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Abstract: Adaptive waveform design for cognitive radar in the case of extended target detection under
compound-Gaussian (CG) sea clutter is addressed. Based on the CG characteristics of sea clutter, the
texture component is employed to characterize the clutter ensemble during each closed-loop feedback
and its estimation can be used for the next transmitted waveform design. The resulting waveform
design problem is formulated according to the following optimization criterion: maximization of
the output signal-to-interference-plus-noise ratio (SINR) for sea clutter suppression, and imposing a
further constraint on sidelobes level of the waveform autocorrelation outputs for decreasing the false
alarm rate. Numerical results demonstrate the effectiveness of this approach.
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1. Introduction

Radar detection in an ocean environment is particularly challenging due to the non-Gaussian
traits of sea clutter returns as viewed by high-resolution radars and/or at low grazing angles [1].
Most traditional studies only focus on adaptive detection algorithms at the receiver end, but ignore the
adaptive adjustment of transmitter’s illumination of the environment. As suggested by an idea called
cognitive radar [2], which can adjust a transmitter’s illumination via dynamic closed-loop feedback,
the investigation of adaptive waveforms design capable of enhancing target as well as suppressing
clutter provides an efficient approach for improved radar performance. The superior performance of
cognitive radar is achieved by merging knowledge-aided processing and full radar adaptivity into a
real-time embedded computing architecture that use the information ahead [3]. The full radar adaptivity
is also on both the transmit and receive sides. This method can significantly reduce clutter residue.

Waveform design is also important for radar detection where the radar might suffer performance
degradation if waveform fails to meet radar requirement, like exhibiting time-varying features [4,5].
In existing work on waveform design, the clutter is almost assumed to follow a Gaussian distribution.
One representative waveform design technology for target detection is signal-to-interference-plus-noise
ratio (SINR) criterion as shown in [6,7], and an analytical solution for the optimal waveform spectrum
based on SINR has been derived in [8]. However, the Gaussian assumption fails to handle clutter
returns emerging non-Gaussian traits such as the increased occurrence of higher spikes or amplitudes.
To overcome this condition, a compound-Gaussian (CG) process is introduced [9] and several models
for the CG process have been developed [10,11]. Recently, in [12], the waveform optimization for
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improved detection under sea clutter has been considered and the transmitted waveform is adapted
by minimizing its autocorrelation function where the clutter is estimated to be strong for clutter
suppression where sea clutter returns are modelled as a CG process in this case, but this algorithm
can only be used for detecting a point target. As for detecting the extended target, more adaptions are
needed to be conducted like using several models for useful target echo [13], assuming the availability
of secondary data free of useful signals [14], using a modified generalized likelihood ratio test without
resorting to secondary data [15], and some combination [16].

In this paper, we attack a novel waveform design algorithm, namely, low range sidelobes of
cognitive radar (LRSCR), for extended target detection in sea clutter backgrounds. Herein, the clutter is
considered statistically as the CG model and the transmitted waveform is adapted based on the longer
correlation characteristic of the texture. Moreover, an improved waveform design algorithm takes the
output SINR improvement as well as peak sidelobes level (PSL) characteristics into consideration.

2. Problem Formulation

Consider waveform agility in a radar scene where there is an extended target embedded in CG
sea clutter. The radar transmits N identical pulses in a dwell, and the incidence waveform agility is
between dwells rather than on a pulse-to-pulse basis. A brief introduction of the cognitive radar system
is necessary for the proposed waveform adaptation for extended target detection. The block diagram
of cognitive radar via the feedback loop is illustrated in Figure 1, which can be described as follows:
firstly, the transmitter transmits an optimal waveform, which is back scattered by the surrounding
environment; secondly, the receiver estimates its environment parameters based on these returns;
finally, the next transmitted signal is designed based on the current estimation results obtained by the
feedback loop. For each closed loop operated by cognitive radar, the environment information can be
estimated online and the so-estimated value in the current loop can be used as prior knowledge for
waveform adjustment of the next loop. The prior knowledge includes the target impulse response s(t),
sea clutter c(t) with covariance matrix Σ, and the noise v(t), which will be used in later calculations.

Figure 1. Black diagram of cognitive radar via the feedback loop.

Subsequently, we focus on sea clutter statistics, which are key for adaptive waveform design.
According to the CG model, N-dimensional clutter vector ci in the ith range cell can be given as:

ci =
√

τi · ηi (1)

where τi is the texture component, ηi ∼ CN(0, η) is the speckle component with normalized covariance
matrix η. Specifically, the texture represents the local clutter power with longer decorrelation time,
which ensures that texture values for all clutter scatterers in a range cell remain identical during a
dwell, as well as correlated between successive dwells. So in our optimization, the texture can be
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exploited to characterize the clutter ensemble over a dwell. Otherwise, the sea clutter impulse response
series can be represented by the square root set of the texture at finite-number range cells.

Therefore, based on the CG characteristics of sea clutter, an investigation of intrapulse agility
waveforms, which rely on the longer decorrelation time of the texture component, is feasible for
improved extended target detection in sea clutter at least one dwell time by a cognitive radar system.

3. Waveform Design

3.1. The Expected Optimum Waveform Spectrum Design

Now consider the development of an adaptive waveform design algorithm for improved target
detection under sea clutter, as shown in Figure 2. Let x(t) be a single pulse waveform having finite
total energy Ex with finite-duration T and finite-bandwidth W. The extended target echo is corrupted
by clutter and receiver noise. Define X( f ) as the Fourier transform of x(t) and σ2

s ( f ), σ2
c ( f ), σ2

v ( f ) as
the spectral variance of the target, clutter and noise impulse response respectively, which has been
obtained in the cognitive radar loop as prior knowledge. Note that the target spectral mean is not
equal to zero. The receiving filter frequency response is H( f ). The output SINR at instant t0 is:

(SINR)t0 =

∫
W |X( f )|2σ2

s ( f )|H( f )|2d f∫
W L( f )|H( f )|2d f

(2)

where L( f ) = |X( f )|2σ2
c ( f ) + σ2

v ( f ) According to Cauchy-Schwartz inequality, when a matched
filter satisfies:

|H( f )| = k
√

σ2
s ( f )|X( f )|

|X( f )|2σ2
c ( f ) + σ2

v ( f )
(3)

where k is a nonzero constant, the output SINR achieves the maximum at instant t0 as:

(SINR)t0 max =
∫

W

|X( f )|2σ2
s ( f )

|X( f )|2σ2
c ( f ) + σ2

v ( f )
d f (4)

Discretizing the frequency band into K sub-bands, the waveform optimization problem of
maximization of the output SINR over the waveform spectrum can be written in the following terms:

max
|X( fk)|2

=
K−1

∑
k=0

|X( fk)|2σ2
s ( fk)

|X( fk)|2σ2
c ( fk) + σ2

v ( fk)

s.t.
K−1

∑
k=0
|X( fk)|2 = Ex

|X( fk)|2 ≥ 0, k = 0, 1, ..., K− 1

(5)

So the expected optimum waveform spectrum can be obtained by solving Equation (5) as:

|X( fk)|2 = max

[
0,

√
σ2

s ( fk)σ2
v ( fk)√

σ2
c ( fk)

(A−

√
σ2

v ( fk)

σ2
s ( fk)

)

]
, k = 0, 1, ..., K− 1 (6)

where A is a constant determined by the transmitted waveform energy Ex shown in Equation (7) [8].

K−1

∑
k=0

max

[
0,

√
σ2

s ( fk)σ2
v ( fk)√

σ2
c ( fk)

(A−

√
σ2

v ( fk)

σ2
s ( fk)

)

]
= Ex (7)

Denoted by the power spectral density (PSD) Popt = [|Xopt( f0)|2, |Xopt( f1)|2, ..., |Xopt( fK−1)|2]T ,
where (·)T denotes transpose, the so-obtained waveform is the optimum solution providing the best
detection performance, without any control of the waveform shapes or forms.
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Figure 2. Model of the received signal. x(t) is the transmitted signal, s(t) is the extend target impulse
response with the spectral variance σ2

s ( f ), c(t) represents the clutter with the spectral variance σ2
c ( f ),

v(t) represents ambient noise with the spectral variance σ2
v ( f ), r(t) is the received baseband signal,

h(t) is the receiver-filter, and y(t) is the receiver output.

3.2. Design of the LRSCR Waveform

To make full use of the transmitter power, a phase-modulated (PM) waveform x = [x0, x1, ..., xN−1]
T

is adopted in discrete time sampling given by x = aejφ, where a is a constant determined by the transmitter
power, and φ denotes the phase vector. Correspondingly, the spectrum of the designed waveform can be
expressed as:

X(k) =
N−1

∑
n=0

xne−j 2πnk
K , k = 0, 1, ..., K− 1 (8)

To clarify Equations (5) and (8), both X(K) and X( fK) represent the spectrum but the former
one is for the discrete time sampling and later one is for the continues signal. The proposed LRSCR
waveform for improved target detection performance can be designed subject to the key items as:
(1) maximization of the output SINR, and (2) lower range sidelobes level.

Denoted by PSD Popt = [|X(0)|2, |X(1)|2, ..., |X(K− 1)|2]T , the designed waveform subjected to
item (1), whose goal is to find transmitted waveform that maximizes the output SINR, can be optimized
equivalently by minimizing the value of mean-square error as:

min
x
||Px − Popt||22 (9)

where || · ||22 denotes Euclidean 2-norm.
Note now that the optimization problem (9) only considers maximizing the output SINR.

One serious problem is that these SINR-based waveforms are always deficient in range sidelobes
performance. In most real maritime environments, high sidelobes will result in increasing false alarm
rates, or masking a weak reflection from another target. For this reason, there is a key requirement to
impose another sidelobes constraint on the optimal waveform. The waveform autocorrelation function
can be expressed as:

Rx(l) =

{
∑M−1

n=l xmx∗m−l , l = 0, 1, ..., M− 1

R∗x(−l), l = −(M− 1),−(M− 2), ...,−1
(10)

where (·)∗ denotes conjugate. Consider PSL for sidelobes performance evaluation, the cost function of
minimizing the PSL can be given as:

min
x

M−1
max

l=−(M−1) l 6=0
{|Rx(l)|} (11)
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Combining Equations (9) and (11) provides waveform optimization problem as:

min
x
{β||Px − Popt||22 + (1− β)

M−1
max

l=−(M−1) l 6=0
|Rx(l)|} (12)

where β ∈ (0, 1) denotes weight parameter. Observe that the problem (11) is a multidimensional
nonlinear optimization and can be solved by genetic algorithm. The genetic algorithm used in this
paper followed the same process in a previous study [17]. The major complexity of the proposed
algorithm is restricted by the genetic algorithm that searches for the best solution. The more iterations it
runs, the better results it can get. Therefore, it is a trade-off between computation time and performance.
After this optimum waveform is transmitted, its clutter suppression performance can be measured by
the output SINR given as:

SINRout =
max(|ys(t)2|)

var(yc(t)) + var(yv(t))
(13)

where ys(t), yc(t), and yv(t) denote the filter outputs of the target, clutter and noise respectively, var(·)
denotes variance.

4. Performance Assessment

We present a Monte Carlo simulation to demonstrate the detection performance of the proposed
LRSCR waveform, also in comparison to the SINR-based waveform in Equation (9) without sidelobes
constraints (denoted by SINR-based waveform) and to the linear frequency modulated (LFM)
waveform. Firstly, the expected optimum waveform spectrum is obtained, then the detection
characteristics of these three signals are compared; both the output SINR improvement and PSL
characteristics are under consideration for waveform evaluation.

4.1. Simulation Setup

The experimental radar system parameters are as follows: radar carrier frequency 1 GHz, pulse
number N in a dwell is 10, pulse duration 1 µs, bandwidth 100 MHz, sampling rate 200 MHz;
each transmitted pulse has unit energy. Consider a nonfluctuating extended target with impulse
response hs(t) = ∑L−1

l=0 αlδ(t − l) is distributed in L = 3 range cells with l = 20, 40, 60, where αl
denotes target amplitude. Suppose sea clutter is modelled as CG process with covariance matrix
Σ given by [Σ]ij = 0.9|i−j|, where 1 ≤ i, j ≤ N are the pulses index in a dwell, and texture τis
followed a Gamma distribution with shape parameter v and power mean value σ2

1 , i.e., f (τk) =

( v
σ2

1
)vτv−1

k e
−vτk

σ2
1 /Γ(v), where Γ(·) denotes the Gamma function. The noise is modelled as white noise

generated as v ∼ CNN(0, σ2
2 IN). Define the input signal-to-clutter ratio (SCR) and clutter-to-noise

ratio (CNR) as SCRin = max(|hs(n)|2)/σ2
1 , CNRin = σ2

1 /σ2
2 . Here the input SCR and CNR are set to

20 dB and 10 dB respectively. Finally, denoted by , the vector of matched-filtered outputs in the th
range cell is detected by an adaptive detector given by λ = |pHΣ−1yi|2/(pHΣ−1 p)(yH

i Σ−1yi), where
p denotes target steering vector p = [1, ejθ , ..., ej(N−1)θ ]T/

√
N and θ denotes a constant phase shifting,

yi is the receiver output of the ith range cell under test, and (·)H denotes conjugate transpose. In a
dwell period, a plot of typical responses of the extended target and sea clutter is shown in Figure 3.

4.2. The Expected Optimum Waveform Spectrum

Based on the maximum output SINR rule, the expected optimum waveform spectrum can be
obtained by Equation (6). Figure 4 demonstrates the spectral variance of the expected optimum waveform,
target and sea clutter. As can be seen from Figure 4, the expected transmitted waveform concentrated
most of its energy into frequency components where the target is strong and the clutter is weak, while
dispersing less energy to both weak target and strong clutter frequency bands. Obviously, the expected
optimum waveform spreads the majority of its energy into the regions where the target’s frequency
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response is larger relative to the clutter’s in order to enhance the output SINR for improved target
detection performance.

Figure 3. The impulse responses of the extended target and sea clutter.

Figure 4. The spectral variance of the expected optimum waveform, target and sea clutter.

4.3. Detection Performance Analysis

Based on the expected optimum spectrum solution in Figure 4, the SINR-based waveform and
proposed LRSCR waveform (β = 0.5) can be obtained by solving Equations (9) and (12), respectively.
Evidently, as demonstrated in Figure 5, the spectrum of SINR-based signal (Figure 5a left) agrees well
with the expected optimum spectrum, but showing high autocorrelation function sidelobes (Figure 5a
right); and LRSCR waveform shows low autocorrelation function sidelobes (Figure 5b right), but at the
expense of certain waveform spectrum matching loss with the expected optimum spectrum (Figure 5b
left). Furthermore, the three signals, i.e., the LRSCR, SINR-based and LFM waveforms, are illuminated
into the scenario depicted in Figure 3. A plot of range profiles for these three waveforms is illustrated
in Table 1, and Figure 6 on detection performance lists the corresponding output SINR and PSL.

As expected, in Figure 6a the LRSCR waveform with output SINR 21.1 dB and PSL −23.8 dB can
enhance the energy in interesting target cells, as well as restrain the energy in undesired clutter cells
for improved target detention. In Figure 6b, the SINR-based waveform also provides a high output
SINR 21.0 dB, but the presence of high range sidelobes −1.2 dB of this waveform results in some
false targets, which necessarily increases false alarm rate and significantly impacts radar detection
performance. In Figure 6c, the common LFM waveform with output SINR 18.9 dB and PSL −13.5 dB
exhibits a moderate behavior between the LRSCR and SINR-based waveforms.
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Table 1. Performance comparison for considered waveforms.

Waveforms SINRout PSL (dB)

LRSCR 21.1 −23.8
SINR-based 21.0 −1.2

LFM 18.9 −13.5

Figure 5. The waveform spectrum and autocorrelation function.

Figure 6. The range profile for considered waveforms.
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Figure 7 illustrates the probability of detection (Pd) versus the probability of false alarm (Pfa) for
the LRSCR, SINR-based and LFM waveforms. It is evident that the LRSCR signal provides a detection
performance better than that of the other two signals as confirmed by Figure 6, while the SINR-based
waveform presents increasing false-alarm rate. Apparently, the LRSCR signal can obtain high output
SINR for clutter restraint and low range sidelobes for false-alarm rate reduction, both of which will
further improve target detection performance in clutter.

Figure 7. Pd versus Pfa for considered waveforms.

5. Conclusions

Adaptive waveform design for extended target detection in cognitive radar frameworks is
addressed under CG sea clutter, proposing a novel design algorithm for maximization of output
SINR subject to low sidelobes levels. The longer decorrelation time of the texture component
within successive dwell time ensures the feasibility for intrapulse agility waveforms in cognitive
radars to improve target detection performance in a maritime environment. Based on the expected
waveform spectrum over the maximization of the output SINR, an optimization method which designs
transmitted waveforms minimizing the mean square error in locating the expected waveform spectrum
in conjunction with restraining range sidelobes is performed to yield optimal waveforms that have
both good clutter suppression performance and low sidelobes levels. Simulation results illustrated
that the proposed waveforms can guarantee good clutter suppression performance as well as sidelobes
characteristics, and achieve a better detection performance than existing waveforms.
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Abbreviations

The following abbreviations are used in this manuscript:

CG Compound Gaussian
SINR Signal to Interference Plus Noise Ratio
LRSCR Low Range Sidelobes of Cognitive Radar
PSL Peak Sidelobes Level
PM Phase Modulated
PSD Power Spectral Density
LFM Linear Frequency Modulated
SCR Signal to Clutter Ratio
CNR Clutter to Noise Ratio
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