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Abstract: Digital camera sensors are designed to record all incident light from a captured scene,
but they are unable to distinguish between the colour of the light source and the true colour of
objects. The resulting captured image exhibits a colour cast toward the colour of light source. This
paper presents a colour constancy algorithm for images of scenes lit by non-uniform light sources.
The proposed algorithm uses a histogram-based algorithm to determine the number of colour
regions. It then applies the K-means** algorithm on the input image, dividing the image into its
segments. The proposed algorithm computes the Normalized Average Absolute Difference (NAAD)
for each segment and uses it as a measure to determine if the segment has sufficient colour variations.
The initial colour constancy adjustment factors for each segment with sufficient colour variation is
calculated. The Colour Constancy Adjustment Weighting Factors (CCAWE) for each pixel of the image
are determined by fusing the CCAWFs of the segments, weighted by their normalized Euclidian
distance of the pixel from the center of the segments. Results show that the proposed method
outperforms the statistical techniques and its images exhibit significantly higher subjective quality
to those of the learning-based methods. In addition, the execution time of the proposed algorithm
is comparable to statistical-based techniques and is much lower than those of the state-of-the-art
learning-based methods.

Keywords: charge-coupled device sensor; colour constancy; multi-illuminants; k-means
segmentation; fusion

1. Introduction

Image sensors built into today’s digital cameras mostly use either the Charge Coupled Device
(CCD) or Complementary Metal-Oxide Semiconductor (CMOS) technology. Both CCD and CMOS
are semiconductor devices that serve as “electronic eyes”. While they both use photodiodes, they
differ in terms of manufacturing. A CCD sensor is an array of capacitors, each of which can store its
own electrical charge. Groups of capacitors on the CCD form pixels, which are charged using the
photoelectric effect. This happens when the capacitor converts an incident photon of light into an
electrical charge. When a circuit is connected to the pixels, the value of the charge is then numerically
measured and recorded in a computer file. After recording, the image can be displayed. Most CCD
sensors use a Bayer filtration pattern for their pixels; each pixel is covered with either a red, blue, or
green filter, which only allow light that is that colour to reach the capacitor. In this filtration pattern,
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there are twice as many green sensors as red or blue, because human eyes are more sensitive to green
than to other colours. Since it is known which sensor has which colour filter, the intensity of red, green,
and blue light can be determined anywhere on the CCD sensor [1]. The formed raw image using
the red, green and blue signals generates the 16 million colours of the RGB colour space. The same
principle is used in some other image sensors when they use a single-layer colour array [2].

CMOS sensors are much cheaper to produce than CCD sensors, as they are made of the same
semiconductor fabrication lines used in microprocessor and static RAM memory chips. Consequently,
they have largely replaced CCD sensors, which rely on more specialised fabrication methods.
Each photosensitive pixel within the CMOS sensor is comprised of a photodiode and three transistors.
One transistor is responsible for activating and resetting the pixel, the second amplifies and converts
the stored charge within the photodiode to voltage and the third performs selection and multiplexing.
The signals within each pixel are multiplexed by row and column to multiple on chip analog-to-digital
converters, resulting in a high-speed yet low-sensitivity image capture system. Furthermore, CMOS
sensors are susceptible to high fixed-pattern noise due to manufacturing flaws in the charge to voltage
conversion circuits. As a result of their multiplexing design, CMOS sensors are often paired with
electronic rolling shutters, although versions with additional transistors can be used in conjunction
with global shutters and simultaneous exposure. The low sensitivity of a CMOS sensor results in a
lower power consumption and the ability to handle higher light levels than a CCD sensor, resulting
in their use in special high dynamic range cameras [3]. CCD and CMOS sensors are susceptible to
different problems such as CCD sensors are more susceptible to vertical smear from bright light sources,
while CMOS sensors are susceptible to skewing, wobbling and partial exposure. Research has shown
that CCD and CMOS camera sensors are unable to recognise all colours within the scene [4].

Furthermore, digital camera sensors are designed to record all incident light from the scene but
they are unable to distinguish between the colour of the light source and the true colour of objects. This
results in the captured image exhibiting a colour cast, representing the colour of the light source [5-9].
Consequently, the colour constancy problem is underconstrained, and determining the true colour of
objects when the scene is illuminated by non-canonical light sources is a challenge, so digital cameras
use colour constancy adjustment techniques to estimate the true colour of objects [10-12]. The primary
aim of all colour constancy adjustment algorithms is to remove the colour cast from digital images
caused by the colour of scene illuminants [13-15] In this paper, existing colour constancy algorithms
are discussed and a method to address colour correction in images containing large uniform colour
areas and/or images of scenes illuminated by multiple light sources are presented, which produces
significantly higher colour constancy than in the existing state-of-the-art methods.

Related Work

Researchers have proposed various colour constancy adjustment methods to address the problem
of colour constancy in the presence of both single and multiple light sources in digital images [16—45].
The existing colour constancy techniques can be grouped into five categories: statistics-based,
gamut-based, physics-based, learning-based and biologically inspired methods. In this section,
the key colour constancy adjustment methods are discussed.

The Grey World [16], the Max-RGB [17] and the Shades of Grey [18] are the main statistical-based
colour constancy methods. These techniques are based on some assumptions on the statistics of the
image data, such as achromaticity. Van de Weijer et al. [19] proposed the Grey Edge hypothesis, which
assumes that the average edge difference of a scene’s image data is achromatic. The authors developed
a framework that unified the aforementioned methods, which is shown in Equation (1):
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where |-| indicates the Forbenius norm, c is the image colour component and ¢ = {R, G, B}, n is the order
of the derivative, p is the Minkowski-norm, and f., = f. X G, is the convolution of the image with a
Gaussian filter with scale parameter o.

Equation (1) can be used to represent different statistical colour constancy algorithms by using
various values of p. When p = 1, Equation (1) becomes the Grey World method, which assumes
the average value of all colour components within an image are achromatic. If p = oo, Equation (1)
represents the Max-RGB colour constancy algorithm, which assumes that the maximum values of the
image colour components are achromatic. By setting p to be equal to 6, Equation (1) becomes the Shades
of Gray algorithm, which is less data dependent than both the Gray World and White Patch colour
correction methods. Equation (1) can also represent higher order colour constancy methods, including
Grey Edge-1 and Grey Edge-2 by setting p =1, 0 = 1 and n =1 or 2, respectively. These two approaches
assume that derivatives of the image colour components are achromatic. The Weighted Grey Edge
method was proposed by Giseniji et al. in [20]. This colour correction technique is an extension of the
Grey Edge algorithm, which incorporates the general weighting scheme of the Grey Edge method as
well as the edge of the shadows within the image to achieve colour correction. A moment-based colour
balancing method, which uses several higher order moments of the colour features on a fixed 3 x 3
matrix transformation, was also introduced by Finlayson in [21].

Forsyth [22] introduced the gamut mapping method, which assumes that only a limited number
of colours can be observed for any given illuminant in real-world images. Gijsenij et al. [23] proposed
an extended version of gamut mapping by incorporating the differential nature of the image. The
authors have shown that the failure of the diagonal model of the gamut mapping framework can be
barred by adjusting the diagonal-offset model proposed in [24].

Several learning-based colour constancy adjustment methods have recently been reported in
the literature. The colour constancy problem as a 2D spatial localization task in a log-chrominance
space was formulated by Baron in [25]. Baron observed that scaling the image colour components
induces a translation in the log-chromaticity histogram of the image, allowing a colour constancy
adjustment to be performed using learning-based methods such as Convolutional Neural Network
(CNN). A light source estimation algorithm, which employs a CNN that contains one convolutional
layer, one fully connected layer and three output nodes was proposed by Bianco et al. in [26]. The
proposed CNN-based technique samples several non-overlapping patches from the input image and
then applies a histogram-stretching algorithm to neutralize the contrast of the image. It then fuses the
patch scores, which are obtained by extracting activation values of the last hidden layer to guess the
light source. They reported satisfactory performance of the algorithm on a specific raw image dataset.
An extension of this neural network-based colour correction method was introduced by Fourure et al.
in [27], which uses a mix-pooling method to determine the availability of accurate features to be
learned to perform colour correction. Another CNN-based method, which determines the number
of image scene illuminants using a Kernel Density Estimator (KDE) algorithm, was proposed in [28].
The proposed technique assigns local estimations to the density peaks to compute supports for local
regression and back-project the results to the original image based on a distance transform. Finally, the
estimated illuminants are refined by non-linear local aggregation to produce a universal estimate for
each scene illuminant. Qian et al. [29] proposed the recurrent colour constancy network (RCC-Net),
which consists of two parallel convolutional long-term temporal memory networks, to process the
original frame sequence and simulated spatial sequence to learn compositional representations in
space and time. This end-to-end RCC-Net is equipped with a simulated sequence module, which
boosts its performance for temporal colour constancy task.

To perform colour constancy for images of scenes illuminated by multiple light sources, researchers
have proposed techniques which estimate the local incident light based on the assumption that the
colour of the incident light of a mini region is uniform [30-33]. Riess et al. [30] have estimated the
source light for each mini region of superpixels using a graph-based algorithm. Their approach creates
an illuminant map that is coloured by the local estimates and merges areas with similar light colour
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together using the quick shift algorithm to obtain a new estimate for each region. In a comparable
work, Blier et al. have applied five state-of-the-art algorithms to estimate the local illuminant for
superpixels of areas of approximately similar colour [31]. They choose the best estimates based on the
error statistics and combine the estimates for per superpixel using a machine-learning-based regression
algorithm. Mazin et al. [34] proposed a technique to extract a set of gray pixels from the image to
estimate a set of possible light source for the pixels by using the Planckian locus of black-body radiators.
In [35], Bianco and Schettini proposed a method to estimate the colour of the light from human faces
within the image by using a scale-space histogram filtering method. Their algorithm performs well;
however, its application is limited to images that contain a clear visible human face. In [36], a 3D scene
geometry model was created by applying hard and soft segmentation methods to the input image. It
then links the statistical information of the different layers of the model to suitable colour constancy
techniques. A colour balancing technique was proposed in [37] that employs a diagonal 3 X 3 matrix
on the ground truth illuminant of a 24-colour patch, the method of which generates superior results
compared to other diagonal algorithms. Arguing the robustness of the abovementioned methods, a
user-guided colour correction method for multiple illuminants was proposed in [38].

A biologically inspired model for colour constancy was reported by Gao et al. [39] that exploits the
response of the Double Opponent cells in different channels and estimates the colour of the illuminant
by max or sum pooling mechanism in long, medium and short wavelength colour space. An improved
retinal-mechanism-based model was proposed by Zhang et al. [40]. The authors imitated the function
of Horizontal Cell (HC) modulation that provides global colour correction with cone-specific lateral
gain control. Akbarnia and Parraga [41] proposed a colour constancy model using two overlapping
asymmetric Gaussian kernels, where the contrast of the surrounding pixels is used to adjust the kernels’
sizes (approximating the change of visual neuron’s receptive field size). Finally, the outputs of the
most activated visual neuron’s receptive fields are used to estimate the colour of the light.

Yang et al. [42] proposed a grey pixel-based colour constancy method by using the
illuminant-invariant measure. Joze and Drew [43] showed that the texture feature of an image
is ideal candidate for illuminant estimation. Their approach took the weakly colour constant RGB
values from the texture to find the neighbour surface based on histogram matching from the training
data. Male et al. [44] employed an automatic human eyes detection method and extracted the scelera
pixels to estimate the scenes’ illuminant.

The aforementioned algorithms work reasonably well when the scene is illuminated by a uniform
light source and lacks large uniform colour areas within the image, but the performance of existing
algorithms deteriorates in the presence of large uniform colour areas and when the scene is illuminated
by multiple non-uniform light sources. This paper presents a colour constancy algorithm for images
of scenes lit by multiple non-uniform light sources (this paper is an extended version of a previous
paper [45]). The proposed algorithm first applies a histogram-based approach to determine the
number of segments that represent different colour variations of the image. The K-means™* clustering
method [46] is then used to divide the input image into this number of segments. The proposed method
then calculates the Normalized Average Absolute Difference (NAAD) of each resulting segment and
uses it as a criterion to discard segments of near-uniform colour, which could potentially bias the
colour-balanced image toward those colours. The initial colour constancy adjustment weighting factors
for each of the remaining segments are computed based on the assumption that the achromatic values
of the colour components of the segment are neutral. The colour constancy adjustment weighting
factors for each pixel are finally determined by fusing the colour constancy of all selected segments
adjusted by the normalized Euclidian distance of the pixel from the centroids of the selected segments.
Experimental results on the images of five benchmark standard image datasets show the merit of
the proposed algorithm over existing techniques. The rest of this paper is organized as follows: In
Section 2, the proposed algorithm is described, experimental results and their evaluation are given in
Sections 3 and 4 concludes the paper.
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2. Image Colour Constancy Adjustment by Fusion of Image Segments’ Initial Colour
Correction Factors

The proposed Colour Constancy Adjustment by Fusion of Image Segments’ initial colour
correction factors (CCAFIS) algorithm is divided into three steps: automatic image segmentation,
segment selection and calculation of initial colour constancy weighting factors for each segment and
calculation of the colour adjustment factors for each pixel. Each of these three steps is detailed in the
following sub-sections.

2.1. Automatic Image Segmentation

The proposed automatic image segmentation algorithm first converts the input RGB image
into a grey image. It then splits the coefficients within the resulting grey image into a histogram
with 256 bins. The resulting histogram is then filtered using the following Gaussian low-pass filter:
[ c1 ¢ ... Cg C7 C4 ... ] ], where c; to ¢y are equal to 0.0002, 0.0029, 0.0161, 0.0537,
0.1208, 0.1934 and 0.2256, respectively. The algorithm then counts the number of the local maxima
found in the smoothed histogram to determine the required number of the segments for the proposed
colour constancy algorithm. To do this, the minimum distance between two local maxima and the
minimum local maxima height were set to 0.05 and 0.001™ of the total number of image pixels,
respectively. These numbers were empirically found to be effective in finding the reasonable number
of segments when dealing with images of five different image datasets. The calculated number of
segments and the La*b* format of the input RGB image are then fed into a K-means** clustering
algorithm, which divides the input image pixels into several segments based on their colour properties.

2.2. Segments’ Selection and Calculation of Initial Colour Constancy Weighting Factors for each Segment

In this section, each of the resulting segments are processed independently to circumvent the
segments containing uniform areas and to calculate initial colour adjustment factors for each segment,
as follows:

The proposed technique first calculates the Normalized Average Absolute Difference (NAAD) of
pixels for each colour component of the segment using Equation (2):

- Z(| Fe(xy) - Fc |)

NAADc = { TxFc )

X, y € segment

where NAAD( is the Normalized Average Absolute Difference of the segments colour component
C, C € {R,G, B}, T is the total number of pixels in the segment, Fc(X,y) represents component C’s
coefficients of the segment at location x and y and F¢ is the average value of the component C of the
segment’s coefficients.

The resulting NAADc value is compared with an empirically pre-determined threshold value
for that colour component. The threshold values for the colour components R, G and B are named
TRr, Tg and Tg, respectively. If the calculated NAAD values of the three colour components of the
segment are greater than their respective threshold values, the segment represents a non-uniform
colour area. Hence, this segment is selected to contribute to the colour correction of the whole image
and a bit representing this segment within the Decision Vector (DV) is set. The proposed technique
then calculates the initial colour adjustment factors for the selected segment using the Grey World
algorithm [16], as written in Equation (3):

Smezm
ko = mean 3
C Scmeun ( )
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where k¢ is component C’s initial colour adjustment factor, Sy, is the average value of the segment’s
coefficients, and Sc,,,,, represents the average value of the segment’s component C’s coefficients, where
Ce (R, G, B}

In this research, the Grey World colour constancy method, which is one of the most effective and yet
computationally inexpensive techniques compared to other statistical colour constancy algorithms [2,3],
is used to compute the initial colour constancy weighting factors for segments. However, other
statistical colour constancy methods can be used.

2.3. Calculation of the Colour Adjustment Factors for each Pixel

In this section, the fusion of the initially calculated colour constancy adjustment factors for the
selected segments to calculate per pixel colour correction weighting factors is discussed. The algorithm
is then fed the calculated initial colour constancy adjustment factors of the selected segments, the
gravitational centroid of each selected segment’s pixels and the Decision Vector (DV). The proposed
algorithm calculates the Euclidian distance of each pixel from the centers of the selected segments and
uses them to regulate initially calculated colour adjustment factors to determine per pixel weighting
factors using Equation (4):

_ d
Cdi+dy 4+ dy

dp

+ i
di+dy+---+dy

A A A

kci (kc1) (kc2) + - (ken) (4
where k¢; is the colour constancy adjustment factor for component C of the pixel i, C € {R, G, B}, d;,
dy, ..., and d, are the Euclidian distance of the pixel i from the centroid of the segments 1, 2, ...,
n, respectively.

This balances the effect of colours of different light sources on the colour of each pixel. The
resulting weighting factors are used to colour balance the input image using The Von-Kries Diagonal

model [47], as shown in Equation (5):

Kri O 0 IRri
I i=| 0 Kg O Igi 5)
0 0 Kg; Ip;

where [, ; is the colour balanced pixel i, Kg;, Kg;, Kp; are the calculated weighting factors for pixel i
and Ig;, Ig;, Ip; are the R, G and B colour components of the pixel i of the input image.

3. Experimental Results and Evaluation

In this section, the performance of the proposed Colour Constancy Adjustment by Fusion of Image
Segments’ initial colour correction factors (CCAFIS) is assessed on five benchmark image datasets,
namely: Multiple Light Source (MLS) [32], The Multiple Illuminant and Multiple Object (MIMO) [33],
The Colour Checker [48], Grey Ball [49] and the UPenn Natural image dataset [50]. The Evaluation
procedures are discussed in Section 3.1, an example of image segmentation and segment selection is
given in Section 3.2 and the experimental results are discussed in Section 3.3.

3.1. Evaluation Procedure

The performance of the colour constancy algorithms are generally assessed both objectively and
subjectively. The angular error, also known as the recovery angular error, is an objective criterion that
is widely used to assess the colour constancy of the images which measures the distance between the
colour-corrected image and its ground truth [51]. A lower resulting mean or median angular error
of the images of an algorithm indicates that the algorithm’s performance is superior. The recovery
angular error of an image can be calculated using Equation (6):

_ e.é
d@(recovery) = COs 1(||€|| “éH) (6)
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where e.é shows the dot product of the ground-truth and the colour-corrected image vectors, respectively,
and ||.|| is the Euclidian norm of the vector.

Recently, Finlayson et al. [52] have critiqued the application of the (recovery) angular error
measure based on the argument that it produces different results for identical scenes viewed under
different colour light sources. They proposed an improved version of the recovery angular error
measure, called the reproduction angular error, which is defined as the angle between the image RGB
of a white surface when the actual and estimated illuminations are ‘divided out’. The reproduction
angular error metric can be calculated using Equation (7):

—1f (lle/éll
dQ(reproduction) = Cos 1(%&]) (7)

where w = ’3‘?—5 is the true colour of the white reference.

Both recovery and reproduction angular error have been used to assess the objective quality of
the colour-corrected image by computing the average of the mean or median recovery/reproduction
angular errors of different methods on a large set of colour-corrected images and using them for
comparison purpose. The images of the method that have the lowest average of the mean or median
recovery/reproduction angular errors have the highest colour constancy.

Because human eyes are the final judge for assessing the colour constancy of images, a subjective
evaluation is generally considered to be the most reliable assessment method when evaluating colour
constancy algorithms. Mean Opinion Score (MOS) is a popular subjective evaluation method that is
widely used to compare the visual quality of the images. To determine the MOS for images subjected
to different colour constancy adjustment methods, a set of images of different scenes containing diverse
backgrounds, foregrounds, objects and a range of colour variations that are taken under various
lighting conditions is first chosen. These images are then colour-corrected using different colour
balancing techniques. The resulting images are shown to observers who score the images based on
their colour constancy (the same laptop was used to present the images to all observers). The MOS of
each method finally calculated by computing the average score of its images.

Objective criteria are widely used to assess the performance of different colour constancy techniques
due to their simplicity. However, there is significant debate on the merit of objective measurements
and their relation to subjective assessment. Some researchers have argued that objective measurements
may not always be in agreement with the subjective quality of the image [53,54]. Consequently, in this
paper, both subjective and objective assessment methods have been used to assess the performance of
the colour constancy algorithms.

3.2. Example of Image Segmentation and Segment Selection

To visualize the effectiveness of the proposed method in dividing the image into several segments
and identifying segments with uniform colour areas, a sample image from the UPenn images dataset [50]
is taken and processed by the proposed method. Figure 1a shows the input image and Figure 1b—e show
its resulting four segments, with the pixels excluded from each segment coloured black. From Figure 1,
it is obvious that Figure 1d represents the segment with uniform colour areas.

The Normalized Average Absolute Differences (NAAD) of the three colour components of the
segments of the image shown in Figure 1 have been calculated using Equation (2) and tabulated in
Table 1. From this table, it is clear that the calculated NAAD values for the three colour components of
segment 3 (highlighted with a green border), which represents the uniform colour area of the image, are
below the empirically determined thresholds” values. As a pre-processing step, extensive experiments
were performed using the benchmark image dataset to empirically determine the threshold values.
The results showed that a threshold value of 0.01 for the T, Tg and Tp components can efficiently
eliminate segments with uniform areas [55]. Hence, the proposed technique will exclude this segment’s
coefficients from contributing into the colour correction of the whole image.
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Figure 1. A sample image from the UPenn dataset [49] and its four resulting segments: (a) original
image, (b—e) segment 1-4.

Table 1. Normalised Average Absolute Difference (NAAD) values of different colour components of
the image segments.

A ];gments Segrlnent Seglznent Segment3 | Segment 4
Rnaap 0.37 0.49 0.04 0.26
GNaDD 0.39 0.28 0.02 0.32
Bnapp 0.39 0.40 0.02 0.35

3.3. Experimental Results

In the next two sub-sections, subjective and objective results for the proposed method will
be presented.

3.3.1. Subjective Result

To demonstrate the subjective performance of the proposed Colour Constancy Adjustment by
Fusion of Image Segments’ initial colour correction factors (CCAFIS) method and to compare the
quality of its colour-corrected images with those of the state of the art colour constancy techniques,
two sample images from the Colour Checker and the Upenn Natural Image benchmark image datasets
are selected and colour-balanced using different colour correction methods. Figure 2 shows a sample
image from the Colour Checker image dataset, its corresponding ground truth and its colour-balanced
images using the Weighted Grey Edge [20], Corrected Moment [21], Cheng et al. [38] and the proposed
CCAFIS techniques. The resulting images have been linearly gamma-corrected to improve their visual
qualities. From Figure 2a, it can be seen that the input image has a significant green colour cast and the
scene is illuminated by multiple indoor and outdoor light sources. Figure 2b shows the ground truth
of the image. Figure 2c shows the Weighted Grey Edge method’s image, which demonstrates a slightly
lower green colour cast than the input image. Figure 2d illustrates the Corrected Moment’s image,
which exhibits a yellow to orange colour cast. Cheng et al.’s method’s image is shown in Figure 2e.
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This image suffers from the presence of a deep yellow-orange colour cast. The proposed CCAFIS
method’s image, shown in Figure 2f, exhibits high colour constancy and appears to have the closest
colour constancy to that of the ground truth image. The recovery angular error of the images are also
shown on the images; from these figures it can be seen that the recovery angular error of the proposed
method’s image is the lowest among all other methods. This implies that the objective qualities of the
images are consistent with their subjective qualities.

Figure 2. Original, ground truth and its colour-balanced images using different colour correction
methods: (a) Original image from the Colour Checker dataset [48], (b) Ground truth image, (c) Weighted
Grey Edge, (d) Corrected Moment, (e) Cheng et al. and (f) Proposed CCAFIS” methods’ images.

Figure 3 shows a sample image from the UPenn dataset [49], its ground truth and colour-balanced
images using the Max-RGB, Shades of Grey, Grey Edge-1, Grey Edge-2, Weighted Grey Edge and the
proposed CCAFIS’ methods’ images. From Figure 3a, it can be noted that the input image exhibits a
yellow colour cast. The tree’s green leaves and the colour chart exhibit yellow colour cast. Figure 3b is
its ground truth image. Figure 3c shows the Max-RGB method’s image. From this image, it can be
seen that the image has a slightly higher yellow colour cast than its original input image. The Shades
of Grey method’s image is shown in Figure 3d. This figure demonstrates significantly higher yellow
colour cast than the original image, particularly on the tree’s green leaves area of the image. Figure 3e
is the Grey Edge-1 method’s image. This image also suffers from an increased colour cast on the tree’s
green leaves and the colour chart areas of the image. The Grey Edge-method’s image is shown in
Figure 3f. This image demonstrates a slightly higher colour constancy than its original image. The tree
and the deciduous plants on the left side of the image have a slightly lower colour cast than the original
image. The Weighted Grey Edge method’s image is illustrated in Figure 3g. This image is appeared to
be very alike to that of the Grey Edge-1 method’s image, shown in Figure 3e.
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® . (b)

Figure 3. Original, ground truth and its colour-balanced images using different colour correction
methods: (a) Original image from the UPenn Natural Image dataset [50], (b) Ground truth, (c) Max-RGB,
(d) Shades of Grey, (e) Grey Edge-1, (f) Grey Edge-2, (g) Weighted Grey Edge and (h) Proposed CCAFIS’
methods’ images.

Figure 4 illustrates a sample image from the Gray Ball dataset with a yellow colour cast, its
respective ground truth image and its colour-balanced images using Edge-based gamut [23], Grey
pixel [42], RCC-Net [29], and the proposed CCAFIS methods’ images. From Figure 4c, it can be seen
that the Gamut-based method exhibits a high level of red colour casts. Figure 4d and 4e are the images
of the Grey Pixel and the RCC-Net methods, respectively. These images demonstrate an improved
colour balance to that of the input image. However, the images have still some levels of yellow colour
cast. The proposed CCAFIS method’s image (Figure 4f) appears to be a shot under canonical light as
the presence of the source illuminant is significantly reduced. Moreover, the median recovery angular
error of the proposed technique’s image is the lowest among all other techniques’ images, which means
the proposed technique’s image has the highest objective colour constancy.
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Figure 4. Original, ground truth and its colour-balanced images using different colour correction
methods: (a) Original image from the Grey Ball dataset [49], (b) Ground truth, (c) Edge-based-gamut,
(d) Grey Pixel, (e) RCC-Net, (f) Proposed CCAFIS" methods’ images.

Figure 5 illustrates a sample image from the Gray Ball image dataset [49], which has a yellow colour
cast, and its colour-balanced images using the Edge-based gamut [23], Grey pixel [42], RCC-Net [29]
and the proposed CCAFIS methods’ images. From Figure 5c, it can be seen that the Gamut-based
method’s image exhibits both blue and reddish colour cast. However, this image exhibits lower colour
constancy to those of the Grey pixel and the RCC-Net techniques” images, shown in Figure 5d and 5e,
respectively. Nevertheless, the images of all these three techniques still have visible yellow colour
cast. The proposed CCAFIS method’s image (Figure 5f) appears as if being taken under a white
illuminant. The recovery angular errors of the images are also calculated and displayed on the images.
By comparing the images’ recovery angular error, it can be seen that the proposed method’s image has
the lowest recovery angular error, which means it exhibits the highest objective colour quality to other
techniques images.

To give the reader a better understanding in the performance of the proposed CCAFIS method
on images of scenes with spatially varying illuminant distribution, an image from the MLS image
dataset [32] that represents a scene lit by spatially varying illumination is taken and colour corrected
using the proposed technique, Grey Edge-2, Weighted Grey Edge and Gisenji et al. The original image,
its ground truth and the resulting colour-corrected images using the proposed CCAFIS and other
techniques are shown in Figure 6. From this figure, it can be noted that the proposed technique’s
image exhibits the highest colour constancy. In addition, it has the lowest median angular error among
all other techniques’ images, which implies that the proposed technique’s image has the highest
objective quality.
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3.0°

(e)

Figure 5. Original, ground truth and its colour-balanced images using different colour correction
methods: (a) Original image from the Grey Ball dataset [49], (b) Ground truth, (c) Edge-based-gamut,
(d) Grey Pixel, (e) RCC-Net, (f) Proposed CCAFIS" methods’ images.

(e) ®

Figure 6. Original, ground truth and its colour-balanced images using different colour correction
methods: (a) Original image from the MLS dataset [32], (b) Ground truth image, (c) Grey Edge-2,
(d) Weighted Grey Edge, (e) Gisenji et al. and (f) Proposed CCAFIS methods’” images.
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To generate the Mean Opinion Score (MOS) for the images of the proposed and the state-of-the-art
colour constancy methods, a set of images from the Grey Ball, the Colour Checker and the MIMO
image datasets, which contain images of scenes lit by either single or multiple light sources, was
chosen. The selected images were colour-corrected using the proposed CCAFIS method, as well as
other state-of-the art techniques including the multiple illuminant methods such as: Gijsenij et al. [32],
MIREF [33] and Cheng et al. [38]. Ten independent observers subjectively evaluated the resulting
colour-balanced images. The viewers scored the colour constancy of each image from 1 to 5, where
higher numbers correspond to increased colour constancy. The average MOS of different methods’
images were then calculated and tabulated in Table 2. From Table 2, it can be noted that the proposed
method’s images have the highest average MOS when compared to the other techniques” images. This
implies that the proposed method’s images have the uppermost subjective colour constancy.

Table 2. Mean Opinion Score (MOS) of the proposed and the state-of-the-art techniques.

Dataset (Number of Method
Images) WGE Gisenji et al. MIRF Cheng et al. Proposed CCAFIS
MLS (9 outdoor) 3.25 4.20 4.04 3.69 4.22
MIMO (78) 3.71 3.80 4.18 4.12 4.24
Grey Ball (200) 4.00 3.25 3.88 3.94 4.36
Colour Checker (100) 3.80 3.76 391 3.79 4.29
UPenn (57) 3.92 3.85 4.09 3.94 4.12

3.3.2. Objective Result

To evaluate the objective performance of the proposed method, Grey world [16], Max-RGB [17],
Grey Edge-1[19], Grey Edge-2 [19], Gijsenij et al. [32], MIRF [33], ASM [41], Grey Pixel [42], Exemplar [43]
and CNN+SVR [28] methods were used to colour balance the images of the MIMO [33], the Grey
Ball [49] and the Colour Checker [48] image datasets, as well as 9 outdoor images of the Multiple light
sources image dataset [32]. The average mean and median of both recovery and reproduction angular
errors of the colour-balanced images of the Grey Ball and the Colour Checker dataset are tabulated in
Tables 3 and 4, respectively.

Table 3. Average mean and median recovery and reproduction angular errors of colour constancy
methods’ images of the Grey Ball dataset.

Method Recovery Error Reproduction Error
Mean Median Mean Median
Statistics-based methods
Gray World 7.1° 7.0° 10.1° 7.5°
Max-RGB 6.8° 5.3° 9.7° 7.5°
Shades of Gray 6.1° 5.3° 6.9° 3.9°
Gray Edge-1 5.1° 4.7° 6.3° 3.6°
Gray Edge-2 6.1° 4.1° 5.8° 3.6°
Proposed CCAFIS 3.9° 4.0° 41° 2.6°
Learning-based methods
Exemplar-based 4.4° 3.4° 4.8° 3.7°
Gray Pixel (std) 4.6° 6.2° - -
Deep Learning 4.8° 3.7° - -
Natural Image Statistics 5.2° 3.9° 5.5° 4.3°
Spectral Statistics 10.3° 8.9° - -

ASM 4.7° 3.8° 5.2° 2.3°
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From Table 3, the proposed technique’s images have the lowest average mean and median
recovery and reproduction angular errors among all the statistics-based colour constancy methods,
implying that the proposed technique outperforms statistics- and gamut-based techniques with respect
to objective colour constancy (the mean and the median angular errors of the Deep Learning, Natural
Image Statistics and Spectral Statistics were taken from [41]). When compared to the learning-based
methods, the proposed technique’s average median angular error equals 4.0°, which is slightly higher
than that of the learning-based methods. The proposed algorithm’s median reproduction angular error
is 2.6°, which is the lowest among all techniques apart from ASM with a median angular error of 2.3°.
This demonstrates that the proposed method produces very competitive objective results compared to
those of the learning-based methods.

Table 4. Average mean and median recovery angular errors of colour constancy methods’ images of
the colour checker dataset.

Method Recovery Error Reproduction Error
Mean Median Mean Median
Statistics-based methods
Gray World 9.8° 7.4° 7.0° 6.8°
Max-RGB 8.1° 6.0° 8.1° 6.5°
Shades of Gray 7.0° 5.3° 5.8° 4.4°
Gray Edge-1 5.2° 5.5° 6.4° 4.9°
Gray Edge-2 7.0° 5.0° 6.0° 4.8°
Proposed CCAFIS 3.9° 2.7° 4.3° 2.9°
Learning-based methods
Exemplar-based 2.9° 2.3° 3.4° 2.6°
Gray Pixel (std) 3.2° 47° - -
ASM 3.8° 2.4° 4.9° 3.0°
AAC 2.9° 3.4° - -
HLVI BU 2.5°. 3.3° - -
HLVIBU & TD 2.4° 3.3° - -
CCDL 2.3° 3.1° - -
EB 2.2° 2.7° - -
BDP 2.1° 3.5° - -
M 2.0° 2.8° - -
FB+GM 2.0° 3.6° - -
PCL 1.6° 2.5° - -
SE 1.6° 2.4° - -
CCp 1.4° 2.1° - -
CCccC 1.2° 1.9° - -
AlexNet+SVR 3.0° 4.7° - -
CNN-Per patch 2.6° 3.6° - -
CNN average—pooling 2.4° 3.1° - -
CNN median-pooling 2.3° 3.0° - -
CNN fine-tuned 1.9° 2.6° - -
CNN + SVR 2.3° 1.4° - -

According to Table 4, the proposed CCAFIS technique’s images have the lowest average mean
and median recovery and reproduction angular errors among all the statistics-based colour constancy
methods, which implies that the proposed technique outperforms statistics- and gamut-based
techniques with respect to objective colour constancy. With respect to the learning-based methods, the
proposed technique’s average median angular error equals 2.7°, which is slightly higher than some
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of the learning-based methods (the mean and the median angular error of the AAC, HLVIBU, HLVI
BU & TD, CCDL, EB, BDP, CM, FB+GM, PCL, SF, CCP, CCC, AlexNet + SVR, CNN-Per patch, CNN
average-pooling, CNN median-pooling and CNN fine-tuned methods have been taken from [28]).
The proposed algorithm’s median reproduction angular error is 2.9°, which is the lowest among all
techniques except the Exemplar-based method with a median angular error of 2.6°. This demonstrates
that the proposed method produces very competitive objective results compared to those of the
learning-based methods.

The average mean and median recovery angular errors of the colour-balanced images from the
MIMO image dataset for different techniques were computed and tabulated in Table 5 and the median
angular errors for 9 outdoor image of multiple light source dataset for different algorithms were
determined and tabulated in Table 6.

Table 5. Mean and median recovery angular error of various methods on images of the MIMO dataset.

Method MIMO (real) MIMO (lab)
Mean Median Mean Median
Statistical methods
Grey world 4.2° 5.2° 3.2° 2.9°
Max-RGB 5.6° 6.8° 7.8° 7.6°
Grey Edge-1 3.9° 5.3° 3.1° 2.8°
Grey Edge-2 4.7° 6.0° 3.2° 2.9°
MIRF 4.1° 3.3° 2.6° 2.6°
Grey Pixel 5.7° 3.2° 2.5° 3.1°
Proposed CCAFIS 4.2° 4.3° 2.1° 2.7°
Learning-based methods
MLS + GW 4.4° 4.3° 6.4° 5.9°
MLS + WP 4.2° 3.8° 5.1° 4.2°
MIRF + GW 3.1° 2.8° 3.1° 2.8°
MIRF + WP 4.1° 3.3° 3.0° 2.8°
MIRF + IEbV 5.6° 4.3° 4.5° 3.0°

From Table 5, it can be seen that the proposed CCAFIS method’s mean recovery angular error for
real world images of the MIMO dataset is 4.2°. Please note that the mean and the median recovery
angular error for the MLS + GW, MLS + WP, MIRF + GW, MIRF + WP and MIsRF + IEbV methods
have been taken from [28]. This is the same as the Grey World’s and MLS + GW mean recovery angular
error and slightly higher than that of the MIRF methods, which produced images having the smallest
mean angular error of 4.1°. The median recovery angular error of the proposed CCAFIS method is
4.3°, which is the lowest among all of the statistics-based methods. For the laboratory images, the
proposed CCAFIS method’s mean recovery angular error is 2.1° and the median recovery angular is
2.7°, which are the lowest recovery angular errors compared to all other methods. This implies that the
proposed CCAFIS method has the highest objective performance when dealing with lab images of
MIMO dataset.

Table 6. Median recovery angular errors for 9 outdoor images of the multiple light source dataset.

Method Median Error
Max-RGB 7.8°
Grey World 8.9°
Grey Edge-1 6.4°
Grey Edge-2 5.0°
Gisenyji et al. 5.1°

Proposed CCAFIS 2.6°
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From Table 6, it can be noted that the proposed CCAFIS method’s images exhibit the lowest
median recovery angular error among all statistical and the state of art techniques. This implies that
the proposed CCAFIS method outperforms other methods in adjusting the colour constancy of the
images taken from scenes illuminated by multiple light sources.

4. Execution Time

To enable the reader to compare the execution time of the proposed Colour Constancy Adjustment
by Fusion of Image Segments’ initial colour correction factors (CCAFIS) algorithm with both
statistical-based and learning-based state of the art colour constancy techniques, the proposed method,
Gray World, Max-RGB (White Patch), Gray Edge-1, Gray Edge-2, Exemplar-based [43], Gray Pixel
(std) [42] and ASM [41] algorithms were implemented in MATLAB. They were then run on the same
Microsoft Windows 10 based personal computer, running on Intel® Core (TM) i3-6006U CPU with
a 1.99 GHz processor, 4.00 GB of RAM, and without any additional dedicated graphic processing
unit. These methods were timed when applied to colour balance the first 100 images of the Colour
Checker benchmark image dataset. For the learning-based techniques, the second 100 images from
the Colour Checker benchmark image dataset were used for training. The cumulative execution
time for testing the proposed CCAFIS, statistical-based and learning-based methods were measured
and tabulated in Table 7. From Table 7, it can be seen that the proposed CCAFIS technique requires
slightly more execution time to colour balance the images in comparison to other statistical-based
methods. This is consistent with the fact that the proposed technique calculates colour adjustment
factors for each pixel of the input image separately. Moreover, this is the price for achieving higher
colour constancy in the presence of large uniform colour patches within the image and when the scene
is illuminated by multiple non-uniform light sources. However, the proposed method demonstrates
very competitive colour correction at a significantly lower computation time when compared to the
learning-based state of the art techniques. In summary, it can be concluded that the proposed CCAFIS
algorithm provides significantly higher performance to those of statistical-based colour constancy
adjustment techniques at slightly higher computational cost, while generating very competitive results
that are comparable to those of the state-of-the-art learning-based methods, but at a hugely lower
computational cost. In addition, the proposed CCAFIS technique is data independent and produces
accurate results without prior knowledge of the image dataset, unlike the learning-based algorithms,
which achieve high performance when dealing with the images of the dataset that was used for training.
The performance of the learning-based techniques usually deteriorates when used for cross-dataset
image testing.

Table 7. Cumulative execution time for the first 100 images of the Colour Checker benchmark
image dataset for the proposed CCAFIS, statistical-based and learning-based colour constancy
adjustment techniques.

Method Time (s)
Statistics-Based Methods
Gray World 2.01
Max-RGB (White Patch) 2.21
Gray Edge-1 23.67
Gray Edge-2 24.21
Proposed CCAFIS 26.37
Learning-Nased Methods
Exemplar-based 2827
Gray Pixel (std) 1165

ASM 2500
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5. Conclusions

This paper presented a colour constancy algorithm for non-uniformly lit scenes’ images.
The algorithm uses the K-means** clustering algorithm along with a histogram-based method to
divide the input image into several segments with similar colour variations. The Normalized Average
Absolute Difference (NAAD) of the resulting segments are then calculated and used as a measure to
identify segments with uniform colour areas. These segments are then excluded from the calculation
of colour constancy adjustment factors for the whole image. The initial colour constancy-weighting
factor for each of the remaining segments is then calculated using the Grey World method. The colour
constancy adjustment factors for each pixel is finally computed by fusing the initial colour constancy
of the remaining segments, regulated by the Euclidian distances of the pixel from the centroids of all
remaining segments. Experimental results on both single and multiple illuminant benchmark image
datasets showed that the proposed method gives a significantly higher performance to those of the
state-of-the-art statistical-based techniques. Furthermore, the proposed techniques gave higher or very
competitive results to those of learning-based techniques at a fraction of the computational cost.
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