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Abstract: When a missile is launched, the plume generated by the propulsion system will produce a
lot of fake stars in the star image, which will affect the normal work of the missile-borne star sensor.
A plume noise suppression algorithm based on star point shape and angular distance between stars
is proposed in this paper, which is a preprocessing algorithm for star identification. Firstly, principal
component analysis is used to extract the shape features of star points. Secondly, the authenticity
of star points is evaluated based on length-width ratios. Thirdly, in two consecutive frames of star
images, according to the shape features of star points, the optimal matching window is determined to
achieve accurate matching of the corresponding star points. Finally, the rapid elimination of fake stars
is completed by the principle of invariant angular distance between true stars. Simulation experiment
results show that the proposed algorithm is quite robust and fast, and the elimination ratio is high
even if the number of fake stars reaches four times more than true stars. Compared with the existing
star identification algorithms, when the number of fake stars is large, the advantage of the proposed
algorithm is obvious. Experimentation on actual star images verifies that the proposed algorithm can
meet the requirements of spacecraft even if there are a large number of fake stars in the star image.
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1. Introduction

The star sensor is an important kind of attitude measurement instrument which is widely used
in satellites and missiles with advantages of high precision and no drift. The working process of the
missile-borne star sensor includes four steps: Star image acquisition, star point centroid extraction, star
identification, and attitude calculation.

During the missile launching process, the plume generated by the propulsion system combustion
is micro-manifested as a large number of dust particles, which scatter sunlight or other stray light
to form luminous bodies, thus forming fake star points in the star image. These fake star points
cannot be distinguished from true star points in brightness, which have a serious influence on star
centroid extraction, resulting in star identification and attitude calculation taking a long time and even
causing errors.

As there are few studies on how to suppress plume noise at present, the mainstream solution
is to adopt star identification algorithm which is more robust to fake stars. The grid algorithm and
its subsequent improved algorithms (Padgett and Kreutz-Delgado, 1997 [1]; Lee and Bang, 2007 [2];
Na et al., 2009 [3]) are robust to position noise and fake stars, and fast, but require a sufficient number of
true stars to be effective. The triangle algorithm [4] is the most widely used star identification algorithm,
which uses three stars and their angular distances to generate a triangle feature. The algorithm is effective
even if there are only three stars in the star image. Mortari et al. proposed the pyramid algorithm [5]
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which is quite robust to fake stars, but with the number of fake stars increasing, the algorithm becomes
very slow. Kolomenkin et al. proposed a geometric voting algorithm [6], which uses a voting method
to find the relationship between image stars and catalog stars. However, when the number of fake stars
is large, the efficiency and accuracy of the algorithm decrease significantly. Delabie et al. proposed
an algorithm based on the shortest distance transform [7]. The algorithm is robust to fake stars,
but when some true stars are missing, the identification ratio will decrease, and the time efficiency of
the algorithm is low. Zhao et al. proposed an algorithm based on K–L transformation and star walk
formation [8], which is fast and consumes little memory, but is not quite robust to fake stars.

Li et al. proposed a novel guide star catalog generation algorithm [9], which is not a
star identification algorithm, but provides reliable and efficient performance for the star sensor.
Some algorithms [10,11] use multi-frames processing to improve robustness, but the identification
time cannot meet the real-time requirements. Vincenzo Schiattarella et al. proposed a multi-poles
algorithm [12], which is quite robust to spurious targets but has poor dynamic performance.
The performance of this algorithm decreases with increasing angular velocity of the star sensor.
Wang et al. proposed a star identification algorithm based on hash map [13], which maps each
triangle feature to an integer and builds a hash map of all the triangle features. This algorithm is
quite robust to fake stars, and its identification ratio is similar to the pyramid algorithm, while its
speed is much faster than that of the pyramid algorithm. For high dynamic star points, Sun et al.
proposed a smearing model under conditions of variable angular velocity [14] and a motion-blurred
star acquisition method [15]. Fan et al. proposed a voting-based star identification algorithm utilizing
local and global distribution [16], which is fast and needs less memory, but it is not robust enough
to fake stars. Wang et al. proposed a false star filtering algorithm for star sensor based on angular
distance tracking [17], which can filter out a large amount of fake stars but needs a long time.

Although fake star points cannot be distinguished from true star points in brightness, the plume
is generated by the propulsion system, whose moving speed is much faster than true stars.
Therefore, the shape is different for fake star points and true star points. Taking full advantage
of shape features and combining the angular distance between stars, we propose an effective missile
plume noise suppression algorithm for missile-borne star sensor.

The remainder of this paper is organized as follows: In Section 2, the principles and details of the
proposed algorithm are described; in Section 3, performance of the proposed algorithm is evaluated
on both simulation star images and actual star images; and in Section 4, conclusions of the proposed
algorithm are drawn.

2. Method Description

In this paper, a star point is regarded as an ellipse, and the ratio of its long side to short side is
defined as the length-width ratio. In general applications, true star points approximately conform to
2-D Gaussian distribution, the length-width ratio of which is small, while fake star points approximately
conform to long strip distribution, the length-width ratio of which is large. In a few cases where there
is little difference in length-width ratio between true star points and fake star points, they can be
distinguished by the angular distance between stars.

2.1. Star Shape Features Extraction Based on PCA

In Figure 1, true star points are in blue windows, and fake star points are in yellow windows.
Due to the irregular shape of particles and the complexity of reflecting light sources, fake star points
are uneven in gray distribution, poor in continuity, and random in movement direction.
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Figure 1. Star image containing fake star points. 
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Figure 1. Star image containing fake star points.

Principal component analysis (PCA), also known as eigenvector transformation, aims to transform
a given set of dependent variables into another set of independent variables through dimensionality
reduction. The new set of variables are arranged according to the variance from large to small.
The largest variance is the first principal component, and the second largest variance is the second
principal component, and so on. PCA is widely used in data compression, image rotation, feature
selection, and statistical recognition of remote sensing multispectral images.

The shape features of a star point include moving direction, length, width, and length-width
ratio. A star point is composed of a series of discrete pixels, and each pixel is a two-dimensional
vector, including abscissa and ordinate. PCA is used to process the star point pixels, which can quickly
and accurately calculate the shape features [18]. The moving direction of star point is the principal
component direction, and the degree of data dispersion is large. While in the direction perpendicular
to the moving direction, the degree of data dispersion is small.

Suppose a star point contains N pixels with coordinates of (xi, yi) (i = 1, 2, · · · , N), and each pixel
is considered as a two-dimensional vector:

vi =

[
xi
yi

]
(1)

The mean of these vectors is

m = E{v} =
1
N


N∑

i=1
xi

N∑
i=1

yi

 (2)

The feature covariance matrix is

H = E
{
(v−m)(v−m)T

}
=

1
N

N∑
i=1

vivT
i −mmT (3)

The diagonal of H includes the variance of x and y, and the non-diagonal includes the covariance
of x and y. Since the pixel coordinates are all real numbers, H is a 2 × 2 real symmetric square matrix.
Therefore, there must be a unit orthogonal matrix P = (p1, p2):

P−1HP =

[
λ1 0
0 λ2

]
(4)
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where λ1,λ2 are the eigenvalues of matrix H, respectively describing the size of the eigenvectors p1, p2,
and p1, p2 describe the direction of the star points. Suppose λ1 ≥ λ2, p1 is the principal component
direction, which is the moving direction of the star point, and p2 is its vertical direction.

As shown in Figure 2, according to the eigenvalues λ1,λ2 and the number of pixels N, the shape
features of the star point can be calculated:

r =
λ1

λ2
(5)

L =
√

Nr (6)

where r is the length-width ratio of the star point, L is the length of the circumscribed rectangle of the
star point, and the eigenvector p1 is the moving direction of the star point.
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2.2. Evaluate the Authenticity of Star Points Based on Length-Width Ratios

In general applications, true star points approximately conform to 2-D Gaussian distribution,
the length-width ratio of which is small. While fake star points approximately conform to long strip
distribution, the length-width ratio of which is large. Sort the N star points in an image from small to
large according to the length-width ratio ri, as shown in Figure 3.Sensors 2019, 19, x FOR PEER REVIEW  5 of 14 
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Calculate σi,i−1 between adjacent length-width ratios:

σi,i−1 =
ri

ri−1
(ri − ri−1) (i = 2, · · · , n, set : σ1,0 = 0) (7)

In this paper, the authenticity of star points is evaluated according to the length-width ratio ri.
When ri is smaller, the authenticity of the star point is higher. When ri is larger, the authenticity of the
star point is lower. σi,i−1 describes the change range of ri. When σk,k−1 = max(σi,i−1), it indicates that
the length-width ratio has changed significantly. Therefore, rk−1 is judged to be the largest length-width
ratio of star points with high authenticity, while rk is judged to be the smallest length-width ratio of
star points with low authenticity.

According to σk,k−1 and rk, the star points in the image can be classified. For star points whose
length-width ratio is greater than 2rk, it means that the length-width ratio is too large, and these
star points are classified as C3 which are judged to be fake stars and eliminated. For star points
whose length-width ratio is smaller than rk, they are classified as C1 which has high authenticity.
For star points whose length-width ratio is between rk and 2rk, they are classified as C2 which has
low authenticity.

star points ∈


C1 = {r1, r2, · · · , rk−1}, k =

{
i
∣∣∣σk,k−1 = max(σi,i−1)

}
C2 =

{
rk, rk+1, · · · , rm−1

}
, rm−1 ≤ 2rk

C3 =
{
rm, rm+1, · · · , rN

}
, rm > 2rk

(8)

For the two classes C1 and C2, this paper will further distinguish according to the angular distance
between stars. In two consecutive frames of star images, the angle between any two true star vectors is
constant, while the angle between fake stars is probable not. Based on this rule, the elimination of fake
star points can be performed.

2.3. Accurate Matching of Corresponding Star Points

Matching the corresponding star points involves finding the position of the same star point in two
frames. By superimposing two consecutive frames of star images, take the star point belonging to the
second frame as the original star point. Around the original star point, find the matching star point
belonging to the first frame. The size of the matching window is an important parameter—a large
window will contain redundant star points while a small window will miss the matching star point.
In this paper, based on the length of the original star point, the optimal matching window is determined
to achieve accurate matching of the corresponding star points.

As shown in Figure 4, W is the distance between the centroids of the corresponding star points.
ωx,ωy, and ωz are the three-axis angular velocity of the star sensor. f is focal length of the lens. D is
pixel size of the image sensor. T is exposure time of the image sensor. t is the time between the end of
first frame exposure and the beginning of second frame exposure.
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When length-width ratio r is large, the star point is of long strip distribution in shape. In this case,
the velocity of the star point on image is L/T, where L is the length of the star point. W is calculated as

W =
L
T
·(T + t) (9)

When the length–width ratio r is small, the star point is of 2-D Gaussian distribution in shape, so
the error of L/T becomes large. In this case, the probability of the star point being a true star is high,
and the velocity of the star point on image is mainly determined by ωx,ωy, and ωz. The centroids of
the star points (x0, y0) and (xT+t, yT+t) satisfy

xT+t

yT+t

−L f

 = AT+t
·


x0

y0

−L f

 (10)

where L f = f /D. The attitude transformation matrix AT+t is

AT+t = I −ω(T + t) =


1 ωz(T + t) −ωy(T + t)

−ωz(T + t) 1 ωx(T + t)
ωy(T + t) −ωx(T + t) 1

 (11)

(xT+t, yT+t) is calculated as
xT+t =

x0+y0ωz(T+t)+L fωy(T+t)

[−x0ωy(T+t)+y0ωx(T+t)]/L f +1

yT+t =
y0−x0ωz(T+t)−L fωx(T+t)

[−x0ωy(T+t)+y0ωx(T+t)]/L f +1

(12)

According to the parameters of the star sensor in this paper,
∣∣∣−x0ωy(T + t) + y0ωx(T + t)

∣∣∣� L f ,
Equation (12) can be simplified as{

xT+t = x0 + y0ωz(T + t) + L fωy(T + t)
yT+t = y0 − x0ωz(T + t) − L fωx(T + t)

(13)

In this case, W is calculated as

W =

√
(y0ωz + L fωy)

2 + (x0ωz + L fωx)
2
·(T + t) (14)

In this paper, according to the parameters of the star sensor and experimental result, r = 1.6 is
taken as the threshold to judge whether a star point is of long strip distribution. For r > 1.6, take 1.2
times of the calculated W to ensure the allowance. For r ≤ 1.6, set ωx = ωy = ωz = 0.5◦/s, so that W
can contain all the star points of Gaussian distribution. Therefore, W is calculated as

W =


L
T (T + t) r > 1.6√
(y0ωz + L fωy)

2 + (x0ωz + L fωx)
2
·(T + t) r ≤ 1.6

(15)

When the window size W is large, it may contain other star points. For this case, it will be
processed in the elimination of fake stars. As shown in Figure 5, two star images are matched according
to the above algorithm, where the Gaussian distribution star points are located in blue matching
windows, and the long strip distribution star points are located in green matching windows.
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2.4. Rapid Elimination of Fake Stars

Most existing star identification algorithms construct features in a single frame through angular
distance between stars or geometric distribution of stars, then find corresponding matching stars in the
navigation star database. The amount of navigation star database is huge. When the number of fake
star points is too large, the matching search time will increase non-linearly and sharply, and a large
number of mismatches will occur.

In two consecutive frames of star images, the angle between any two true star vectors is constant,
while the angle between fake stars is probable not because of their fast and irregular movement.
Based on this principle, combined with the evaluation of the authenticity of star points and the
accurate matching of corresponding star points in two frames, the final elimination of fake stars can be
completed rapidly.

Suppose the angular distance between the two star points in the first frame is d, and the angular
distance between them in the second frame is d′. If |d− d′|< δ (in this paper, δ = 0.002), the two
star points satisfy the principle of invariant angular distance. As shown in Figure 6, the elimination
algorithm includes the following three steps:
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(1) Find True Star Windows:

The star points have been sorted according to the authenticity in C1 and C2. Therefore, from
i = 1, 2, · · · , N − 1 and j = i + 1, · · · , N, verify whether i, j satisfy the invariant angular distance. If they
satisfy, go to step (2).

(2) Confirm True Star Windows:

Although the star windows i, j satisfy the invariant angular distance, they need further verification
by the triangle rule. That is, from k = j+ 1, · · · , N, confirm whether i, k and j, k both satisfy the invariant
angular distance. If i, j, k satisfy the triangle rule, it indicates they are true star windows. If not until
k = N, return step (1) and execute from j + 1.

(3) Verify Other Windows:

Based on i, j, k, the remaining windows of C1 and all windows of C2 are verified by the triangle
rule. If the verified window satisfies the invariant angular distance, it is a true star window, otherwise
it is a fake star window.

In step (1) to step (3), if there are two or more matching star points in the window, the algorithm
will first use the star point whose length is close to the original star point. If this star point does not
satisfy the invariant angular distance, the algorithm will use another matching star point.

In step (1) and step (2), if there are no i, j, k that satisfy the invariant angular distance in C1,
the algorithm will add C2 to the matching windows queue.

3. Experimental Results and Discussion

3.1. Simulation Experiment

3.1.1. Parameter Selection

We developed a simulation program which can generate star images with different number of
fake stars, and with variable position noise and magnitude noise. Table 1 lists the key parameters:

Table 1. Parameters of the Simulation Program.

Parameter Value

Field of view ∅10◦

Pixel size 0.0055 mm
Focal length 64.374 mm
Resolution 2048 × 2048 pixels

Max magnitude 5.5

In the simulation experiment, the exposure time of the simulation program is set to 100 ms.
The standard deviation of position noise is set to 1.0 pixel, and the standard deviation of magnitude
noise is set to 0.5 Mv. The number of fake stars is 20%, 40%, 60%, 80%, 100%, 120%, 140%, 160%, 180%,
200%, 220%, 240%, 260%, 280%, 300%, 320%, 340%, 360%, 380%, and 400% of the number of true stars,
and 10,000 groups (each group contains two frames) of star images with random angle are generated
in each case. The experiment is carried out on Windows 10, Core i3-8100@3.6G, and MATLAB R2016a.

The parameters of the proposed algorithm are listed in Table 2.

Table 2. Parameters of the proposed algorithm.

Parameter Value

Threshold r in Equation (15) r = 1.6
Angular velocity in Equation (15) ωx = ωy = ωz = 0.5◦/s

Threshold to judge invariant angular distance δ = 0.002
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3.1.2. Fake Star Elimination Experiment

The experiment is carried out on 20 × 10,000 groups of simulated star images, and the elimination
ratio and elimination time of each group are determined. In this experiment, the elimination ratio is
the percentage of the eliminated fake stars to all fake stars. The elimination time includes evaluating
the authenticity of star points, matching corresponding star points, and eliminating fake stars.
The experimental results are shown in Figure 7.
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As shown in Figure 7, the fake star elimination ratio of the proposed algorithm is quite high, and
the elimination time increases slowly with increasing number of fake stars. Even if the number of
fake stars reaches four times that of true stars, the elimination ratio is still more than 80% and the
elimination time is only 1.2 ms.



Sensors 2019, 19, 3838 10 of 13

3.1.3. Contrast Experiment

In order to better analyze the characteristics of the proposed algorithm, the hash map algorithm [13]
and the pyramid algorithm [5] were adopted as references. As the proposed algorithm is a preprocessing
algorithm for star identification, we chose the pyramid algorithm for subsequent star identification.
Then it can be compared with the hash map algorithm and the pyramid algorithm. The later experiments
are all in this way.

The experiment is carried out on 20× 10,000 groups of simulated star images, and the identification
ratio and the identification time of the proposed algorithm with the hash map algorithm and the
pyramid algorithm were compared. In this experiment, the identification ratio is the ratio of getting
the correct attitude, and the identification time is the time consumed from the exposure of the star
sensor to the calculation of attitude. The experimental results are shown in Figure 8.
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As shown in Figure 8, with the number of fake stars increasing, the identification ratio of the hash
map algorithm and the pyramid algorithm decreases significantly, while the proposed algorithm is
almost unaffected. Even if the number of fake stars reaches four times that of true stars, the identification
ratio of the proposed algorithm can still reach more than 96%. Since the proposed algorithm needs
two consecutive frames of star images, the identification time is longer than that of the other two
algorithms when the number of fake stars is small. However, with the number of fake stars increasing,
the identification time of the proposed algorithm is much lower than that of the hash map algorithm
and the pyramid algorithm.

3.2. Experiment on Actual Star Images

The parameters of the proposed algorithm are the same as those in Table 2. The parameters of
the hash map algorithm are the same as those in [13]. The parameters of the pyramid algorithm are
the same as those in [5]. The parameters of the star sensor are the same as those in Table 1. The CPU
running the algorithms is an ARM processor.

Since the missile is too fast, there is no time to transmit the plume star images to the ground.
In order to fully test the proposed algorithm, several actual star images obtained at different angular
velocity are superimposed according to random position. In this way, an actual plume image can be
simulated more practically and sufficiently.

At the Xinglong Astronomical Observatory of Chinese Academy of Sciences, the star sensor is
mounted on the three-axis turntable, and several groups of star images are taken at different angular
velocities. Table 3 is an example.

Table 3. Star images at different angular velocity.

1 2 3 4 5

ωx(◦/s) 0.05 0.6 0.2 −0.7 1.8

ωy(◦/s) 0.05 0.3 1.3 0.7 −1.2

ωz(◦/s) 0 0 0 0 0

According to Table 3, star image 1 is taken as the datum, the star points in images 2–5 are extracted,
and these star points are superimposed into star image 1 according to random position as fake star
points caused by the plume, thereby generating a plume star image as shown in Figure 9.
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Based on the above method, 100 groups of star images are generated, and these images are read
into the chips of the star sensor which is separately running the proposed program, the hash map
program, and the pyramid program. The average processing time and the identification ratio in each
case are compared as shown in Table 4.

Table 4. The experimental result of generated plume images.

Average Processing Time Identification Ratio

Proposed + Pyramid 112 ms 96%

Hash Map 106 ms 67%

Pyramid 223 ms 65%

As shown in Table 4, the identification ratio of the hash map algorithm is 67%, which shows that
it identified 67 images correctly in total. The identification ratio of the pyramid algorithm is only 65%,
and its average processing time is too long. The average processing time of the proposed algorithm is
112 ms and the identification ratio is 96%, which is much better than the other two algorithms.

4. Conclusions

A plume noise suppression algorithm based on star point shape and angular distance between
stars is proposed in this paper. The proposed algorithm needs two consecutive frames of star images,
and extracts the shape features of star points by principal component analysis. Then the authenticity
of star points is evaluated based on length–width ratios, and accurate matching of corresponding
star points is completed. Finally, the fake star points are eliminated rapidly based on the principle of
invariant angular distance between true stars.

Experimental results on both simulation images and actual star images show that, when there is a
large amount of fake star points in the image, the star sensor based on the proposed algorithm is not
only robust, but also fast in computation. Therefore, the proposed algorithm has more advantages for
missile navigation guidance.
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