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Abstract: Automation is an inevitable trend in the development of tunnel shotcrete machinery.
Tunnel environmental perception based on 3D LiDAR point cloud has become a research hotspot.
Current researches about the detection of tunnel point clouds focus on the completed tunnel with
a smooth surface. However, few people have researched the automatic detection method for steel
arches installed on a complex rock surface. This paper presents a novel algorithm to extract tunnel
steel arches. Firstly, we propose a refined function for calibrating the tunnel axis by minimizing the
density variance of the projected point cloud. Secondly, we segment the rock surface from the tunnel
point cloud by using the region-growing method with the parameters obtained by analyzing the
tunnel section sequence. Finally, a Directed Edge Growing (DEG) method is proposed to detect steel
arches on the rock surface in the tunnel. Our experiment in the highway tunnels under construction
in Changsha (China) shows that the proposed algorithm can effectively extract the points of the edge
of steel arches from 3D LiDAR point cloud of the tunnel without manual assistance. The results
demonstrated that the proposed algorithm achieved 92.1% of precision, 89.1% of recall, and 90.6% of
the F-score.
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1. Introduction

In recent years, the demand for intelligent construction machinery used in a harsh environment
has been constantly increasing [1]. In the process of shotcrete on the inner surface, since there is
low visibility due to the presence of dust (Figure 1a), intelligent shotcrete machinery is urgently
needed to totally replace manual work. Therefore, it is necessary to conduct three-dimensional (3D)
reconstruction and feature detection algorithms for the shotcrete environment of the tunnel. Initial
shotcrete has been used on the rock surface [2], which is the surface with rock masses of the tunnel
after blasting. As shown in Figure 1b, multiple supporting structures, such as steel arches and steel
wire mesh, may be installed on the rock surface [3], whereas the other two kinds of surfaces (shotcrete
surface and working surface) are smoother with simple structures. Therefore, the rock surface is one of
the most complex sections in the tunnel surface point cloud (Figure 1c) to realize 3D reconstruction
and detection. To ensure that the sprinkler can be perpendicular to the surface in the process of
shotcrete, the orientation of the sprinkler should be adjusted at the edge of the steel arches (Figure 1d).
Therefore, the position of the steel arches needs to be extracted in advance. Since the steel arch area
has continuous geometric characteristics, it can be considered as a 3D edge feature according to the
definition of the 3D edge of Ni et al. [4]. In Figure 2, a longitudinal section is shown to be taken
from the tunnel point cloud along the tunnel direction to show the local structure of the steel arch
more clearly.
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Figure 1. The support structure in the tunnel. (a) The environment of shotcrete in the tunnel.
(b) The structures of the initial shotcrete area. (c) Point cloud of steel arches. (d) Point cloud of
three kinds of surfaces.

Figure 2. A longitudinal section taken from the tunnel point cloud.

The structure of the longitudinal section is shown in Figure 3. The point cloud of the steel arch
areas (the red points in Figure 3) has unique characteristics, which are different from other kinds of
feature lines, such as the road edge [5,6], building outline [7,8], and components edge [9]. The most
significant geometric feature of steel arches is that it is a standard I-steel with a smooth surface and
a regular arch corner. Besides, the outline of the steel arch varies with the thickness of the concrete
cover, and the outline of the exposed steel arches are clearer than that of the steel arches covered by
concrete. Since the point cloud of each arch area is a continuous line of the point cloud (as shown
in Figures 1d and 3), the bottom edge of the arch can be viewed as an exterior boundary [10] of
the point cloud.
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Figure 3. Steel arch areas on the longitudinal section of a tunnel. The red point clouds are the section
of the arch areas.

1.1. Related Works

Research related to tunnel axis: In current research, the LiDAR is usually set at an uncertain
position in the tunnel in the scanning process. Therefore, obtaining the tunnel line, which is parallel to
the tunnel axis in every position of the tunnel, is a common problem. Researchers generally obtain
the tunnel line first and then analyze the tunnel profiles perpendicular to the line. The papers [11–13]
specialized in extracting tunnel axis and splicing the tunnel point cloud. Zhu et al. [14] extracted the
tunnel line by fitting one circular surface. Kang et al. [13] extracted the tunnel line by obtaining the
middle line parallel to both sides of the tunnel. However, their methods are only suitable for round
tunnels with a smooth surface, which are highly sensitive to the shape of the tunnel. They are not
suitable for tunnels with multiple types of shapes and those with a large number of point clouds
missing. Zhou et al. [15] extracted the track line based on 3D linear fitting for the rail tunnel point
cloud after slicing, to obtain the central line of the tunnel based on the track line. The segmented
projection method proposed by Gonçalves et al. [16] was sensitive to discrete points, and manual
adjustment of outliers was required. The tunnel sections can be used to detect the profile of the tunnel
section, but it is not enough to complete more flexible 3D feature recognition. Han et al. [17] believed
that there was uncertainty in obtaining 2D tunnel profile through step-size projection of 3D data, which
could result in the information loss of 3D LiDAR data. Therefore, we proposed an axis extraction
algorithm based on Rotational Projection Density Variance (RPDV) to detect the tunnel axis not based
on fitting the overall geometrical outline of the tunnel. Contrary to the above method, the proposed
algorithm has good robustness to the tunnel profile shape.

Research related to rock surface: In order to reduce computational complexity and improve the
steel arches extraction accuracy, the rock surface should be extracted in advance. Related research
focuses on the volume calculation of the overbreak and the blasting characteristics of the rock
surface [2,18,19]. The research about tunnel feature detection focus on the underground surface
monitoring and the deformed cross-section of the completed tunnel [11,15,16]. For the treatment of
disordered, rough, and multiple types of point clouds, researchers usually visualize and store them for
post-processing by interactive software [16,20–22], which is not suitable for automated construction
scenarios. Lai et al. [21] proposed a new method for building an index of a point cloud of multiple
tubular types of curved surfaces similar to a tunnel. They remolded the 3D grid of a mine roadway
and projected it onto a 2D plane to output a uniform grid index of a tunnel point cloud [21]. This
method requires user interaction to achieve a more uniform rasterization effect. Previous research on
rock surfaces rely on man-machine interaction and are mainly used in post-processing. We proposed
Differential Analysis for the Section Sequences of the Tunnel point cloud (DASST) method for rock
surface segmentation to narrow the search area of steel arches, which applies to the construction site
without manual parameter regulation.

Research related to tunnel supporting structure: Former research has usually studied the rock
surface of the tunnel or the lining surface, while other structures installed manually in tunnels
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are generally removed as noise. Cheng et al. [23] designed an angle-based morphology-related
filtering method, which automatically and indiscriminately removing all non-lining points from
non-circular tunnel sections. Mah et al. [24] explored the removal of steel mesh in tunnel surface
data, and adopted the Principal Component Analysis (PCA) method, analyzing the local area of the
network without considering the shape type of the whole tunnel. These previous studies on tunnel
cross-section detection usually adopted a semi-automatic method, which requires manual adjustment
and modification of algorithm parameters in the processing process. Elberink et al. [25] researched
the automatic extraction algorithm of multiple parallel rail tracks, which had similar outlines with
the tunnel steel arches. The rail tracks are built on the flat ground, while the tunnel steel arches are
installed around the tunnel walls. Du et al. [26] proposed a gradient statistical method to determine
the mileages of the circular segment joints by the histogram statistical method and the peak detection
method. This method relies on selecting appropriate angular intervals with fewer appendages to
improve the detection accuracy [26]. Since there are rare researches about steel arches extraction,
our research has innovative value in regard to the theories and current practices. The Directed Edge
Growing (DEG) method using the local normal saliency as the evaluation index was particularly
proposed for extracting steel arches from the rock surface.

1.2. Contributions

We studied the problem of extracting steel arches from a 3D LiDAR point cloud of variable
cross-section tunnels, such as round tunnels used for transportation and square tunnels used in coal
mines. We designed a novel steel arch extraction algorithm, including three steps based on the features
of the tunnel.

In the following, we calibrate the tunnel axis of the point cloud in the world coordinate system
by minimizing the Rotational Projection Density Variance (RPDV), which is profile-insusceptible to
the tunnel; then, we propose an adaptive threshold extraction algorithm to extract the rock surface by
using the Differential Analysis for the Section Sequences of the Tunnel point cloud (DASST); and finally,
we propose a Directed Edge Growing (DEG) method to extract the steel arches edge from the rock
surface, using the local normal saliency as the evaluation index of candidate points.

2. Data Collection and Dataset

2.1. Data Acquisition Scenario

The proposed algorithm was tested on a series of real datasets, including nine sets of tunnel point
clouds collected by the researchers in a road tunnel under construction in Changsha, Hunan province,
China. The tunnels scenario had just been blasted and installed with the supporting structures,
including steel arches. There were some limitations of data acquisition, as follows:

1. The tunnel was of low visibility due to the dusty air and lack of lighting conditions.
2. The 360 degree view or multiple view registration was needed for data scanning.
3. During data collection, the steel arch would inevitably block the rear tunnel wall and result in

missing data.
4. In the tunnel construction site, non-staff were rarely allowed to enter, and the residence time was

limited to avoid delaying the construction progress.

2.2. Acquisition Equipment

Traditional tunnel detection methods use the total station to locate several measurement points on
the steel arches [27]. Currently, some researchers use LiDAR (Light Detection and Ranging) and RGB
cameras for tunnel inspection [28]. Considering the working environment introduced in Section 2.1,
we selected LiDAR as the acquisition equipment by comparing the three instruments in Table 1.
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Table 1. Comparison of data acquisition methods.

Technical Specifications Advantages Limitations

Total Station High accuracy; Easy to locate Time-consuming; Sparse points
RGB cameras Dense and ordered point cloud Insufficient light source in tunnels
LiDAR High accuracy; Dense point cloud;

Less impact from harsh environment
Non uniform point cloud

In this paper, a 2D LiDAR electronically controlled by a motor with a low cost was selected to
scan and reconstruct the tunnel environment. Table 2 describes the 3D scanning device. The absolute
accuracy of the scanning device for the distance of 30 m was within 25 mm.

Table 2. Description of the 3D scanning device.

Laser Scanner
Scanning
Angular

Increment
Scan Range Scanning

Frequence Rotary Table
Rotation
Angular

Increment

Absolute
Accuracy of
the LiDAR

P+F R2000 UHD 0.05◦ 30 m 50 Hz PT-GD201 0.05◦ ±25 mm

The scanning device was set on a metal holder, which was randomly placed on the uneven ground
in the tunnel (Figure 4a) to collect the data set. In practice, the LiDAR is designed to be precisely
installed on the shotcrete machine (Figure 4b). The scanning data was used to realize the measurement
and perception of the tunnel environment for the shotcrete machine. Shotcrete machines are generally
oriented toward the working surface of the tunnel, and there is no need for precise parking locations.
In the scanning process, the mechanical arm stops moving, and one group of the original point cloud,
shown as Figure 5, will be obtained after the rotary table has been rotated once. The coordinate system
in Figure 5 is the right-hand coordinate system. The location of the point cloud relative to the shotcrete
machine is obtained by the installation position and the kinematics solution of the mechanical arm.

Figure 4. The LiDAR in the real tunnel. (a) Data collection site; (b) practical application.

Figure 5. Original point cloud.
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2.3. Pre-Processing of the Data

Voxel filtering and density-based spatial clustering of applications with noise (DBSCAN) [29]
were used in data preprocessing to de-noise the original data.

3D scanning of tunnels usually results in large amounts of point cloud data. Each group of this
data has around millions of unevenly distributed points. In order to ensure that the point cloud
had high density and uniform distribution, voxel filtering was first used with appropriate voxel size,
determined to be 26 mm according to the resolution (0.05◦) and scan range (30 m) of the sensor.

voxelsize = 30000 tan 0.05◦ ≈ 26 (mm) (1)

There were people, equipment, and other shielding in the tunnel, resulting in the miscellaneous
points and holes of the original point cloud (Section 2 Figure 5). Therefore, the DBSCAN method was
adopted to remove the miscellaneous points and retain Ptun

(
Rn×3

)
, the point cloud of the main part

of the tunnel, which includes the shotcrete surface, the rock surface, and the working surface. In the
DBSCAN method, firstly the threshold of the searching radius should be set for Kd-tree searching. To
avoid the point cloud of the steel arches from being removed, the searching radius should be set larger
than the thickness of the arches.

For a random seed point p, the points within the searching radius could be found to form a new
class Q1. Then, each point in class Q1 was used as a seed point to search more points within the
radius threshold to expand Q1, until Q1 can no longer add new points. For the remaining points in the
original point cloud, more classes Qi(i = 2, 3, ..., n) were obtained by repeating the same steps. The
number of clusters n is not necessary to specify in advance. Each new cluster starts at a randomly
assigned seed point in the remaining set of points and stops when there are no remaining points
relevant to the radius threshold. Then, Ptun

(
Rn×3

)
was the largest class in Qi.

2.4. Data Set and Basic Parameters

Figure 6 illustrates the parameters of the tunnel point cloud dataset. The parameter Wa is the
width between neighbouring arches, and B is the thickness of the arches.

Figure 6. Parameters of the tunnel data set.

Table 3 describes the tunnel point cloud data set with nine groups of the original point cloud
collected in Changsha (China).
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Table 3. Tunnel point cloud data.

ID Number of Points Number of
Pre-Processed Points a Length (mm) b Observation

Position (m) c Wa (mm) B (mm)

1 3,741,570 538,935 28,247 75.0 1000 200
2 3,858,638 555,716 27,305 77.5 1000 200
3 1,616,947 232,991 17,720 82.4 1000 200
4 1,439,603 207,476 18,289 87.8 1000 200
5 1,546,882 222,809 17,786 95.6 1000 200
6 1,600,717 230,533 19,756 100.5 1000 200
7 2,240,123 322,657 16,660 105.9 1000 200
8 1,709,192 246,209 20,360 109.8 1000 200
9 2,265,829 326,387 17,913 121.3 1000 200

a The voxel size is 26 mm. b The length of the group point cloud along the X-axis. c The observation position relative
to the exit of the tunnel.

When data collection was carried out on the new working surface, the last working surface was
completely covered by concrete, and the appearance was greatly changed. A different group of data
was collected in a different time and space, and each group of data was meaningful only to the current
temporary work surface. Therefore, different from the tunnel visualization and detection methods
with multiple measurement points that require registration [30], registration was not required between
groups of point clouds collected in this dataset. The observation location of the data was used for the
data sorting number.

3. Methodology

3.1. Overview of the Proposed Algorithm

The flowchart of the proposed steel arches extraction algorithm is shown in Figure 7. For the
pre-processed tunnel point cloud in Table 3, firstly, an evaluation index RPDV (Rotational Projection
Density Variance) was proposed to represent the dispersion degree of the tunnel point cloud projection.
By changing the projection angle to minimize the dispersion degree, the optimal angle of tunnel axis
correction was determined. In order to extract the rock surface from the tunnel point cloud, we sliced
the tunnel point cloud along the X-axis and used DASST to obtain an adaptive curvature and height
threshold. A curvature threshold was used with the region-growing to extract the rock surface of the
tunnel, and the height threshold was used after DBSCAN to remove the miscellaneous points on the
left and right walls of the tunnel. Then, the DEG method was adopted based on the local normal
saliency to extract and to fill steel arch edges.

Figure 7. The overview of the tunnel steel arches extraction.
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3.2. Orientation Calibration

The tunnel axis is the most commonly used reference line in tunnel construction and measurement,
and it is necessary to extract the tunnel axis first. Since the location of the LiDAR relative to the tunnel
is unknown, we first adjusted the origin position and tunnel axis of the original point cloud, and
normalized all point cloud data, as shown in Figure 8a. The tunnel bending could be ignored as the
length of the construction section is short. Since the tunnel had similar characteristics to the tensile
surface, the tunnel axis problem could be regarded as the problem of obtaining the stretching direction
of the drawing surface.

Figure 8. The theory of orientation calibration. (a) Initial and optimized stretching direction of the
tunnel. (b) Schematic diagram of the tunnel before the tunnel axis calibration. (c) Schematic diagram of
the tunnel after the tunnel axis calibration.

Ke et al. [31] promoted an orientation correction algorithm of minimizing the projective area of the
point cloud projected onto a plane, which was perpendicular to the stretching direction. The projective
area was calculated by summarizing the number of the effective cells Nvox (the squares occupied by
the projected point cloud in Figure 8b). As shown in Figure 8b, when the X-axis has a particular
inclination, the projected point will form a profile with a specific bandwidth. As shown in Figure 8c, if
the X-axis is parallel to the tunnel axis of the tunnel, the projected point cloud on the Y-Z plane will
theoretically form the outline of the tunnel.

Since Nvox was interfered by the holes and the working surface of the tunnel point clouds, the
method of Ke et al. [31] was not suitable for calibrating the tunnel point cloud collected in Section 2.
When the X-axis approach was taken to the tunnel excavation direction, the projected point cloud was
more concentrated near the theoretical profile. Therefore, the Rotational Projection Density Variance
(RPDV) was proposed for calibrating the X-axis by minimizing the density variance of the projected
point cloud.

Firstly, using the pass-through filter in the Z-axis direction and starting from the lowest point, the
point cloud with a certain height was taken out, and the least square plane was fitted to get the plane
equation of the ground. The height of the ground point cloud could take 500 mm, empirically. Then,
the Z-axis of the coordinate system was calibrated to be perpendicular to the ground. RPDV method
proposed in this paper was used to rotate the tunnel point cloud around the Z-axis until the X-axis
(tunnel axis) was parallel to the tunnel orientation.
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1. Projection matrix: Firstly, we calculated the center of mass pc(x̄, ȳ, z̄) of the tunnel point cloud
Ptun and shifted the coordinate origin of Ptun to pc. Mx in Equation (2) was the projection matrix
to project Ptun onto the Y–Z plane.

Mx =

0 0 0
0 1 0
0 0 1

 (2)

2. Rotation matrix: Let Mr be the rotation matrix that relates a certain vector v0 in R3, and the
corresponding rotated vector is v0

′
= Mrv0. Given the rotation angle θ and the rotation axis

n(u, v, w) (‖n‖ = 1), according to the rotation formula in the paper [32], the vector v0
′

can be
represented as Equation (3), and the geometrical interpretation is shown in Figure 9. The rotation
matrix Mr(n, θ) can be obtained from Equation (4).

v0
′
= (1− cos θ)(n · v0)n + v0 cos θ + (n× v0) sin θ (3)

Mr(n, θ) =

 u2(1− cos θ) + cos θ uv(1− cos θ)− w sin θ uw(1− cos θ) + v sin θ
uv(1− cos θ) + w sin θ v2(1− cos θ) + cos θ vw(1− cos θ)− u sin θ
uw(1− cos θ)− v sin θ vw(1− cos θ) + u sin θ w2(1− cos θ) + cos θ

 (4)

Figure 9. Geometrical interpretation of the rotation formula Mr(n, θ).

3. Voxelized point cloud: Based on the thickness of the tunnel wall installed with the arches, we set
B as the leaf size of voxelization. The unit vector parallel to the Z-axis is vz(0, 0, 1). We controlled
the rotation step of the variation angle θ, which determines the calibration accuracy and time for
computation. Then, the projected and voxelized point cloud of Ptun is Vtun(θ).

Vtun
(
θ
)
= voxel

(
Ptun Mr (vz, θ) Mx

)
(5)

4. The density variance of the point cloud: For a random voxelized point cloud V , we defined
voxel(V) as the function to voxelize V . During the sampling process, the number Nvox of
the effective cells and the number ni(i ∈ [1, Nvox]) of points contained in each effective
cell were obtained. Then, the Projection Density Variance (PDV) of V was defined as f (V)
as in Equation (6).

f (V) = ∑Nvox
i=1 ni

2

Nvox
(6)

5. The optimum angle θm: With the rotation of θ, we obtained the optimum angle θm in the
Rotational Projection Density Variance (RPDV) (Equation (7)) and the calibrated point cloud
Ptuns in Equation (8).

θm = arg max f
(
Vtun (θ)

)
(7)
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Ptuns = Ptun Mr
(
vz, θm

)
(8)

As shown in Figure 10, the projection density follows the change of θ and shows a periodicity of
360°. Due to the specific shape characteristic of the tunnel point cloud as a tensile surface, there
is usually only one obvious optimal solution when θ changes within a range of 360°, and the
optimal angle values are rarely affected by a small number of outliers.

Figure 10. Projection density f(V(θ)) varies with rotation angle θ (using the data ID1 in Table 3).

Since the X-axis of the LiDAR was initially directed to the working surface as illustrated in
Section 2, Figure 5, the deviation angle θ was set to

(
θ ∈

[
−π

2 , π
2
] )

. According to the method, the ideal
effect could be obtained by the tunnel axis calibration of the tunnel point cloud, as shown in Figure 11.

In addition, tunnel orientation calibration was used to realize tunnel slicing analysis and provide
basic orientation for steel arch extraction. It is an intermediate link and will not bring rigid movement
and error to the final result. After the post-processing, the transformed point cloud would be reversely
converted back to the original coordinate system.

Figure 11. Comparison of the tunnel point cloud before and after calibration: (a) Top view; (b) side view;
(c) front view.
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3.3. Extraction of Rock Surface

3.3.1. Curvature of the Point Cloud

The rock surface is the region of interest where the steels are installed. Convexity is the most
distinctive feature among three kinds of surfaces(Figure 1b). In current 3D point cloud processing
research, Principal Component Analysis (PCA) [33] is commonly used to estimate the normal and
curvature in each point of the point cloud. The research of Cao et al. [34] showed that PCA took
the shortest time compared with other normal estimation methods. Therefore, PCA is suitable for
large-scale point clouds. In this paper, we used the PCA method to process Ptuns. First, we searched
all points in the neighborhood of a point p within radius Wa and got k points. Then, the center point
pc(x̄, ȳ, z̄) of Ptuns was calculated. The covariance matrix Co was obtained from Equation (9).

Co =
1
k

k

∑
i=1

 (xi − x̄)2 (xi − x̄)(yi − ȳ) (xi − x̄)(zi − z̄)
(xi − x̄)(yi − ȳ) (yi − ȳ)2 (yi − ȳ)(zi − z̄)
(xi − x̄)(zi − z̄) (yi − ȳ)(zi − z̄) (zi − z̄)2

 (9)

Multiple eigenvectors and eigenvalues of the covariance matrix were calculated. Curvature was
computed by the minimum eigenvalue in Equation (10). In addition, the eigenvector corresponding to
the eigenvalue λmin is the normal vector N (p).

curv =

∣∣∣∣∣λmin(Co
>Co)

tr(Co
>Co)

∣∣∣∣∣ (10)

3.3.2. DASST Used for Region-Growing

The region-growing method is commonly used in point cloud segmentation. It obtains the
boundary line of the surface at the end of the dividing surface and applies to the flat surface,
such as buildings [35]. Therefore, the region-growing method was used to segment the tunnel
surfaces according to the curvature. Firstly, if the curvature between the current seed point and the
neighborhood point is less than the curvature threshold, it is classified into the same cluster. Then,
two clusters with a curvature difference less than the curvature threshold were merged into the same
cluster. The curvature threshold, which was the metric considered to measure the similarity in the
region-growing method, could be obtained by analyzing the curvature characteristics of the tunnel.

Since the order of the three kinds of surfaces along the tunnel axis was determined, we proposed
a Differential Analysis method for the Section Sequences of the Tunnel point cloud (DASST) to analyse
the characteristics of the tunnel. We took sections with the slice thickness Wd (Wd ∈ [voxelsize, Wa])
of Ptuns along the X-axis, and the Section Sequence of the Tunnel point cloud (SST) Pi(i = 1, 2, ..., n)
were obtained.

The parameter ¯curv(i) was used to mean the curvature of all k points in the section Pi.

¯curv(i) =
1
k

k

∑
j=1

curv(Pi(j)), (i = 1, 2, ..., n) (11)

The discrete sliding cumulative function g1(i, t1) with step size t1 was proposed to obtain the
curvature parameter Cm, which was used for region-growing.

g1(i, t1) =
t1

∑
k=0

[ ¯curv(i + k)− ¯curv(i)], (i < n− t1) (12)

In Equation (12), step size t1 was set according to the structure of the tunnel. Under real working
conditions, there are usually 2to3 arches located on the rock surface. To avoid the impact of the
dramatical changing of the curvature between neighbouring arches, t1 was set to 3Wa/Wd, which is
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close to the width along side the X-axis of the rock surface installed with the arches. Assuming the
optimal solution is m1, then Cm could be obtained in Equation (14).

m1 = arg max
1<m1<n−t1

g1(m1, t1) (13)

Cm =
1

m1

m1

∑
i=1

¯curv(i) (14)

The processing result of a group of real data is shown in Figure 12. As shown in Figure 12a,
the average curvature of shotcrete surfaces were obtained by preliminarily separating shotcrete surfaces
and rock surfaces by DASST. Since the cluster with the most points belonged to the shotcrete surface,
the curvature was used as the threshold to remove the shotcrete surface from the tunnel point cloud by
the region-growing method (Figure 12b). Since there were some miscellaneous points in the remaining
point cloud (Figure 12c), DBSCAN was used to remove the largest surface and preserve the remaining
point clouds Ptuns′ . As shown in Figure 12d, some redundant stone was piled up along the sides of the
tunnel, connected with the rock surface, and could not be removed by the DBSCAN method. Therefore,
the DASST method was used again to intercept the rock surface after DBSCAN processing.

Figure 12. The process of segmenting the rock surface. (a) Differential Analysis for the Section
Sequences of the Tunnel point cloud (DASST) result of the tunnel (using the data ID1 in Table 3 and
Wd = 100mm). DASST used for Ptuns: Sequence ¯curv(i) is the mean curvature of the tunnel sections;
g1(i, t1) is the discrete sliding cumulative function with step size t1; m1 is the optimal solution of
g1(i, t1). (b) region-growing; (c) removing the largest surface; (d) removing the discrete points.

From the DBSCAN-processed point clouds Ptuns′ , we obtained n2 sections Wd and calculated the
mean height of each section Pi,

h(i) =
1
k

k

∑
i=1

Pi.z(i), (i = 1, 2, ..., n2). (15)

Similar to Equation (12), another discrete sliding cumulative function g2(i, t2) with step size t2

was proposed to obtain the segmentation position m2 of the rock surface.

g2(i, t2) =
t2

∑
k=0

[h(i + k)− h(i)], (i < n2 − t2) (16)

m2 = arg max
1<m2<n2−t2

g2(m2, t2). (17)
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Actually, the height mutation between the rock surface and shotcrete surface of the tunnel usually
occurs within the distance of Wa. Therefore, the step size t2 was set to Wa/Wd. In Equation (18),
all points at the right of slice m2 on the direction of the X-axis form the point cloud Prock, which is
shown in Figure 13.

Prock = Ptuns′{Ptuns′ .x ≥ (max(Ptuns′ .x)−m2t2)} (18)

Figure 13. DASST result of the tunnel (using the data ID1 in Table 3 and Wd = 100mm). (a) DASST
used for Ptuns′ : Sequence h(i) is the mean height of the tunnel sections; g2(i, t2) is the discrete sliding
cumulative function with step size t2; m2 is the optimal solution of g2(i, t2); (b) three views of
segmentation results of the rock surface.

By selecting the maximum of functions g1 and g2, the corresponding independent variables m1

and m2 could be obtained. The purpose of obtaining the dividing point m1 and m2 was to remove
the useless edge and segment the region of interest (the rock surface). Since the boundary between
the shotcrete surface and the rock surface is obvious, the boundary position could be obtained by the
proposed algorithm stably. Therefore, this paper does not further explore the accuracy of the numerical
values of m1 and m2.

3.4. Extraction of Steel Arches

3.4.1. Feasible Methods

For 3D point cloud feature recognition, traditional methods generally extract the feature points
of point cloud and then use the geometric feature recognition method to extract the target areas
from the feature points. There is a common and basic method of tunnel section detection based on
profile tolerance [36] and tunnel axis [37], and several other methods can be considered for tunnel
steel arch extraction, such as Harris3D [38], SIFT3D [39], and NARF [40] feature the point detection
method. In addition, boundary detection [10] can be used to detect the points at the edge of the arch.
Currently, there are some convolutional neural networks that can be used for point cloud classification
and segmentation, mainly including: (a) multi-view based methods, such as MVCNN [41] and
GVCNN [42]; (b) voxel-based methods, such as VoxNet [43], PointGrid [44]; and (c) point cloud-based
methods, such as PointNet [45]. These methods do not apply to the arch extraction for the following
common reasons:

(a) There is a relatively smooth transition surface between the steel arch and the surrounding
tunnel wall, and the segmentation boundary is fuzzy. Theoretically, the current convolutional neural
network is difficult to segment the arch edge accurately.
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(b) The goal of steel arch detection is to obtain the outermost edge profile of yhe steel arch, which
has prominent geometric characteristics and is suitable for traditional point cloud detection methods.

These feasible methods introduced above are compared in Table 4.

Table 4. Comparison of the theory and limitations of different methods.

Method Method Principle Limitations

Tunnel axis
+ Profile
Radius [37]

Comparing the difference between the
distance from the real arch profile to the
tunnel axis and the distance from the
standard arch profile to the tunnel axis.

The method is sensitive to the interference
resulted from the steel mesh as well as the
errors in the tunnel axis calibration, and the
arch installation are inevitable.

Harris3D [38],
SIFT3D [39]

These feature points were extended from
the feature description method of 2D
images, and are widely used for point cloud
registration, recognition, and classification.

They are not applicable to distinguish
steel arches from steel grids since steel
arches arranged longitudinally and steel
grids arranged horizontally have similar
Harris3D and SIFT3D characteristics.

NARF [40]

The method can be used to take the center
of the tunnel point cloud as the observation
point and expand it into a range image for
edge detection.

The recognition effect of the NARF method
is unstable and needs to be improved.

Boundary
detection [10]

Based on the given Euclidean distance and
k-tree search method, the boundary of the
hole is detected after the point cloud is
triangulated.

The shielding effect of steel arches on laser
results in multiple types of banded holes in
the point cloud behind the arch.

region-growing
The seed points keep growing according to
the characteristics of the surface until the
seed points reach the boundary.

The segmentation effect depends on the
given parameters and has poor adaptability
to rough and complex surfaces.

MVCNN [41],
GVCNN [42]

The 3D point cloud is projected into 2D
images from multiple views, and CNN
is used to extract features for each view
in combination with the image processing
method.

The projection method will lead to the loss
of the key geometric spatial information
of the arch structure, which will affect the
segmentation accuracy of the point cloud.

Voxnet [41],
PointGrid [44]

The disordered point cloud is voxelized into
a regular structure, and then the neural
network architecture is used to learn its
characteristics.

Low efficiency of voxel grid arrangement;
large memory occupied in the calculation
process; time consuming; information loss.

Pointnet [41]

This method extracts the feature description
of each independent point and the
description of global point cloud features.
Therefore, the point cloud of the steel arch
area should be segmented into independent
individuals to form a data set.

The relationship between points and
neighborhood information is not
considered, resulting in information
loss when dealing with large-scale point
cloud data. It can be used to detect the
areas instead of the edge of the steel arches.

3.4.2. Steel Arch Extraction Based on DEG

The region-growing method usually takes the point with the smallest curvature as the seed point,
and then judges whether the candidate point in the neighbourhood belongs to the same region with
the seed point. The restriction conditions of the region-growing method can be adjusted according to
specific problems. Pan et al. [46] chose the boundary lines of overlapping regions instead of individual
points as seeds of the region-growing method. Wang et al. [47] detected boundaries based on local
normal saliency and extracted the lowest points.

The proposed algorithm of arch point extraction was based on the geometric characteristics of
arches. Therefore, some restrictions were added to the location of seed points, the selection conditions
of candidate points, and the growth direction of seed points. Compared with the region-growing, DEG
has different retrieval constraints, as follows:
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1. The initial seed point is multiple, and distributed along the side of the point cloud. The Directed
Edge Growing (DEG) method uses a line of seeds to extract points on the continuous bulges
based on the region-growing method.

2. The point at the lowest position in the neighborhood (edge point) is selected as the new seed
point and stored in the arch feature set. The growth conditions of DEG are determined by the
local normal saliency of the seed points. The most salient points in the local normal direction are
searched in the candidate point neighbourhood within the searching radius, and stored in Parch.

3. Seed points should grow along a changing orientation of the local surface. When the
neighbourhood point set is empty, seed points should be interpolated automatically.

This paper set the seed points along the edge of the tunnel point cloud and extracted the steel
arch edge based on DEG. These seed points were used to conduct directed growing in point cloud
Prock, and the missing points of the arch were interpolated to obtain an accurate arch point cloud Parch.
Figure 14 shows the growing process and start–stop conditions of the seed points. The normal vectors
N were calculated in Section 3.3.1.

Figure 14. Directed Edge Growing (DEG). (a) Edge growing process in the top view; (b) edge growing
process in the main view .

As shown in Figure 14a, Ls (Ls[k], k = 1, 2, ..., n) is the point set of the initial points, which is set
uniformly in a line along the edge of one side of the tunnel and parallel to the X-axis. The nearest
point of each point in Ls on the edge of the point cloud Prock[i] formed the initial seed point set L1.
The candidate ci,j was selected from the seed point set Si to search the optimum point Oi.

As shown in Figure 14b, the optimum point Oi was used to reach the next seed point set along the
direction vector set vi. The normal vector set of Si is N (Si), which was used to search Oi. The normal
vector set of Oi is N (Oi) and was used to calculate vi. During the edge growing process, the starting
and ending angle was s1 and s2, respectively.

For a point i in point cloud Prock, Prock[i](x, y, z) and N (Prock[i]) was the three-dimensional
coordinate information and the normal vector, respectively. When calculating the normal direction,
the calculation results need to be adjusted to point inside the tunnel according to the dot product of
N (Prock[i]) and Prock[i], as shown in Equation (19).

N (Prock[i]) = sgn(N (Prock[i]) · Prock[i])N (Prock[i]) (19)

For point p in point cloud P , we searched all points within the radius of Wa and obtained the
point set Ppi, i ∈ [1, n]. Then, the local normal saliency of point P pi was obtained from Equation (20).

D(Pp[i]) =
(
P p [i]− p

)
· N (p) (20)

The process of obtaining each kind of key point is as follows:
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1. Initial point Ls

As shown in Figure 14b, s1 and s2 were obtained by the Y and Z coordinate values of Prock.

s(Prock) = min
Prock

Prock[i].z
|[Prock[i].y Prock[i].z]|

,Prock[i] ∈ Prock (21)

s1,2 = arcsin s,
(

s1,2 ∈
[
−π

2
,

3π

2

]
, s1 < s2

)
(22)

A row of initial points Ls were set uniformly at the starting position with the interval distance B.

Ls[k].x = min
Prock

(Prock.x) + B · (k− 1)

Ls[k].y = tan s1 min
Prock

(Prock.z)

Ls[k].z = min
Prock

(Prock.z)

k ∈ [1, min
Prock

(Prock.x)/B], k ∈ N∗

(23)

2. Initial seed L1

L1 were found by searching the nearest point in Prock by the Kd-tree method for every point in
Ls. In addition, the initial seeds belong to the optimum points. That means

O1[k] = L1[k]. (24)

3. New seed Si

The direction vector vi[k] for Oi[k] to reach a new seed point Si[k] was obtained by moving Oi[k]
along with the tunnel wall with the step size of 2B. The vector vi[k] and Si[k] were obtained from
Equations (25) and (26), respectively.

vi[k] = 2B · vx ×N (Oi[k])
|vx ×N (Oi[k])|

(25)

Si[k] = Oi[k] + vi[k] (26)

Since Si[k] is likely to be a point that does not exist in Prock, its normal vector N (Si[k]) was
assigned by the normal vector of the nearest point Si[k]′ in Prock.

N (Si[k]) = N (Si[k]′) (27)

4. Optimum point Oi+1

All the candidate points ci,j were found by searching the points near Si within the distance B in
Prock). As shown in Equation (28), the local normal saliency of point ci,j[k] is

D(ci,j[k]) = (ci,j[k]− Si[k]) · N (Si[k]) (28)

In order to ensure the integrity of steel arch extraction and reduce the impact of noise, the
candidate points were sorted by their local normal saliency, and the most salient points were
chosen to be added into the point cloud Po(i)[k]. The maximum number of elements in a salient
point cloud Po(i)[k] is restricted to 2B/voxelsize.
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Since there may be no other points around the seed point, there are two scenarios. In Equation (29),
the interpolation of the missing point cloud is realized by directly assigning the seed point to the
optimum point.

{
Oi+1[k] = mean(Po(i)[k]), Po(i)[k] 6= ∅

Oi+1[k] = Si[k], Po(i)[k] = ∅
(29)

The detailed interpolating effect of optimum points O are shown in Figure 15.

Figure 15. Interpolating the missing points.

Essentially, the process of seed point growth is a fast convergence to the optimal local solution.
Figure 16 shows that the evenly distributed initial seed points converge fast to the nearest steel arch
and grow along the arch until they reach the other side of the tunnel.

Figure 16. Completed recognition result of the optimum points, O.

As shown in Figure 17, the proposed method is explicit and effective in detecting steel arches
in both square and round tunnels. The square tunnel point cloud used to test the DEG method is
obtained by deforming the circular tunnel data. Therefore, it can be proved that the DEG method is
not sensitive to the geometrical outline of the tunnel.

Figure 17. Arch extraction results of both round and square tunnels. (a) The point cloud of the rock
surface (Prock); (b) the arch extraction results of Prock.
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4. Experiment

In order to evaluate the proposed arch detection method, a series of experiments were conducted
under real scenarios. Since there was no tunnel-specific method for arch detection that could be used
for the control experiment, some feasible methods introduced in Section 3.4.1 were selected, including
the profile radius method [37], NARF [40], boundary detection [10], and region-growing. Since the
arch point cloud is a feather-edged layer of the point cloud, a Robust Feature-Preserving Denoising
(RFPD) method [48] was used to denoise the wire mesh points in Prock and preserve the sharp and
fine-scale 3D features of arches for NARF [40].

Traditional methods require testing and adjustment of parameters by experimenters. For these
methods, the ideal feature point recognition effect of each method was obtained by adjusting
parameters manually. The parameter settings of the proposed algorithm have been summarized
in Table 5. They were set based on actual conditions, without manual parameter regulation.

Table 5. Summary of the parameter-setting of the proposed algorithm.

Step Parameter Meaning

RPDV B The grid size of RPDV
DASST Wa Radius used for calculating curves and normal vectors
DASST Wd ∈ [voxelsize, Wa] The slicing thickness of DASST
DASST 3Wa/Wd The step size used for region-growing threshold
DASST Wa/Wd The step size used for segmentation after DBSCAN

DEG B Searching radius used for candidate points
DEG B Interval distance of initial points
DEG 2B The step size used for DEG
DEG 2B/voxelsize Maximum number of elements in point cloud Po(i)[k]

The Industrial PC we used was configured with CPU i7-6820EQ and DDR4 32G. The experimental
results of these methods on the same group of real tunnel point clouds ID 1 (Section 2, Table 3) are
shown in Figure 18. The comparison of parameter settings and running results of these six methods
are shown in Table 6.

Figure 18. Qualitative experimental results comparison. (a) Profile radius; (b) NARF; (c) RFPD+NARF;
(d) Boundary detection; (e) region-growing; (f) the proposed method.
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Table 6. Method comparison.

ID Method Times Parameter

1 Profile Radius [37] 5.517 ms Radius = Rs + 630→640

2 NARF [40] 6.179 ms Search Radius = 100 mm

3 RFPD [48] + NARF [40] 19.667 ms Search Radius = 100 mm

4 Boundary detection [10] 4.392 ms
Search Radius = 100 mm

Normal Radius = 100 mm

5 region-growing 7.198 ms
Curve threshold = 0.03
Normal threshold = 30°

6 The proposed method 12.178 ms Wa = 1000 mm, B = 200 mm,
(RPDV + DASST + DEG) voxelsize = 26 mm

The proposed algorithm can realize an adaptive threshold in this problem scenario. The parameter
settings used in each step of the proposed algorithm that needed to be set according to construction
standards in advance were based on the three parameters of voxelsize, Wa and B, which are given
in Section 2. Therefore, the parameter settings can meet the actual requirements of engineering
applications.

4.1. Qualitative Analysis

There were some difficulties in steel arch extraction, including: (a) Some steel arches installed
askew; (b) Holes and defects of the point cloud caused by occlusions; (c) Interference caused by the
rock surface with complex shapes; (d) Extracting the steel arches having been covered by concrete; (e)
Interference caused by the similarity of geometric characteristics between wire mesh and steel arches.

Combined with the Figure 18 and Table 3, we analysed the experimental results in detail in Table 7.
The symbol ‘

√
‘ in Table 7 means that the method can avoid the interference, while ‘×‘ means the

opposite. As can be seen from Figure 18 and Table 7, our method has more obvious advantages over
other methods.

Table 7. Analysis of resistance to interference factors.

Difficulty Profile
Radius NARF RFPD +

NARF
Boundary
Detection Region-Growing Ours

The steel arch is askew ×
√ √ √ √ √

Point cloud holes and defects
√ √ √

×
√ √

Rocks of complex shapes
√

× ×
√

×
√

Steel arches covered with concrete
√

× × × ×
√

The similar geometric characteristics
of wire mesh and steel arch × × × × ×

√

4.2. Quantitative Analysis

To quantify the performance of the steel arch extraction algorithm, the boundary of the steel arch
point clouds of the pre-processed data introduced in Section 2 was labelled manually and compared
with the automatic detection results. The incomplete area of steel arch and the interpolation area of
steel arch point cloud in the point cloud were not considered. The variables TP (true-positive) and FP
(false-positive) respectively mean the number of points were labelled as steel arch points correctly and
incorrectly, and FN (false-negative) means the number of points were falsely labelled as non-steel arch
points. The precision, recall, and F− Score criteria used by Yang et al. [49] was adopted to evaluate
the steel arch extraction results:
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Precision =
TP

TP + FP
; Recall =

TP
TP + FN

; F− Score = 2 · Precision · Recall
Precision + Recall

(30)

This experimental result is the cumulative result obtained after tunnel orientation calibration,
rock surface segmentation, and steel arch detection of the pre-processed point cloud. The manually
labelled data were based on the pre-processed data and only used to evaluate the extraction effect of
the algorithm on the edge of the steel arches. Therefore, the voxel filtering method adopted in the
pre-processing had no direct effect on the precision and recall rate of steel arch identification.

From an upward view inside the tunnel, Figure 19 shows the arch-extraction result of the proposed
algorithm compared with the manual annotation data.

Figure 19. Arch extraction result of the proposed algorithm compared with the manual annotation
data from an upward view.

Table 8 shows the performance of the proposed algorithm in terms of the above-mentioned two
criteria for steel arch extraction.

Table 8. Assessment of the steel arch point clouds extraction results.

ID 1 2 3 4 5 6 7 8 9 Average

Precision 0.907 0.926 0.919 0.913 0.928 0.924 0.923 0.941 0.909 0.921
Recall 0.914 0.901 0.918 0.907 0.875 0.899 0.855 0.904 0.843 0.891

F-Score 0.910 0.913 0.919 0.910 0.901 0.911 0.888 0.922 0.875 0.906

The experimental result shows that the average precision of the algorithm reaches 92.2%, and the
automatically labelled arch points are evenly distributed alongside the arch edges. Since DEG has a
specific step size, some steel arch points were skipped during the growing process. By recalling the
salient point cloud Po, the average recall and F− score rate of the proposed algorithm reached 89.1%
and 90.6%, respectively.

Furthermore, we compared the average precision, recall, and F− Score rates of the results obtained
by different methods, and obtained intuitive comparison results, as shown in Table 9. According to the
experimental results, the method proposed in this paper had a higher precision and recall rate than
that of the control group.
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Table 9. Comparison of precision and recall rate of each method.

Method Precision Recall F-Score

Profile Radius [37] 0.125 0.053 0.074
NARF [40] 0.218 0.424 0.288

RFPD [48] + NARF [40] 0.289 0.613 0.393
Boundary detection [10] 0.081 0.572 0.142

region-growing 0.064 0.559 0.115
The proposed method 0.921 0.891 0.906

4.3. Anti-Noise Performance

In order to estimate the anti-noise performance of the proposed algorithm, we added Gaussian
noise (expected value µ = 0) to the pre-processed point cloud ID 1 (Section 2, Table 3) and processed
the noise mixed data. The experimental result of a series of standard deviations σ (σ = 10, 50, 100, 150,
200, 300, 500, 800, 1200 mm) is shown in Figure 20. Since the thickness of the steel arch was 200 mm,
the profile of the steel arch edge was completely fuzzy on the condition that σ ≥ 200 mm. However,
the results of σ = 200, 300 mm in Figure 20 show that the proposed algorithm was still able to identify
the edge of the steel arches.

Figure 20. The extraction effect of the proposed arch extraction of the tunnel point data added with
Gaussian noise.

The results of σ = 500, 800 mm in Figure 20 show that the proposed algorithm was still able to
identify some regions of steel arches. When σ > Wa, the point clouds between multiple steel arches
were completely blurred, and the results lost the reference value.

In conclusion, the proposed algorithm appears to be robust to the noise, especially when σ ≤ B.

5. Conclusions and Future Work

For automatically extracting the steel arch installed on the complex rock surface, this paper
presents a novel algorithm to extract a tunnel steel arch. In this paper, steel arches were extracted from
nine groups of LiDAR point clouds collected in the tunnel. The point clouds mainly consisted of rock
surfaces, working surfaces, and shotcrete surfaces. The specific parameters are shown in Section 2.
Firstly, a refine function for correcting the tunnel point cloud axis by minimizing the Rotational
Projection Density Variance (RPDV) was proposed. Secondly, the rock surface was segmented from
the tunnel surface in the region-growing and DBSCAN method with the parameters obtained by the
Tunnel Section Sequence Analysis (TSSA). Finally, a Directed Edge Growing (DEG) method based on
the region-growing principle was proposed to detect multiple steel arches on the rock surface in the
tunnel. The experimental results show that the proposed algorithm can effectively detect multiple
steel arches of the tunnel without manual assistance. The precision rate, recall rate, and F-score of
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the quantitative experiment reached 92.1%, 89.1%, and 90.6%, respectively. Besides, the proposed
algorithm seemed to be robust to the tunnel profile and the incomplete data. The detection algorithm of
steel arch has important engineering application significance, since it can be used to provide constraint
information for planning the shotcrete path and detecting the precision of the steel arch installation
automatically.

There is some research on tunnel steel arches extraction that can be carried out in the next stage.
We will further study the steel arches extraction algorithm for more complicated tunnels, such as
tunnels excavated using the multi-step excavation method [50]. A comprehensive assessment system
for the precision of arch steel extraction needs to be established in the future. Besides, the registration
problem of mobile laser scanning data to identify steel arches can also be studied further.
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Abbreviations

The following abbreviations are used in this manuscript:

DEG Directed Edge Growing
DBSCAN Density-based spatial clustering of applications with noise
PCA Principal Component Analysis
RPDV Rotational Projection Density Variance
DASST Differential Analysis for the Section Sequences of the Tunnel point cloud
RFPD Robust Feature-Preserving Denoising

References

1. Rossi, A.; Vila, Y.; Lusiani, F.; Barsotti, L.; Sani, L.; Ceccarelli, P.; Lanzetta, M. Embedded smart sensor device
in construction site machinery. Comput. Ind. 2019, 108, 12–20. [CrossRef]

2. Fekete, S.; Diederichs, M.; Lato, M. Geotechnical and operational applications for 3-dimensional laser
scanning in drill and blast tunnels. Tunn. Undergr. Space Technol. 2010, 25, 614–628. [CrossRef]

3. Fei, X.; Li, S.C.; Zhang, Q.Q.; Li, L.P.; Shi, S.S.; Qian, Z. A new type support structure introduction and its
contrast study with traditional support structure used in tunnel construction. Tunn. Undergr. Space Technol.
2017, 63, 171–182.

4. Ni, H.; Lin, X.; Ning, X.; Zhang, J. Edge Detection and Feature Line Tracing in 3D-Point Clouds by Analyzing
Geometric Properties of Neighborhoods. Remote Sens. 2016, 8, 710. [CrossRef]

5. Liu, H.; Ye, Q.; Wang, H.; Chen, L.; Yang, J. A Precise and Robust Segmentation-Based Lidar Localization
System for Automated Urban Driving. Remote Sens. 2019, 11, 1348. [CrossRef]

6. Li, J.; Chen, S.; Zhang, F.; Li, E.; Yang, T.; Lu, Z. An Adaptive Framework for Multi-Vehicle Ground Speed
Estimation in Airborne Videos. Remote Sens. 2019, 11, 1241. [CrossRef]

7. Liu, J.; Li, D.; Feng, L.; Liu, P.; Wu, W. Towards Automatic Segmentation and Recognition of Multiple Precast
Concrete Elements in Outdoor Laser Scan Data. Remote Sens. 2019, 11, 1383. [CrossRef]

8. Maalek, R.; Lichti, D.D.; Ruwanpura, J.Y. Robust Segmentation of Planar and Linear Features of Terrestrial
Laser Scanner Point Clouds Acquired from Construction Sites. Sensors 2018, 18, 819. [CrossRef]

9. Wang, Y.; Wang, J.; Chen, X.; Chu, T.; Liu, M.; Yang, T. Feature Surface Extraction and Reconstruction
from Industrial Components Using Multistep Segmentation and Optimization. Remote Sens. 2018, 10, 1073.
[CrossRef]

10. Sinh Nguyen, V.; Hai Trinh, T.; Ha Tran, M. Hole boundary detection of a surface of 3D point clouds.
In Proceedings of the IEEE 2015 International Conference on Advanced Computing and Applications
(ACOMP), Ho Chi Minh City, Vietnam, 23–25 November 2015; pp. 124–129.

http://dx.doi.org/10.1016/j.compind.2019.02.008
http://dx.doi.org/10.1016/j.tust.2010.04.008
http://dx.doi.org/10.3390/rs8090710
http://dx.doi.org/10.3390/rs11111348
http://dx.doi.org/10.3390/rs11101241
http://dx.doi.org/10.3390/rs11111383
http://dx.doi.org/10.3390/s18030819
http://dx.doi.org/10.3390/rs10071073


Sensors 2019, 19, 3972 23 of 24

11. Arastounia, M. Automated As-Built Model Generation of Subway Tunnels from Mobile LiDAR Data. Sensors
2016, 16, 1486. [CrossRef]

12. Puente, I.; Akinci, B.; González-Jorge, H.; Díaz-Vilariño, L.; Arias, P. A semi-automated method for extracting
vertical clearance and cross sections in tunnels using mobile LiDAR data. Tunn. Undergr. Space Technol. 2016,
59, 48–54. [CrossRef]

13. Kang, Z.; Zhang, L.; Tuo, L.; Wang, B.; Chen, J. Continuous extraction of subway tunnel cross sections based
on terrestrial point clouds. Remote Sens. 2014, 6, 857–879. [CrossRef]

14. Zhu, N.; Jia, Y.; Luo, L. Tunnel point cloud filtering method based on elliptic cylindrical model.
In Proceedings of the International Archives of the Photogrammetry, Remote Sensing & Spatial Information
Sciences, Prague, Czech Republic, 12–19 July 2016; Volume 41.

15. Zhou, Y.; Wang, S.; Mei, X.; Yin, W.; Lin, C.; Hu, Q.; Mao, Q. Railway Tunnel Clearance Inspection Method
Based on 3D Point Cloud from Mobile Laser Scanning. Sensors 2017, 17, 2055. [CrossRef] [PubMed]

16. Gonçalves, J.; Mendes, R.; Araújo, E.; Oliveira, A.; Boavida, J. Planar projection of mobile laser scanning data
in tunnels. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B3, 109–113.

17. Han, J.Y.; Guo, J.; Jiang, Y.S. Monitoring tunnel deformations by means of multi-epoch dispersed 3D LiDAR
point clouds: An improved approach. Tunn. Undergr. Space Technol. 2013, 38, 385–389. [CrossRef]

18. Navarro, J.; Sanchidrián, J.; Segarra, P.; Castedo, R.; Costamagna, E.; López, L. Detection of potential
overbreak zones in tunnel blasting from MWD data. Tunn. Undergr. Space Technol. 2018, 82, 504–516.
[CrossRef]

19. Costamagna, E.; Oggeri, C.; Segarra, P.; Castedo, R.; Navarro, J. Assessment of contour profile quality in
D&B tunnelling. Tunn. Undergr. Space Technol. 2018, 75, 67–80.

20. Gikas, V. Three-dimensional laser scanning for geometry documentation and construction management of
highway tunnels during excavation. Sensors 2012, 12, 11249–11270. [CrossRef] [PubMed]

21. Lai, P.; Samson, C. Applications of mesh parameterization and deformation for unwrapping 3D images of
rock tunnels. Tunn. Undergr. Space Technol. 2016, 58, 109–119. [CrossRef]

22. Charbonnier, P.; Chavant, P.; Foucher, P.; Muzet, V.; Prybyla, D.; Perrin, T.; Grussenmeyer, P.; Guillemin, S.
Accuracy assessment of a canal-tunnel 3D model by comparing photogrammetry and laserscanning recording
techniques. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-5/W2, 171–176. [CrossRef]

23. Cheng, Y.J.; Qiu, W.; Lei, J. Automatic extraction of tunnel lining cross-sections from terrestrial laser scanning
point clouds. Sensors 2016, 16, 1648. [CrossRef] [PubMed]

24. Mah, J.; McKinnon, S.D.; Samson, C.; Thibodeau, D. Wire mesh filtering in 3D image data of rock faces.
Tunn. Undergr. Space Technol. 2016, 52, 111–118. [CrossRef]

25. Elberink, S.O.; Khoshelham, K. Automatic Extraction of Railroad Centerlines from Mobile Laser Scanning
Data. Remote Sens. 2015, 7, 5565–5583. [CrossRef]

26. Du, L.; Zhong, R.; Sun, H.; Liu, Y.; Wu, Q. Cross-section Positioning Based on a Dynamic MLS Tunnel
Monitoring System. In The Photogrammetric Record; Wiley Online Library: Hoboken, NJ, USA, 2019.

27. Wang, J.; Zheng, H.B.; Huang, H.; Ma, G.W. Point cloud modelling based on the tunnel axis and block
estimation for monitoring the badaling tunnel, china. ISPRS Int. Arch. Photogramm. Remote Sens. Spat.
Inf. Sci. 2017, XLII-2/W7, 301–306. [CrossRef]

28. Orozhiyathumana Agnisarman, S.; Lopes, S.; Chalil Madathil, K.; Piratla, K.; Gramopadhye, A. A survey of
automation-enabled human-in-the-loop systems for infrastructure visual inspection. Autom. Constr. 2019,
97, 52–76. [CrossRef]

29. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise. In Proceedings of the International Conference on Knowledge Discovery and
Data Mining, Portland, OR, USA, 2–4 August 1996, pp. 226–231.

30. Attard, L.; Debono, C.; Valentino, G.; Castro, M.D. Tunnel inspection using photogrammetric techniques
and image processing: A review. ISPRS J. Photogramm. Remote Sens. 2018, 144, 180–188. [CrossRef]

31. Ke, Y. Extruded Surface Extraction Based on Unorganized Point Cloud in Reverse Engineering. J. Comput.
Aided Des. Comput. Graph. 2005, 17, 1329–1334.

32. Dam, E.; Koch, M.; Lillholm, M. Quaternions, Interpolation and Animation; Workingpaper; Department of
Computer Science, University of Copenhagen: Copenhagen, Denmark, 1998.

33. Derose, T.; Duchamp, T.; Mcdonald, J.; Stuetzle, W. Surface Reconstruction from Unorganized Points.
ACM Siggraph Comput. Graph. 1992, 26, 71–78.

http://dx.doi.org/10.3390/s16091486
http://dx.doi.org/10.1016/j.tust.2016.06.010
http://dx.doi.org/10.3390/rs6010857
http://dx.doi.org/10.3390/s17092055
http://www.ncbi.nlm.nih.gov/pubmed/28880232
http://dx.doi.org/10.1016/j.tust.2013.07.022
http://dx.doi.org/10.1016/j.tust.2018.08.060
http://dx.doi.org/10.3390/s120811249
http://www.ncbi.nlm.nih.gov/pubmed/23112655
http://dx.doi.org/10.1016/j.tust.2016.04.009
http://dx.doi.org/10.5194/isprsarchives-XL-5-W2-171-2013
http://dx.doi.org/10.3390/s16101648
http://www.ncbi.nlm.nih.gov/pubmed/27782063
http://dx.doi.org/10.1016/j.tust.2015.11.005
http://dx.doi.org/10.3390/rs70505565
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W7-301-2017
http://dx.doi.org/10.1016/j.autcon.2018.10.019
http://dx.doi.org/10.1016/j.isprsjprs.2018.07.010


Sensors 2019, 19, 3972 24 of 24

34. Cao, J.; He, C.; Jie, Z.; Li, Y.; Liu, X.; Zou, C. Normal estimation via shifted neighborhood for point cloud.
J. Comput. Appl. Math. 2017, 329, 57–67. [CrossRef]

35. Cai, Z.; Ma, H.; Zhang, L. A Building Detection Method Based on Semi-Suppressed Fuzzy C-Means and
Restricted Region Growing Using Airborne LiDAR. Remote Sens. 2019, 11, 848. [CrossRef]

36. Lam, S.Y.W. Application of terrestrial laser scanning methodology in geometric tolerances analysis of tunnel
structures. Tunn. Undergr. Space Technol. Incorp. Trenchless Technol. Res. 2006, 21, 410. [CrossRef]

37. Han, J.Y.; Guo, J.; Jiang, Y.S. Monitoring tunnel profile by means of multi-epoch dispersed 3-D LiDAR point
clouds. Tunn. Undergr. Space Technol. 2013, 33, 186–192. [CrossRef]

38. Sipiran, I.; Bustos, B. Harris 3D: A robust extension of the Harris operator for interest point detection on 3D
meshes. Vis. Comput. 2011, 27, 963–976. [CrossRef]

39. Scovanner, P.; Ali, S.; Shah, M. A 3-dimensional sift descriptor and its application to action
recognition. In Proceedings of the 15th ACM International Conference on Multimedia, Augsburg, Germany,
25–29 September 2007.

40. Steder, B.; Rusu, R.B.; Konolige, K.; Burgard, W. Point feature extraction on 3D range scans taking into
account object boundaries. In Proceedings of the IEEE International Conference on Robotics & Automation,
Shanghai, China, 9–13 May 2011.

41. Hang, S.; Maji, S.; Kalogerakis, E.; Learnedmiller, E. Multi-view Convolutional Neural Networks for 3D
Shape Recognition. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 13–16 December 2015.

42. Feng, Y.; Zhang, Z.; Zhao, X.; Ji, R.; Yue, G. GVCNN: Group-View Convolutional Neural Networks for 3D
Shape Recognition. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Salt Lake City, UT, USA, 19–21 June 2018.

43. Maturana, D.; Scherer, S. VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg,
Germany, 28 September–2 October 2015; pp. 922–928.

44. Le, T.; Duan, Y. PointGrid: A Deep Network for 3D Shape Understanding. In Proceedings of the IEEE
International Conference on Computer Vision, Salt Lake City, UT, USA, 19–21 June 2018; pp. 9204–9214.
[CrossRef]

45. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation. In Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition, Honolulu,
HI, USA, 22–25 July 2017.

46. Pan, J.; Fang, Z.; Chen, S.; Ge, H.; Hu, F.; Wang, M. An Improved Seeded Region Growing-Based Seamline
Network Generation Method. Remote Sens. 2018, 10, 1065. [CrossRef]

47. Wang, H.; Luo, H.; Wen, C.; Cheng, J.; Li, P.; Chen, Y.; Wang, C.; Li, J. Road boundaries detection based on
local normal saliency from mobile laser scanning data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2085–2089.
[CrossRef]

48. Haque, S.M.; Govindu, V.M. Robust feature-preserving denoising of 3D point clouds. In Proceedings of the
IEEE 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016;
pp. 83–91.

49. Yang, B.; Fang, L.; Li, J. Semi-automated extraction and delineation of 3D roads of street scene from mobile
laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 2013, 79, 80–93. [CrossRef]

50. Li, P.; Yong, Z.; Zhou, X. Displacement characteristics of high-speed railway tunnel construction in loess
ground by using multi-step excavation method. Tunn. Undergr. Space Technol. Incorp. Trenchless Technol. Res.
2016, 51, 41–55. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cam.2017.04.027
http://dx.doi.org/10.3390/rs11070848
http://dx.doi.org/10.1016/j.tust.2005.12.057
http://dx.doi.org/10.1016/j.tust.2012.08.008
http://dx.doi.org/10.1007/s00371-011-0610-y
http://dx.doi.org/10.1109/CVPR.2018.00959
http://dx.doi.org/10.3390/rs10071065
http://dx.doi.org/10.1109/LGRS.2015.2449074
http://dx.doi.org/10.1016/j.isprsjprs.2013.01.016
http://dx.doi.org/10.1016/j.tust.2015.10.009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Contributions

	Data Collection and Dataset
	Data Acquisition Scenario
	Acquisition Equipment
	Pre-Processing of the Data
	Data Set and Basic Parameters

	Methodology
	Overview of the Proposed Algorithm
	Orientation Calibration
	Extraction of Rock Surface
	Curvature of the Point Cloud
	DASST Used for Region-Growing

	Extraction of Steel Arches
	Feasible Methods
	Steel Arch Extraction Based on DEG


	Experiment
	Qualitative Analysis
	Quantitative Analysis
	Anti-Noise Performance

	Conclusions and Future Work
	References

