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Abstract: Georeferencing is an indispensable necessity regarding operating with kinematic
multi-sensor systems (MSS) in various indoor and outdoor areas. Information from object space
combined with various types of prior information (e.g., geometrical constraints) are beneficial
especially in challenging environments where common solutions for pose estimation (e.g., global
navigation satellite system or external tracking by a total station) are inapplicable, unreliable or
inaccurate. Consequently, an iterated extended Kalman filter is used and a general georeferencing
approach by means of recursive state estimation is introduced. This approach is open to several types
of observation inputs and can deal with (non)linear systems and measurement models. The capability
of using both explicit and implicit formulations of the relation between states and observations,
and the consideration of (non)linear equality and inequality state constraints is a special feature.
The framework presented is evaluated by an indoor kinematic MSS based on a terrestrial laser scanner.
The focus here is on the impact of several different combinations of applied state constraints and the
dependencies of two classes of inertial measurement units (IMU). The results presented are based on
real measurement data combined with simulated IMU measurements.

Keywords: georeferencing; kinematic multi-sensor system; implicit model; iterated extended Kalman
filter; inequality state constraints; probability density function truncation

1. Introduction

Multi-sensor systems (MSS) are greatly used nowadays in geodesy to capture an environment for
various applications. Georeferencing is required in most cases for these data to be applicable. In simple
and straightforward words, georeferencing is to derive the position and orientation of a platform with
respect to a superordinate coordinate system. Therefore, in a static case, georeferencing would mean
to derive six pose parameters (three translations and three rotations), whereas for kinematic platforms,
the six degrees of freedom (DOF) should be calculated separately for each time epoch [1]. In general,
there is no need to consider a scale factor as additional DOF, as long as sensors (e.g., laser scanner) of
the MSS are consistent with each other during data acquisition. If there is a necessity, extension to a
three-dimensional (3D) similarity transformation can be applied [2].

This indispensable necessity of precise and accurate pose parameters is a frequent challenge
for outdoor and indoor mapping applications. Depending on respective complex or challenging
environments common methods for georeferencing might fail, are unreliable or are at least inaccurate.
The main reasons for this are missing or inaccurate observations from a global navigation satellite
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system (GNSS) within indoor spaces or inner-city environments caused by shadowing or multipath
effects. In addition, further methods (e.g., visual odometry) and sensors (e.g., inertial measurement unit
(IMU)) have to deal with significant drifts in pose estimation [1,3–5]. In order to improve georeferencing
for such challenging circumstances, a Kalman filter-based approach is extended and validated by
means of a laser scanner-based kinematic MSS within this paper. As a novelty, arbitrary explicit and
implicit measurement equations as well as nonlinear equality and inequality state constraints can
be applied.

1.1. Georeferencing of Kinematic Multi-Sensor Systems

Georeferencing is generally realized through three different approaches, each of them deals
with various methods that are based on the sensors available and environmental conditions. These
approaches are called direct, indirect and data-driven georeferencing [2]. In direct georeferencing,
position and orientation of a measuring platform are derived directly from the sensors available on
board, such as a GNSS antenna [2], an IMU or an external sensor, such as a laser tracker [6] or a total
station [4]. However, this approach depends highly on the environmental circumstances (e.g., visibility
in complex indoor interior or absence of GNSS observations). In indirect georeferencing, observations
of other sensors available on the platform, such as laser scanners or cameras are taken into account.
In this approach, common environmental information (e.g., known control points for laser scanners by
means of artificial targets) which are captured both in the local sensors’ coordinate system and in a
superordinate coordinate system are linked together [7]. Approaches for data-driven georeferencing
require point cloud information which has already been georeferenced. This can be given by means of
3D city models, floor plans or other maps of the environment requested. Several arbitrary matching
algorithms can be applied to get the position and orientation of an MSS which is acquiring point
cloud data regarding models or maps mentioned. Uncertainty of the prior information affects the
final georeferencing solution significantly. Known approaches for this method generally rely on
iterative closest point (ICP) algorithms or rather on simultaneous localization and mapping (SLAM)
methods [5,8–11].

1.2. Kalman Filter Techniques for Georeferencing

Combinations of aforementioned approaches are also possible and advisable to increase the
accuracy and precision of the georeferencing of a kinematic MSS. This data fusion is commonly
covered within the system state of a filtering approach. Such recursive approaches enable possibilities
to handle big data, which come along with present and future multi-sensor technologies. Furthermore,
they are suitable for online applications and usually require less memory and computational effort
than batch algorithms that have been adapted for online georeferencing applications [12].

A Kalman filter (KF) is a well-known two-step procedure for this in which the next system state is
estimated based on the previous state information and recent observations subsequently. Therefore,
an iterative process is required by utilizing nonlinear measurement equations, which seem to be the
most logical choice in case of trajectories. Consequently, such a procedure is called iterated extended
Kalman filter (IEKF). A standard extended Kalman filter (EKF) can also handle nonlinear equations.
However, an IEKF with further iterations is more suitable in the case of high nonlinear functions
and will provide more accurate results using only small additional computational effort. Handling
with nonlinear equations can also be done by means of unscented transformation (UT) as part of the
unscented Kalman filter (UKF).

So far, in almost every research only explicit measurement equations are considered for such
filter approaches. This means that the observations are taken into account as a function of the state
parameters. Such a model is generally referred to a Gauss–Markov model (GMM). However, the use
of a Gauss–Helmert model (GHM), which gives the possibility to implicitly link the observations
to the state parameters, has also been studied by a few researchers [13–17]. Such a methodology
provides the opportunity to include all kinds of measurement equations into the filtering approach,
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regardless whether they are of an implicit or explicit nature. A basic algorithm for nonlinear implicit
measurement equations within an IEKF for extrinsic auto-calibration of a stereo rig is proposed
in [13,15]. The algorithm is used for the extrinsic auto-calibration of a stereo rig which has led to
satisfying results. Furthermore, a linear KF with respect to GHM is developed in [17] and applied for
orientation determination with smartphone sensors. However, both contributions do not consider
state constraints. In addition, the latter is based on a linear KF approach. In [14], implicit measurement
equations within a recursive estimation approach for Kalman filtering are referred to as implicit
constraints. Usage of implicit measurement equations in terms of an UKF does not exist at all.

1.3. Contribution

Except for [16], the approaches mentioned within Section 1.2 have neglecting additional state
constraints in common. Although, it is very useful to consider suitable environmental scene
information by means of equality or inequality state constraints. This possibility is frequently used and
evidenced in terms of well-known filter approaches with explicit formulations [2,18–20]. Horizontal
and vertical lines, parallel or perpendicular lines and different planes in a scene are examples of
such information which could be used as assigned geometric constraints during data analysis. In the
recent work by [16], an IEKF by means of implicit measurement equations and nonlinear equality
constraints is used for georeferencing of a simulated kinematic MSS. As a novelty, this approach is
extended by nonlinear inequality state constraints within this paper. This increases the possibilities to
apply any suitable geometrical prior information and to improve the georeferencing solution even in
such challenging environments mentioned. Fundamental applicability is shown by means of a real
kinematic MSS within an indoor environment and validated by highly accurate reference information.
Additionally, a more general overview of the filter approach is given within this paper to make the
approach independent from specific MSS, environments and prior information used.

1.4. Outline

The dedicated sections of this paper are as follows. An overview of the general georeferencing
approach by means of a recursive state estimation is introduced in Section 2. This algorithm proposed is
confirmed by being applied to a real data-set of an indoor environment that is captured by a kinematic
MSS equipped with a TLS and tracked by a laser tracker in Section 3. The paper ends with a discussion
of the results presented in Section 4 whereas Section 5 concludes this contribution.

2. General Georeferencing Approach by Means of Recursive State Estimation

A standardized estimation approach is indispensable to ensure an accurate, precise, reliable and
complete georeferencing solution of different arbitrary kinematic MSS. The drawbacks mentioned in
Section 1 could be eliminated only by providing a generally valid framework, which is applicable to as
many use cases and systems as possible. For this reason, a recursive state estimation approach, which
is compatible with various types of input data (e.g., requested states, available sensor observations
and additional prior information), is formulated in this paper. However, the basic structure and
equations used are with respect to [16]. The carefully selected information depends on each individual
application and its respective circumstances. However, they are combined and fused in a unified way
within the general valid framework to deliver optimal results. Necessary demands on the input data
can be divided into four interconnected questions:

• Which types of sensor observations (e.g., laser scanner, GNSS, IMU, total station) are available
and what are their accuracies?

• Which suitable and reliable prior information (e.g., geometrical circumstances, landmarks, maps)
are available?

• What is the mathematical relationship between all input data?
• What information about the physical model of the system is known?
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In theory, all possible input data should be considered. These input possibilities are restricted to
the most common ones for the sake of simplification and according to the current paper perspectives.
However, it should be noted that other types of input data are also possible and should be considered
based on the application. A schematic overview of the universal recursive filter approach for
georeferencing of a kinematic MSS together with corresponding relations between states, observations,
prior information and respective parts of an IEKF is illustrated in Figure 1. In addition to the input data
(states and observations) and prior information, sets of fundamental functions have to be formulated
and integrated into the process. An arbitrary system model will describe the physical behaviour
of the MSS between neighbouring epochs. Any model from the current state of the art can be
selected for this. Total neglection of the system model is also possible and will result in a sequential
adjustment approach. Formulation of a measurement model can happen in an implicit and/or explicit
manner. (Non)linear functions regarding the states can also be added by means of equality and/or
inequality formulations. Such state constraints can be integrated by means of several different methods
(e.g., pseudo observations, projection method, probability density function (PDF) truncation or soft
constraints). However, equality and inequality constraints have the crucial advantage of including
specific further information into the filter approach by means of clear values (in the case of equalities)
or thresholds (in the case of inequalities).

Figure 1. Schematic procedure of the universal recursive filter approach for georeferencing of a
kinematic multi-sensor systems (MSS). Steps of the iterated extended Kalman filter (IEKF) (grey) are
depicted with possible requested states (yellow), available observations (green) and known prior
information (blue). Respective uncertainty information are depicted by red target circles.

2.1. Iterated Extended Kalman Filter with Nonlinear Implicit Measurement Equation

The basic structure of the georeferencing approach applied is based on the IEKF, which was
published by [13] and enables the possibility of integrating implicit measurement equations (of type
h(l, x) = 0) within the recursive estimation process. This gives the possibility to consider inextricable
relationships between states x and observations l within the observation model. Only explicit
relationships (of type l = h(x)) are allowed within normal KF, which results in major restrictions.
As shown in Section 3, there is an important demand for implicit equations within the IEKF process in
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order to consider more challenging relationships. However, explicit measurement equations are still
possible to use but will be converted into l− h(x) = 0 to fulfil the implicit statement.

There are nonlinear measurement equations h(·) within the IEKF which provide a connection
between the observations measured and states requested. The physical behaviour of the MSS over
time is formulated within the nonlinear system model f (·) over all epochs k = 1, . . . , K theoretically:

h (lk + vk, xk) = 0, vk ∼ N (0, Σvv) (1)

xk = f (xk−1, uk−1, wk−1) , wk−1 ∼ N (0, Σww) . (2)

Here, u is the deterministic control by means of external controls. The variance-covariance matrix
(VCM) Σww of the system noise w and Σvv of the measurement noise v are normally distributed with
zero mean. Regarding our universal recursive filter approach, the IEKF is divided into a prediction step
using the system model, an update step making use of the measurement model and into a constrained
step for applying known prior information by means of linear Dxk and/or nonlinear g (xk) state
constraints. All three steps are described within [16] in detail and are summarized in Algorithm 1.

Algorithm 1: Iterated extended Kalman filter (IEKF) with nonlinear implicit measurement
equation and nonlinear equality state constraints.

1 System model xk = f (xk−1, uk−1, wk−1) , wk−1 ∼ N (0, Σww)

2 Observation model h (lk + vk, xk) = 0, vk ∼ N (0, Σvv)

3 Initial parameter vector and its VCM: x̂+0 = x0, Σ+
x̂x̂,0 = Σxx,0, k = 1

4 while k < K do
5 Prediction step
6 Fx,k = ∂f /∂x|x̂+k−1 ,uk−1 ,wk−1

7 Fw,k = ∂f /∂w|x̂+k−1 ,uk−1 ,wk−1

8 x̂−k = f
(

x̂+k−1, uk−1, wk−1

)
9 Σ−xx,k = Fx,kΣ+

xx,k−1FT
x,k + Fw,kΣwwFT

w,k

10 Update step
11 ľk,0 = lk, x̌k,0 = x̂−k
12 for m = 0 . . . M− 1 do
13 Hx,k,m = ∂h/∂x|ľk,m ,x̌k,m

, Hl,k,m = ∂h/∂l|ľk,m ,x̌k,m

14 Kk,m = Σ−xx,kHT
x,k,m

(
Hx,k,mΣ−xx,kHT

x,k,m + Hl,k,mΣvvHT
l,k,m

)−1

15 x̌k,m+1 = x̂−k −Kk,m ·
(
h
(
ľk,m, x̌k,m

)
+ Hl,k,m ·

(
lk − ľk,m

)
+ Hx,k,m ·

(
x̂−k − x̌k,m

))
16 Gk,m = ΣvvHT

l,k,m

(
Hx,k,mΣ−xx,kHT

x,k,m + Hl,k,mΣvvHT
l,k,m

)−1

17 ľk,m+1 = lk −Gk,m ·
(
h
(
ľk,m, x̌k,m

)
+ Hl,k,m ·

(
lk − ľk,m

)
+ Hx,k,m ·

(
x̂−k − x̌k,m

))
18 x̂+k = x̌k,M

19 l̂
+
k = ľk,M

20 Lk = I
j×j
−Kk,M−1Hx,k,M−1

21 Σ+
x̂x̂,k = LkΣ−xx,kLT

k + Kk,M−1Hl,k,M−1ΣvvHT
l,k,M−1KT

k,M−1

22 Uk = Gk,M−1 ·Hx,k,M−1
23 Σ+

v̂v̂,k = Σvv + Gk,M−1Hl,k,M−1ΣvvHT
l,k,M−1GT

k,M−1 −UkΣ−xx,kUT
k

24 Constraint step
25 D = g′

(
x̂−k
)

26 d = b− g
(
x̂−k
)
+ g′

(
x̂−k
)
· x̂−k

27 Set W = I
j×j

28 x̃+k = x̂+k −W−1DT (DW−1DT)−1 (Dx̂+k − d
)

29 Σ+
x̃x̃,k = Σ+

x̂x̂,k − Σ+
x̂x̂,kDT

(
DΣ+

x̂x̂,kDT
)−1

DΣ+
x̂x̂,k

30 Set x̂+k = x̃+k and Σ+
x̂x̂,k = Σ+

x̃x̃,k
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It is worth mentioning that up to now, to the best of our knowledge, no research which deals
with state constraints in connection with implicit measurement equations are being investigated.
All published methods are regarding explicit measurement equations where it is possible to separate
states and observations from each other. However, in terms of implicit measurement equations of type
h(l, x) = 0, modified state parameters during the constraint step will violate this equation because of
the unaffected observations during the constraint step. This fact is currently being dealt with by the
authors and is under investigation. However, our results in Section 3 show the fundamental validity.

2.2. Inequality State Constraints by Means of Probability Density Function Truncation

The constrained step within this paper is extended to allow the possibility of considering
inequality state constraints. Instead of using the projection method (cf. Algorithm 1, line 28–30),
the flexible PDF truncation method is used, and both given in [18] and [20]. In theory, other methods
also mentioned above (e.g., pseudo observations) can be applied in order to consider state constraints.
However, usage of state constraints in combination with implicit measurement equations is so far not
considered for any Kalman filtering technique. By using the PDF truncation, equality and inequality
constraints can be included simultaneously by the same method and there is no need to perform
inefficient quadratic programming techniques. Furthermore, numerical instabilities resulting from e.g.,
singular measurement noise covariance in the context of perfect measurements can be avoided [19].
Depending on the respective conditions, the thresholds could be set by means of lower lbi,k and upper
ubi,k boundaries for s scalar two-sided state constraints for any arbitrary nonlinear functions gi of
the states.

lbi,k ≤ gi (xk) ≤ ubi,k i = 1, . . . , s. (3)

Within this PDF truncation method, the estimated PDF of the IEKF (assumed in this paper as
Gaussian) is truncated by means of the defined lower and upper boundaries and, subsequently,
recomputed to the constrained estimate at the mean of the truncated PDF. Realization of the PDF
truncation method is carried out for every single constraint i = 1 . . . s successively. Furthermore, x̃i,k
will be the state estimate after applying the i-th constraint and Σ̃i,k will be its respective VCM. Their
initialization for i = 0 is achieved by updated KF estimations x̃0,k = x̂+k and Σ̃0,k = Σ+

x̂x̂,k. Afterwards,
a transformation from xi,k to zi,k is performed for the decoupling of the s constraints:

zi,k = Si ·W
− 1

2
i · TT

i (xk − x̃i,k) . (4)

The diagonal matrices W i and orthogonal matrices Ti are obtained by performing Jordan canonical
decomposition of the VCM Σ̃i,k:

Ti ·W i · TT
i = Σ̃i,k. (5)

The orthogonal matrix Si is determined by using Gram–Schmidt orthogonalization (cf. [18])
and satisfies:

Si ·W
− 1

2
i · TT

i · gi (xk) =

[(
gi (xk)

T · Σ̃i,k · gi (xk)
) 1

2 0 . . . 0

]T
. (6)

The normalized scalar constraint could be derived using this transformation, where zi,k has a zero
mean and a VCM of identity.

ai,k ≤
[
1 0 . . . 0

]
· zi,k ≤ bi,k. (7)
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The transformed boundaries ai,k and bi,k are:

ai,k =
lbi,k − gi (xk) · x̃i,k(

gi (xk)
T · Σ̃i,k · gi (xk)

) 1
2

, bi,k =
ubi,k − gi (xk) · x̃i,k(

gi (xk)
T · Σ̃i,k · gi (xk)

) 1
2

. (8)

Truncation of the Gaussian PDF by means of the lower an upper bound and the integration
variables ζ and γ is implemented by:

∫ bi,k

ai,k

1√
2π
· e−

ζ2
2 dζ =

1
2

[
erf
(

bi,k√
2

)
− erf

(
ai,k√

2

)]
, erf (u) =

2√
π

∫ u

0
e−γ2

dγ. (9)

The normalized truncated PDF within the boundaries ai,k and bi,k is given by:

pdf (ζ) = βi,k · e
−ζ2

2 , βi,k =

√
2

√
π ·
[
erf
(

bi,k√
2

)
− erf

(
ai,k√

2

)] . (10)

The mean µi,k and variance σ2
i,k of the i-th element of zi,k is computed by:

µi,k = βi,k ·
[

e
−a2

i,k
2 − e

−b2
i,k

2

]
(11)

σ2
i,k = βi,k ·

[
e
−a2

i,k
2 · (ai,k − 2 · µi,k)− e

−b2
i,k

2 · (bi,k − 2 · µi,k)

]
+ µ2

i,k + 1. (12)

With this, the mean z̃i+1,k and VCM C̃i+1,k of the transformed state could be estimated:

z̃i+1,k =
[
µi,k 0 . . . 0

]T
(13)

C̃i+1,k = diag
(

σ2
i,k, 1, . . . , 1

)
. (14)

The x̃i+1,k and its corresponding VCM Σ̃i+1,k of the state are estimated by means of inversion of
transformation in (4):

x̃i+1,k = Ti ·W
− 1

2
i · ST

i · z̃i+1,k + x̃i,k (15)

Σ̃i+1,k = Ti ·W
− 1

2
i · ST

i · C̃i+1,k · Si ·W
− 1

2
i · TT

i . (16)

Finally, after performing this for all s constraints in series, the constrained states x̃k and their VCM
Σ̃k could be derived as:

x̃k = x̃s,k (17)

Σ̃k = Σ̃s,k. (18)

The whole procedure of PDF truncation for involving inequality constraints is depicted in
Algorithm 2. In order to handle one-sided inequality constraints, lbi,k = −∞ or ubi,k = ∞ could
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be used. In the case of equality constraints, Equations (7), (8), (11), (12) are required to be changed to
perform PDF truncation:

ci,k =
[
1 0 . . . 0

]
· zi,k (19)

ci,k =
di,k − gi (xk) · x̃i,k(

gi (xk)
T · Σ̃i,k · gi (xk)

) 1
2

(20)

µi,k = ci,k (21)

σ2
i,k = 0. (22)

Algorithm 2: Probability density function (PDF) truncation for inequality state constraints.
1 Initial parameter vector x̃0,k = x̂+k and its VCM Σ̃0,k = Σ+

x̂x̂,k for i = 0

2 while i < s do

3 Transformation: zi,k = Si ·W
− 1

2
i · TT

i (xk − x̃i,k)

4 Jordan canonical decomposition of Σ̃i,k: T i ·W i · TT
i = Σ̃i,k

5 Gram–Schmidt orthogonalization for Si: Si ·W
− 1

2
i · TT

i · gi (xk) =

[(
gi (xk)

T · Σ̃i,k · gi (xk)
) 1

2 0 . . . 0

]T

6 ai,k =
lbi,k−gi(xk)·x̃i,k(

gi(xk)
T ·Σ̃i,k ·gi(xk)

) 1
2

, bi,k =
ubi,k−gi(xk)·x̃i,k(

gi(xk)
T ·Σ̃i,k ·gi(xk)

) 1
2

7 βi,k =
√

2
√

π·
[

erf
(

bi,k√
2

)
−erf

( ai,k√
2

)]

8 µi,k = βi,k ·
[

e
−a2

i,k
2 − e

−b2
i,k

2

]
, σ2

i,k = βi,k ·
[

e
−a2

i,k
2 · (ai,k − 2 · µi,k)− e

−b2
i,k

2 · (bi,k − 2 · µi,k)

]
+ µ2

i,k + 1

9 z̃i+1,k =
[
µi,k 0 . . . 0

]T
, C̃i+1,k = diag

(
σ2

i,k , 1, . . . , 1
)

10 x̃i+1,k = T i ·W
− 1

2
i · ST

i · z̃i+1,k + x̃i,k , Σ̃i+1,k = T i ·W
− 1

2
i · ST

i · C̃i+1,k · Si ·W
− 1

2
i · TT

i

11 x̃k = x̃s,k
12 Σ̃k = Σ̃s,k

3. Application in Terms of Accurate Indoor Georeferencing of a k-TLS

Various MSS in terms of calibration, acquisition and georeferencing are developed and used in
practice at the Geodetic Institute Hannover (GIH) of the Leibniz University Hannover. Within this
case study, the proposed general georeferencing approach from Section 2 is applied to a kinematic
MSS extensively described in [6,21]. Utilizing such a proved MSS allows us to focus on the application
of the proposed theoretical approach and to rely on an already calibrated and synchronized system.
Furthermore, highly accurate validation by means of a laser tracker is possible. Such a comparison
based on the trajectory is much more accurate than based on the 3D point cloud (e.g., TLS targets).

3.1. Overview

The kinematic MSS consists of a 3D TLS, a laser tracker, and a special probe (a normally hand-held
combination of a reflector and ten LEDs for pose estimation regarding the laser tracker). The TLS is a
Zoller + Fröhlich Imager 5016, which is used in a 2D profile mode for this application. The measuring
rate of this sensor is 55 profiles/second and its range noise is 0.3 mm for a distance of 10 m [22].
The TLS is mounted on a rollable platform. On the other hand, the laser tracker used is a Leica AT960
LR with its Leica T-Probe. The T-Probe is rigidly mounted on top of the TLS and, therefore, moves
with the TLS along the trajectory (cf. Figure 2a). Combination of the laser tracker with the T-probe
gives the position with an accuracy of ±15 µm + 6 µm/m (as a maximum permissible error (MPE) for
the 3D position) and the orientation with an MPE of 0.01◦ = 18 µm/100 mm for the accuracy of each
orientation-direction, respectively [23]. Due to the integration of such a highly accurate laser tracker
into this MSS, the reference pose information with superordinated accuracy could be derived directly.
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Data acquisition for this case study was carried out within the basement of the GIH inside a
selected section of a corridor (cf. Figure 2b). Characteristics of this section are ideal with extensive
walls and obstacles such as pipes below the ceiling and a door in one wall. The kinematic MSS was
moved through this environment on an almost linear six meter long trajectory for about 25 s at a slow
walking speed. This corresponds to 1311 epochs in total. We were aware that the used trajectory
was limited in time and space. However, we intended here only to focus on the applicability of our
developed georeferencing approach. The laser tracker was referenced in advance by given control
points to ensure transformation to a superordinated coordinate system. The TLS targets regarding
this coordinate system are also provided inside the environment measured. They will support further
validation of our approach based on 3D point cloud information in the future. However, this issue was
not in the focus of this paper. Instead, we will use the highly accurate reference pose by means of the
laser tracker for validation. The TLS captured 3D points in a profile mode regarding its local sensor
coordinate system. Every full laser scanner profile (LSP) was linked to 6D pose information by means
of the laser tracker and T-probe. The right geometrical relation of this 6D pose to the reference point
of the TLS was done by means of given calibration parameters (cf. [6]). The kinematic MSS utilized
together with all the coordinate systems mentioned are depicted in Figure 2a. Thus, the direction of
movement of the MSS is in x-direction. Consequently, the LSPs captured were in the “y–z” plane of the
local laser scanner coordinate system. A highly accurate static full 3D laser scan of the captured section
of the environment by means of the same laser scanner in 3D mode is also performed for further
investigations. An overview of the true trajectory is pictured in Figure 3 as a top view by means of the
laser tracker measurements in two different scales for the y-axis.

(a) (b)

Figure 2. A general view of the kinematic MSS with its coordinate systems (a) used in the basement of
the Geodetic Institute Hannover (GIH) (b).

Figure 3. Top view of the measured trajectory obtained by the laser tracker. Two visualizations of the
same trajectory in order to highlight the almost linear course. The black curve is regarding the left
y-axis (meter) and the red curve regarding the right y-axis (centimetre).
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3.2. Methodology

3.2.1. Observation Vector

The local 2D LSP and 6D pose information by means of the laser tracker in combination with
the T-Probe were already at hand by means of the sensor data available from the MSS mentioned in
Section 3.1. The 6D pose observations of an IMU are simulated on the basis of such highly accurate
reference pose information. For this purpose, noise and a linear drift were added to the reference
given to model realistic observations of a moderate and an accurate IMU. This was obviously just a
rough approximation and did not reproduce observations of an IMU in reality. However, additional
influencing parameters were neglected for the sake of simplicity. Single or rather double integration
over a time of 25 s (regarding the duration of measurements mentioned in Section 3.1) for angular
velocity and acceleration stability was used. Based on this, it was assumed that a drift in the position of
∼16 m (moderate IMU) or rather∼2.5 m (accurate IMU) and a drift in the orientation of∼5◦ (moderate
IMU) or rather ∼0.2◦ (accurate IMU) was acquired. Due to the lack of information perpendicular to
the scanning plane of the laser scanner (in the direction of movement), the position information in
the x-direction was not affected by these changes and was consistently equal to a respected reference.
The sampling rate of the simulated IMU observations was identical to that of the reference data.

Afterwards, the observation vector lk, consisting of one local LSP Plocal
k (which consists, in turn,

of N single 3D scan points), the 3D position tk and 3D rotation matrix Rk (which is set up based on the
three Euler angles Ωk, Φk and Kk) of the IMU are derived for each epoch k = 1 . . . K. Apart from that,
the 6D reference pose of the laser tracker (position t∗k and rotation matrix R∗k ) could be relied directly
on for the purpose of validation.

lk =

x1,k, y1,k, z1,k, . . . , xN,k, yN,k, zN,k︸ ︷︷ ︸
Plocal

k

, Xk, Yk, Zk︸ ︷︷ ︸
tk

, Ωk, Φk, Kk︸ ︷︷ ︸
Rk


T

. (23)

Additionally, the corresponding VCM Σvv of the observations lk can be set up, which consists
of variances of the IMU ΣvvIMU and the quality information of LSP in the form of variances ΣvvLSP .
Related standard deviations for the VCM Σvv are given in Table 1. As has already been mentioned,
IMU observations in the direction of movement (x) were assumed to be considerably more accurate
than the ones in the perpendicular direction (Y and Z). Furthermore, the VCM ΣvvLSP applied for
LSP was not based directly on the range noise of the laser scanner given by the manufacture. It was
concluded in the context of former investigations that such specifications were overoptimistic within
the scope of the current approach proposed. This was due to the fact that the observations had to fulfil
additional equations (e.g., geometrical constraints) and needed to be more variable. Consequently,
standard deviations of the VCM ΣvvLSP for LSP were larger than the manufacturer’s specifications and
selected generously.

ΣvvLSP = diag
(

σ2
x1

, σ2
y1

, σ2
z1

, . . . , σ2
xN

, σ2
yN

, σ2
zN

)
(24)

ΣvvIMU = diag
(

σ2
X, σ2

Y, σ2
Z, σ2

Ω, σ2
Φ, σ2

K

)
(25)

Σvv =

[
ΣvvLSP 0

0 ΣvvIMU .

]
(26)
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Table 1. Scheduled standard deviations σ for the variance-covariance matrix (VCM) Σvv of the
observation vector lk.

Sensor Type Observation
Assumed σ

Moderate IMU Accurate IMU

Laser scanner x, y, z 3 mm 3 mm

IMU
X 0.01 mm 0.01 mm

Y, Z 80 mm 20 mm
Ω, Φ, K 0.2◦ 0.07◦

3.2.2. Assignment Algorithm for Distinctive Planes

Further indispensable information were the assignments of every single 3D scan point to
distinctive planes (left wall, right wall, ceiling and floor) of the environment. For this purpose,
every captured LSP Plocal

k was segmented individually to identify the walls, ceiling and floor properly.
This is done by a RANSAC algorithm in order to find suitable line segments within each single LSP.
Applied distance threshold for the consensus set was 5 mm in combination with a maximum of
30 iterations. Suitable candidates have a minimum percentage (2%) of points in comparison to the total
number of points within the respective LSP. Additionally, at least 20 points needed to be assigned to a
line segment. In order to only identify lines, which represented left or right walls or rather ceilings
or floors, only those candidates were selected which are almost parallel or perpendicular regarding
the standing axis of the laser scanner (which is known by means of the local coordinate system).
In order to avoid doors, leads or other obstacles, line candidates were compared regarding averaged
assignments of several past LSPs (named as memory subsequently). The criteria used for this are
changes in distance between the respective line and origin of the laser scanner and the variation of
the averaged intensity of respective scan points. Both criteria are analyzed regarding the memory
mentioned. Rough outliers in the assignment could be identified by applying such a restriction. Finally,
every N single 3D scan point of the LSP Plocal

k within each epoch k = 1 . . . K is assigned to left wall,
right wall, ceiling, floor or remains as unused. These extended LSP are denoted Clocal

k subsequently.
Thus, in total, Clocal

k is equal to Plocal
k but contains mentioned additional segmentation information for

every measured scan point. The results of the assignment algorithm introduced in relation to the case
study are depicted in Figure 4a,b. Interfering objects (e.g., pipes and cables) are erased.

(a) (b)

Figure 4. Georeferenced 3D point cloud of the environment measured based on the reference pose by
means of laser tracker and T-Probe. Original scan points with colors by means of intensity (a). Assigned
scan points regarding the left wall (yellow), right wall (blue), ceiling (red) and floor (green) (b).
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3.2.3. Measurement Equation and State Parameter Vector

The state parameters desired were inter alia, relative changes in 3D position ∆tk, 3D orientation
∆Rk (∆Ωk, ∆Φk, ∆Kk) and 3D velocity ∆vk. In combination with the (simulated) noisy and drifted IMU
pose (tk, Rk) they ended up in the almost true position tMSS

k and orientation RMSS
k

(
ΩMSS

k , ΦMSS
k , KMSS

k

)
of the MSS at each epoch k:

tMSS
k = tk + ∆tk, RMSS

k = ∆Rk ·Rk. (27)

This formulation of relative changes as states might evoke a relation towards an error-state KF
(ErKF, or indirect KF) [24,25]. However, the underlying concept of an ErKF is different. Instead of
direct relative measurements (e.g., from an IMU), we included laser scanner observations by means
of an implicit formulation. Georeferencing of every local LSP Plocal

k regarding the superordinated

coordinate system Pglobal
k can be applied by transformation using the estimated pose of the MSS:

Pglobal
k = (tk + ∆tk) + (∆Rk ·Rk) · Plocal

k . (28)

At this point, prior information is integrated into our approach. Several geometrical circumstances
could be taken into consideration during the movement through the corridor (cf. Figure 2b). In the
current case, it is assumed that certain parts of all individual LSP’s captured some random parts of
the left wall, right wall, ceiling and floor of the environment. Within a certain region, it could also be
presumed that respective detected points on the left wall, right wall, ceiling and floor each refer to the
same geometrical planes, respectively.

By using such information, the measurement equation could be formulated by means of the
well-known Hesse normal form of a plane:

ne ·
[
(tk + ∆tk) + (∆Rk ·Rk) · Clocal

k

]
︸ ︷︷ ︸

Cglobal
k

−de = 0, (29)

where ne is the 3× 1 normal vector of the left wall (or rather right wall, ceiling, floor) and de the related
distance to the origin. Additionally, the segmented LSP information mentioned Clocal

k regarding the
left and right wall, ceiling and floor of the environment (cf. Section 3.2.2) could also be taken into
consideration. In relation to Section 2.1 the given overall measurement Equation in (29) has an implicit
formulation of type h(l, x) = 0.

Hence, the 25-dimensional state parameter vector xk could be set up by means of the relative
changes requested in position ∆tk, orientation ∆Rk (∆Ωk, ∆Φk, ∆Kk) and velocity ∆vk and four sets of
plane parameters with each four parameters nex , ney , nez , de. Here, e can stand for the left wall (or rather
right wall, ceiling or floor):

xk =

∆Xk, ∆Yk, ∆Zk︸ ︷︷ ︸
∆tk

, ∆Ωk, ∆Φk, ∆Kk︸ ︷︷ ︸
∆Rk

, ∆vxk , ∆vyk , ∆vzk︸ ︷︷ ︸
∆vk

, nζx , nζy , nζz , dζ︸ ︷︷ ︸
left wall

, . . . , nξx , nξy , nξz , dξ︸ ︷︷ ︸
floor


T

. (30)

It is worth mentioning that the increase of epochs in trajectories is associated with the increase of
geometric details (e.g., walls) of buildings in the environment within real world application. This leads
to an unlimited expansion of the state vector. The usage of a dual state Kalman filter (DKF) in such
a case might be suitable. This would enable strict separation of time changing states (e.g., position,
orientation, velocity) and other over time static parameters (e.g., normal vector and distances to origin
of a plane) [26]. However, interaction of DKF and implicit measurement equations was not treated in
this paper.
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3.2.4. System Equation

A simple physical model was used to predict the constraint states from previous epoch k− 1 to
the current k. This state transition was based on a constant velocity model, which only affected the
six pose parameters and three velocities of the state parameter vector [27]. All plane parameters were
unaffected by this prediction step and were equal to the constraint state x̃+k-1:

∆t̂−k = ∆t̂+k−1 + ∆v̂+
k−1 · ∆τ + w∆t,k−1 (31)

∆R̂−k = ∆R̂+
k−1 + w∆R,k−1 (32)

∆v̂−k = ∆v̂+
k−1 + w∆v,k−1 (33)

n̂−e,k = n̂+
e,k-1 (34)

d̂
−
e,k = d̂

+
e,k-1, (35)

where w∆t,k−1, w∆R,k−1 and w∆v,k−1 are the process noise vectors and ∆τ is the time interval between
two consecutive epochs. The VCM of the process noise Σww represents related system noise during the
prediction step. Due to simplicity, all variances and covariances were zero, except for the process noise
of the velocity. Within this case study a definition of σv,w = 5 · ∆τ is selected.

Σww =

diag
(

0[1×6], σ2
v,w, σ2

v,w, σ2
v,w

)
0

0 diag
(

0[1×16]

) . (36)

3.2.5. Nonlinear Equality and Inequality Constraint for the State Parameters

In addition to the measurement Equation (29), the geometric prior information by means of
equality and inequality constraints is also used to improve the georeferencing of the MSS. Due to the
fact that the plane parameters ne within the state parameter vector xk were used, the unity of normal
vectors had to be ensured. In order to do so, nonlinear equality constraints can be used:

g (xk) = ||ne|| =
√

n2
ex + n2

ey + n2
ez = b = 1. (37)

Furthermore, inequality constraints regarding intersection angles of related planes are also
implemented. In this context, obvious conditions for concurrency and perpendicularity between
distinctive walls are relied on. It would also be possible to formulate these constraints by means of
equality constraints. However, instead of using such hard constraints, the use of inequality constraints
together with lower lbi,k and upper ubi,k boundaries (cf. Section 2.2) are preferred. Applying such
inequality constraints is more consistent with reality, where such perfect conditions are rather rare or
can be rarely fulfilled. Selected thresholds for this are derived based on documented standards for the
building industry [28] and should be stated around 0◦ (for concurrency) and 90◦ (for perpendicularity).
As a further basis, the information based on the highly accurate static 3D laser scanner point
cloud mentioned are used to set up the boundaries. By means of this reference, true intersection
angles between walls can be determined and applied. Consequently, the boundaries are selected by
considering 0.5◦ for the intersection angles mentioned:

gi (xk) = cos−1
( |nζ · nξ |
|nζ | · |nξ |

)
= cos−1

 |nζxnξx + nζynξy + nζznξz |√
n2

ζx
+ n2

ζy
+ n2

ζz
·
√

n2
ξx
+ n2

ξy
+ n2

ξz

 (38)

lbi,k ≤ gi (xk) ≤ ubi,k with: lbi,k = gi (xk)− 0.5◦, ubi,k = gi (xk) + 0.5◦. (39)
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Due to the geometrical behaviour of the environment, there are several possibilities to apply
Equation (38) in terms of concurrency or rather perpendicularity. For this reason, there are also different
options for the number of geometrical inequality constraints selected. Within Section 3.3, the respective
impacts and benefits of combining several constraints in contrast to individual use cases are shown.
Regardless of the respective combination, which constraints are active within each epoch should be
checked. This means that constraints can only be applied if at least five points of the related walls,
ceiling or floor are segmented within this epoch. If there is a lack of one or several walls, all respective
constraints to this wall will be inactive for this epoch.

3.2.6. Initialization

Initialization of approximate values for the state vector x0 and the related VCM Σxx,0 are needed to
perform the IEKF. Initial relative changes in position ∆t0 and orientation ∆R0 are selected by means of
the difference between the reference pose and IMU regarding first epoch k = 0. Relative velocities ∆v0
are initialized as zero. Initial values for the normal vectors of the planes ne,0, are estimated by means
of the first LSP and its respective points for left wall, right wall, ceiling and floor. Related standard
deviations for the VCM Σxx,0 are given in Table 2.

x0 =
[
∆X0, ∆Y0, ∆Z0, ∆Ω0, ∆Φ0, ∆K0, ∆vx0 , ∆vy0 , ∆vz0 , nζx,0, nζy,0, nζz,0, dζ,0, . . . , nξx,0, nξy,0, nξz,0, dξ,0

]T
(40)

Σxx,0 = diag
(

σ2
∆X , σ2

∆Y , σ2
∆Z, σ2

∆Ω, σ2
∆Φ, σ2

∆K, σ2
∆vx

, σ2
∆vy

, σ2
∆vz

, σ2
nζx

, σ2
nζy

, σ2
nζz

, σ2
dζ

, . . . , σ2
nξx

, σ2
nξy

, σ2
nξz

, σ2
dξ

)
. (41)

Table 2. Scheduled standard deviations σ for the initial VCM Σxx,0 of the initial state vector x0.

State Parameter σ

∆X, ∆Y, ∆Z 0.1 m
∆Ω, ∆Φ, ∆K 5.7◦

∆vx, ∆vy, ∆vz 0.1 m/s
nex , ney , nez 0.1

de 0.1 m

3.3. Results

In order to ensure independence from simulated IMU pose information, the results within this
Section 3.3 are, with respect to the mean of 500 replications, of slightly different realizations of the
IMU pose information. Additionally, to investigate the differences with respect to a moderate and an
accurate IMU, results of two sets of simulations are presented within this Section 3.3. A schematic
overview of this procedure is depicted in Figure 5. Evaluation is done by means of the estimated pose
parameters of the kinematic MSS tMSS

k and RMSS
k and the ground truth by means of the laser tracker

tGT
k and RGT

k . Based on these pose information, the root mean square error (RMSE) for the combined
position in the x-, y-, z-direction can be calculated (cf. (42)). In order to give a quality parameter for
combined orientation, transformation from the rotation matrix Rk to the axis-angle representation by a
normalized vector rk = [r1, r2, r3] and rotation angle Θk is performed. Afterwards, the mean error (ME)
of the representative angle between estimation ΘMSS

k and ground truth ΘGT
k is calculated and used

(cf. (43)). Presentation of the results by means of combined position and orientation instead of a single
axis is intended. In such a manner, we can identify the most suitable combination of state constraints
for this approach while keeping the results clear.
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Figure 5. Schematic overview of the 500 replications performed for two types of IMUs as required
input data for the iterated extended Kalman filter (IEKF) from Section 2.1 and its related combination
C = I . . . X of applied state constraints. The Roman numerals refer to respective state constraints
applied regarding Table 3.

RMSE =

√√√√1
k

k

∑
i=1

((
XGT

k −XMSS
k

)2
+
(

YGT
k − YMSS

k

)2
+
(

ZGT
k − ZMSS

k

)2
)

(42)

ME =
1
k

k

∑
i=1

(∣∣∣ΘGT
k −ΘMSS

k

∣∣∣) . (43)

The difference between both classes of IMUs, as well as ground truth, is shown in Figure 6 by
means of their averaged change in position and orientation over all corresponding 500 replications.
As it has already been mentioned in Section 3.2.1, position in the x-direction for both IMUs was
identical to the ground truth by means of the laser tracker. However, a major linear drift is visible
(∼15 m for moderate IMU or rather ∼2.5 m for accurate IMU) for position in both other directions.
Due to different assumed uncertainties for both IMUs, the drift in orientation for the accurate IMU
was rather negligible, whereas the drift for the moderate IMU was about ∼5◦ for all axes.

(a) (b) (c)

Figure 6. Mean change in position (top) and orientation (bottom) of the kinematic MSS by means of
500 simulated moderate IMU poses (a) and accurate IMU poses (b) over K epochs. True change in
position (top) and orientation (bottom) of the kinematic MSS by means of laser tracker pose (c) over
K epochs.
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Based on this IMU pose information, methods from Section 3.2 are applied. In addition to both
classes of IMUs, combinations of respective equality and inequality state constraints also affects the
pose parameters requested. In the framework of this paper, estimates of ten different combinations
(listed in Table 3) are presented. In order to compare various constraints in the developed IEKF
algorithm, the combination I was designed without using any constraints and will be considered as a
reference solution. All other combinations (II–X) relied on different equality and inequality constraints
which include concurrency and/or perpendicularity between assigned left/right wall or rather ceiling
and floor. In all these combinations the constraints regarding normal plane vectors (cf. (37)) were
formulated in order to ensure numerical and geometrical stability. The inequality constraints in
combinations III–VI were applied independently from each other whereas in combination VII–X a
collaboration between concurrency and perpendicularity was enabled in order to evaluate respective
impact on the state estimates for each collaboration. However, it is worth mentioning that the
impact of the individual combinations might vary depending on respective application and related
environmental circumstances.

Table 3. Investigated combinations of respective equality (red) and inequality (green) state constraints.
Applied constraints within each combination are depicted with a X symbol.

Combinations of Respective Equality and Inequality State Constraints

I II III IV V VI VII VIII IX X

unit vector
for left wall X X X X X X X X X

unit vector
for right wall X X X X X X X X X

unit vector
for ceiling X X X X X X X X X

unit vector
for floor X X X X X X X X X

left/right wall
are parallel X X X X

ceiling/floor
are parallel X X X X

left wall/ceiling
are perpendicular X X X X

right wall/floor
are perpendicular X X

The results achieved over all 500 replications for both moderate and accurate IMU observations
in relation to the ten different combinations of applied state constraints are summarized in Table 4
for combined position by means of RMSE and Table 5 for combined orientation by means of ME.
Comparison between the results was determined by means of minimum (min), maximum (max), mean,
median and standard deviation (SD), as well as lower bound (↓) and upper bound (↑) of the 95%
confidence interval (CI), calculated numerically from the 500 samples, as selected characteristic values.

It is notable that, independently from the IMU used, pose estimation fails if no constraints
(combination I) are applied. It further stands out that there was an impact of the RMSE and ME
depending on the constraints applied. In terms of position, combination III delivers the lowest
estimates for both IMUs. Whereas for the moderate IMU, combination X was the lowest in terms of
orientation, and for the accurate IMU, combination III is also the lowest (both judged by median).
However, without taking into account combination I, all solutions by means of the applied state
constraints were smaller than the ME for orientation of the moderate IMU. For the accurate IMU only
combinations III, V, VI and VIII were smaller than the noisy and drifted IMU solution. However, the
gain in accuracy is much higher for the position compared to the orientation.
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Due to the conclusions provided by means of Tables 4 and 5, the temporal progress in position
and orientation of the RMSE or rather ME for different combinations of state constraints are depicted in
Figure 7 for the moderate IMU. The same results regarding the accurate IMU are depicted in Figure 8.
For presentation purposes, inaccurate solutions (e.g., IMU in terms of position; combination I) are
omitted. The basic behaviour of the temporal progress of the RMSE for position of both IMUs was very
similar. All combinations increased drastically within the very first epochs. After this running-in effect
of the filter they decrease quickly and continue differently over time. Over all epochs, combination II
leads to a significant larger RMSE and has the largest increase. This is of interest, except normalized
plane normal vectors, no further geometrical constraints like concurrency or perpendicularity were
considered within this configuration. Combination III, V and VIII are very similar and lead to the
best results around 1.5 cm. Remaining combinations have a slightly larger increase and will end up
between 2–5 cm. Temporal behaviour of the ME for orientation is slightly different for both IMUs.
They also increased drastically within the very first epochs. Afterwards, the gradient was related to the
initially drifted IMU solution. However, all presented solutions for the moderate IMU were lower than
respective initial IMU solution. In addition, gradient and progress are almost identical for this type
of IMU. In case of the accurate IMU, there was a slight variation between all combinations. But from
epoch k = 800 the increase was for all combinations lower than the IMU solution. Combination III
behaves most similar to the IMU solution in the beginning and undercut the IMU curve at epoch
k = 400.

(a) (b)

Figure 7. Moderate IMU: temporal progress of the median of the root mean square error (RMSE)
for position (a) and mean error (ME) for orientation (b) by means of 500 replications for respective
combinations of the state constraints applied. The Roman numerals refer to respective state constraints
applied regarding Table 3.

In order to investigate the individual best results for position and orientation, respective
histograms regarding the related 500 replications are depicted in Figure 9 for the moderate and
accurate IMU with respect to each other. Based on these representations, further conclusions can
be drawn. All histograms show distributions which are right-skew symmetric. This indicates that,
independent from the IMU observation applied, there are a few configurations within the respective
500 replications which lead to a slightly larger RMSE or rather ME or even outliers. However, this
skew is much more pronounced in case of the RMSE for position. The histograms for the ME of the
orientation are similar to a Gaussian distribution. This different behaviour is not directly explainable
and further investigations are needed. For this reason, a more detailed arrangement regarding the
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single coordinate axis in contrast to the combined presentation appears appropriate and will be realized
in the future.

(a) (b)

Figure 8. Accurate IMU: temporal progress of the median of the RMSE for position (a) and ME for
orientation (b) by means of 500 replications for respective combinations of the state constraints applied.
The Roman numerals refer to respective state constraints applied regarding Table 3.

(a) (b) (c) (d)

Figure 9. Histograms of the RMSE for position by means of 500 replications for combination III
(moderate IMU (a)) and combination III (accurate IMU (b)) of state constraints applied. Related
histograms of the ME for orientation by means of 500 replications for combination X (moderate IMU
(c)) and combination III (accurate IMU (d)) of state constraints applied. Respective mean is given by a
red bar and respective median by a green bar. The Roman numerals refer to respective state constraints
applied regarding Table 3.

In general, it can be summarized that the consideration of state constraints improved state
estimation significantly. However, differences between individual combinations were quite small.
For this reason, geometrical restrictions regarding perpendicularity and concurrency depend strongly
on respective environments.

4. Discussion

The results presented in Section 3.3 indicate significant dependencies of the estimated pose
parameters on the respective equality and inequality state constraints applied. Moreover, no prominent
combination of constraints exists which fits to all requirements in terms of position and orientation.
The two different types of IMU observations demonstrate additional dependencies. Depending on
the respective accuracy class, the use of certain constraints can significantly improve pose estimation.
This applies particularly to the orientation estimation, whereas position estimation benefits from almost
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every constraint applied, although to different levels. Overall, it could be seen that the usage of state
constraints results in an important added value. However, there is an important need to define and
apply a suitable model selection procedure into the current filter approach. Various different constraint
combinations are applied and such a procedure should determine which combination is most suitable.
Our priors will be obtained by considering which constraints are representative of features we expect
to see in the data, and which would produce biased or inaccurate estimates. In addition, the effects
of different individual constraints, in contrast to combined constraints, will be investigated more
extensively in the future. Possible linear dependencies between individual constraints need to be
analyzed and, if necessary, neglected.

As it has already been mentioned in Section 2.1, the compatibility of implicit measurement
equations and state constraints as part of the IEKF is an important issue which needs further
consideration. Due to implicit formulation, both states and observations are corrected within the
update step to fulfill the measurement equation. During the constraint step, only the states are affected,
while observations are unaffected. Consequently, this leads to a violated measurement equation.
For this reason, the constraint step is going to be directly integrated into the update step of the IEKF.
In terms of equality constraints, extension of the objective function should be sufficient. However,
in terms of inequality constraints, this is not possible straightforwardly. Combination of inequality
state constraints in the scope of GHM is treated in [29] and shows the complexity relating thereto.
Another more promising approach for this task will be to use soft constraints instead of inequality
constraints, which will be investigated in the future. Also, consideration of perfect measurements is
possible, however, this would only allow equality constraints. In theory, state constraints can also be
applied in combination with other classes of Kalman filters (e.g., UKF) to avoid the factual linearization
issues of the EKF and IEKF. However, compatibility of implicit measurement equations besides linear
KF, EKF and IEKF need to be solved first.

Table 4. Root mean square error (RMSE) for position by means of 500 replications. The Roman
numerals refer to respective state constraints applied regarding Table 3. Each of the seven characteristic
values (minimum, maximum, mean, median, standard deviation (SD) as well as lower bound (↓) and
upper bound (↑) of the 95% confidence interval (CI)) are divided into two additional rows regarding
moderate (above) and accurate (below) inertial measurement unit (IMU). The largest (red) and lowest
(green) estimates are marked for first five rows.

Combinations of Respective Equality and Inequality State Constraints

IMU I II III IV V VI VII VIII IX X

Min [m] 12.646
1.9833

1.4684
0.8992

0.0118
0.0114

0.0128
0.0140

0.0147
0.0168

0.0130
0.0142

0.0135
0.0143

0.0161
0.0209

0.0130
0.0142

0.0168
0.0159

0.0164
0.0209

Max [m] 13.030
2.0864

3469.2
2.4·105

5.7065
4.3490

0.1649
0.1049

0.2269
0.1425

0.1360
0.0561

0.2460
0.1122

0.1234
0.0966

0.2278
0.0781

0.4138
0.2269

141.08
0.0699

Mean [m] 12.835
2.0336

79.778
1974.7

0.3188
0.1828

0.0201
0.0174

0.0280
0.0312

0.0218
0.0182

0.0470
0.0327

0.0269
0.0304

0.0226
0.0206

0.0335
0.0282

0.3139
0.0291

Median [m] 12.832
2.0337

9.9179
8.8968

0.1118
0.0607

0.0149
0.0145

0.0214
0.0273

0.0162
0.0157

0.0455
0.0284

0.0236
0.0286

0.0172
0.0180

0.0232
0.0244

0.0263
0.0275

SD [m] 0.0678
0.0176

320.29
16083

0.6136
0.3384

0.0160
0.0080

0.0192
0.0130

0.0151
0.0064

0.0272
0.0167

0.0116
0.0081

0.0163
0.0075

0.0325
0.0147

6.3077
0.0063

↓ 95% CI [m] 12.714
1.9983

2.7926
2.0866

0.0189
0.0137

0.0134
0.0141

0.0163
0.0194

0.0133
0.0143

0.0140
0.0146

0.0171
0.0236

0.0135
0.0144

0.0179
0.0181

0.0178
0.0227

↑ 95% CI [m] 12.960
2.0707

559.22
7126.2

1.9255
0.9893

0.0596
0.0405

0.0742
0.0647

0.0729
0.0409

0.1042
0.0771

0.0563
0.0525

0.0654
0.0414

0.1155
0.0570

0.0947
0.0498
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The dependency mentioned regarding the IMU observations applied is an argument to consider
initial biases and drift parameters of the IMU as additional state parameters within further
developments. By doing so, direct estimation and consideration within the IEKF are possible and
should further enhance the pose estimation. As a consequence of such an extension, this would be
accompanied by further development of a more suitable system model within the prediction step.

Table 5. Mean error (ME) for orientation by means of 500 replications. The Roman numerals refer to
respective state constraints applied regarding Table 3. Each of the seven characteristic values (minimum,
maximum, mean, median, SD as well as lower bound (↓) and upper bound (↑) of the 95% CI) are
divided into two additional rows regarding moderate (above) and accurate (below) IMU. The largest
(red) and lowest (green) estimates are marked for first five rows.

Combinations of Respective Equality and Inequality State Constraints

IMU I II III IV V VI VII VIII IX X

Min [°] 3.6742
0.1548

4.6565
2.1602

2.9283
0.1522

2.9843
0.1541

2.9558
0.1986

3.0133
0.1557

2.9283
0.1498

2.9544
0.2151

2.9793
0.1535

2.9560
0.2084

2.9503
0.2100

Max [°] 4.8145
0.4367

42.297
32.819

4.3253
0.4542

4.1203
0.4114

4.0770
0.4455

4.0935
0.4197

4.0896
0.4218

4.0788
0.4434

4.0887
0.4279

4.0779
0.4460

4.0766
0.4369

Mean [°] 4.2414
0.2654

11.222
9.4379

3.6246
0.2727

3.6140
0.2371

3.5657
0.2864

3.5990
0.2447

3.5691
0.2628

3.5653
0.2860

3.5873
0.2562

3.5643
0.2857

3.5625
0.2856

Median [°] 4.2471
0.2611

10.355
8.8777

3.6242
0.2649

3.6117
0.2322

3.5619
0.2821

3.5992
0.2397

3.5689
0.2600

3.5619
0.2822

3.5874
0.2520

3.5615
0.2825

3.5568
0.2809

SD [°] 0.1890
0.0529

4.2427
4.1022

0.2302
0.0598

0.1807
0.0463

0.1863
0.0400

0.1814
0.0463

0.1893
0.0482

0.1871
0.0405

0.1838
0.0453

0.1866
0.0400

0.1874
0.0400

↓ 95% CI [m] 3.8684
0.1793

5.7887
3.9401

3.1598
0.1762

3.2611
0.1667

3.1979
0.2212

3.2463
0.1668

3.1921
0.1706

3.1992
0.2216

3.2241
0.1836

3.1982
0.2226

3.1970
0.2206

↑ 95% CI [m] 4.6200
0.3758

22.2408
19.2219

4.0898
0.4079

3.9940
0.3426

3.9578
0.3809

3.9841
0.3443

3.9604
0.3699

3.9565
0.3787

3.9702
0.3612

3.9562
0.3822

3.9542
0.3804

5. Conclusions

We presented a novel method to consider nonlinear equality and inequality state constraints
within the framework of an IEKF with implicit measurement equations. Consideration of such
restrictions is realized by means of flexible PDF truncation. This method was applied and evaluated
for georeferencing of an indoor laser scanner-based kinematic MSS. Therefor, different combinations
of geometrical constraints were applied for real measurement data.

In conclusion, the consideration of appropriate restrictions between the state parameters is
desirable. The use of inequality constraints in addition to equality constraints offers further
possibilities in terms of accuracy. This justifies general consideration of inequality state constraints for
georeferencing of a kinematic MSS.

Furthermore, adaptation and application of the general georeferencing approach by means of an
IEKF with respect to other kinematic MSS is planned to verify its general validity. The focus there is to
apply the approach on an UAV and an outdoor mobile mapping system. Both applications require
special demands concerning 3D point cloud assignments in terms of facades, building models and
further external influences which may occur within outdoor environments. In addition, the approach
presented in this article has to be applied for longer data sets (with respect to spatial and temporal
expansion). For this, it is assumed that the RMSE and ME will increase slightly over time unless
absolute landmarks are integrated at certain points in time or assumed geometrical constraints are not
applicable. Also nonlinear trajectories with turning manoeuvres need to be considered. This might
make it necessary to introduce new planes and respective parameters into the model. However,
applicability will be ensured as long as sufficient additional information from object space are available,
assignable and applicable.
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In addition, a more simple application example might be suitable to evaluate a comparison of
different constraint combinations and methods to apply them to the fundamental algorithm of the
IEKF with implicit measurement equations. As mentioned in Section 2, also other methods can be
applied to consider state constraints. While PDF truncation provides great flexibility in simultaneously
applying equality and inequality constraints, other methods mentioned above may be more appropriate
(e.g., with respect to the uncertainty of the estimated state parameters and the computing time of the
algorithm). However, methods for inequality constraints are limited as long as quadratic programming
problems should be avoided.
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