adaptive feature fusion strategy considering the target scene. In order to
reduce the complexity and speed up the algorithm, PCA dimension reduction is added on the basis of
the original double color fusion. The performance of the proposed tracking algorithm is verified by the
OTB-13 public test set, and compared with the state-of-the-art tracking algorithms. The experimental
results show that the proposed algorithm performs best in both accuracy and robustness for most
complex scenarios, especially in the case of deformation and in-plane rotation. Although the algorithm
achieves good tracking results, due to the diversity and complexity of the target-tracking scene, further
research is still needed on the depth and breadth. Future research work can start from the following two
limitations: (1) The features of CN and CH are typical traditional hand-designed features. One of the
main shortcomings of these hand-designed features is that they cannot effectively capture the semantic
information of the target, and it is difficult for them to deal with complex scenes. These features have
certain limitations in terms of discriminability. While the depth feature is not good enough in real time,
it can extract better features. Therefore, the problem of how to effectively combine traditional features
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with deep features is worthy of further research; (2) In target tracking, when the target is completely
occluded for a long time, the robustness of the target is still not good enough. Therefore, the problem
of how to solve the long-term occlusion of targets also needs to be further researched.
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