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Abstract: For high-speed trains, out-of-roundness (OOR)/defects on wheel tread with small radius
deviation may sulffice to give rise to severe damage on both vehicle components and track structure
when they run at high speeds. It is thus highly desirable to detect the defects in a timely manner
and then conduct wheel re-profiling for the defective wheels. This paper presents a wayside fiber
Bragg grating (FBG)-based wheel condition monitoring system which can detect wheel tread defects
online during train passage. A defect identification algorithm is developed to identify potential wheel
defects with the monitoring data of rail strain response collected by the devised system. In view
that minor wheel defects can only generate anomalies with low amplitude compared with the wheel
load effect, advanced signal processing methods are needed to extract the defect-sensitive feature
from the monitoring data. This paper explores a Bayesian blind source separation (BSS) method to
decompose the rail response signal and to obtain the component that contains defect-sensitive features.
After that, the potential defects are identified by analyzing anomalies in the time history based on
the Chauvenet’s criterion. To verify the proposed defect detection method, a blind test is conducted
using a new train equipped with defective wheels. The results show that all the defects are identified
and they concur well with offline wheel radius deviation measurement results. Minor defects with a
radius deviation of only 0.06 mm are successfully detected.

Keywords: wheel minor defect; high-speed train; online wayside detection; Bayesian blind source
separation; FBG sensor array

1. Introduction

Wheel out-of-roundness (OOR)/tread defects can impose damage to both rail tracks and vehicle
components such as sleepers, wheelsets, and bearings, increasing the likelihood of derailment and
undermining operational safety and ride comfort owing to high vibration amplitudes [1,2]. They can
also generate ground vibration and noise that annoy residents living around the rail line [3-5].
Furthermore, while a wheel may continue to operate if it carries a small flat or polygonal shape, it is
subjected to a cyclic impact load every time it rotates and the service life of key components on the
vehicle-track system would be reduced [6,7]. For high-speed rail (HSR) and trains, wheel defects are
the prime factor leading to faults and failures of both vehicle components and rail infrastructure in
service. Due to high running speed, a wheel defect with small radius deviation within the current
manufacturing/maintenance tolerance has the potential to give rise to abnormal vibration by exciting
various vibration modes for the wheelsets [8,9].
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To understand the causes and consequences of wheel defects, a large number of theoretical
investigations and experiments have been carried out with the intention to reveal the initiation and
development mechanism [2,5,7,10-13], as well as to perceive their effects on railway operation and
safety through dynamic simulation [4,5,9,11,14-18]. In terms of controlling the development of wheel
defects, previous studies [5,13] show that the most common and effective strategy is wheel re-profiling.
In most cases, wheel defects, if caught in early stages, can be removed or machined out by re-profiling
before damage becomes disastrous [19]. However, the existing mileage-based wheel re-profiling may
run counter to operator’s expectation by increasing the maintenance cost and reducing the service life
of wheelsets. Therefore, there is a large economic incentive for adopting a condition-based maintenance
(CBM) scheme which can detect and replace out-of-round wheels in time, to reduce maintenance
costs for wheelsets and efficiently preventing the hazards imposed by wheel defects. Wayside wheel
condition monitoring is such an efficient method under CBM scheme [20]. With the help of a wheel
condition monitoring scheme, the wheelset maintenance activities can then be optimized, thereby
allowing whole life costs to be reduced based on a life-cycle cost assessment.

There have been a variety of methods for wayside wheel defect detection. Included are wayside
wheel load impact detectors (WILDs) [1,21-25], wayside rail acceleration detectors [26,27], wayside
acoustic detectors [28,29], and wayside detectors based on laser and video camera techniques [30,31],
etc. Our recent work [32] has given a brief review and comparison of wheel condition monitoring
methods. It reveals that online monitoring can be more effective than offline/static inspection for wheel
condition assessment and defect detection. Compared with the vehicle-borne wheel defect detection
method, the wayside detectors are more suitable for massive wheel inspections. Compared with other
online wayside detectors, including laser and video camera based detectors and vibration and acoustic
detectors, the strain gauge based detectors confer unique benefits: (i) they are immune to train-induced
vibration so they are suitable for in-service train detection, while the performance of laser and video
camera based detectors can be limited by vibration during train passage; and (ii) the response signals
collected by strain gauges can directly refer to wheel impact, while the effect of the excitation due
to the neighboring wheels on the response features is not ignorable when the accelerometer-based
and acoustic detectors are employed. The sensors in the impact detection system are usually strain
gauge rosettes [33,34] or fiber Bragg grating (FBG) sensors [22]. However, most of the existing WILDs
only focus on the amplitude of impact load to decide whether an impact is too great for the vehicle to
remain in service [6]. If the maximum load exceeds the preset threshold, an alarm will be given. It is
suitable for detection of large defects which often occur when trains run on normal-speed railways,
metro lines, and freight lines. The wheel defects they investigated are deep (around 1 mm) or wide
(wider than 0.1 m) flats. However, for high-speed trains, as small as 0.5 mm (radius deviation) local
defect and 0.04 mm polygonal wear can be critical. As such, a more sophisticated system is needed
for minor defect detection. Besides, when trains pass over the instrumented segment at low speeds,
the anomalies generated by wheel defects on rail response will not be easily identified.

Therefore, in order to make a rational decision about whether a wheel should be re-profiled,
a well-developed data processing procedure is demanded. This paper pursues Bayesian blind source
separation (BSS) with Gaussian process (GP) model to extract the defect-sensitive feature. A defect
detection procedure is then developed, which enables potential wheel minor defect identification in
light of the online-monitored rail response data. The algorithms in the detection procedure are coded
in MATLAB environment so that defective wheel(s) can be detected and the defect(s) can be located
automatically during the passage of in-service trains.

The rest of this paper is outlined as follows. The wayside wheel condition monitoring system
for rail strain data acquisition is introduced in Section 2. Section 3 presents the proposed Bayesian
BSS-based wheel defect identification method, and its in-situ verification for high-speed train wheel
detection is presented in Section 4. Finally, some conclusions are drawn in Section 5.
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2. FBG-Based Wayside Wheel Defect Detection System

2.1. FBG Sensing System in Wayside Detection

The major challenges of the existing wayside wheel defect detection systems—including various
types of WILDs, hot box detectors and laser-based systems, etc.—when applied to HSR, include the
clearance required for the equipment to be installed, the need of power supply for sensors and more
space claimed by deploying data acquisition system. These problems would be eliminated when using
FBG sensors, which offer many advantages over conventional electrical sensors, such as immunity to
electro-magnetic interference (EMI), long life-time, remote sensing and self-referencing, compact size,
massive multiplexing capability, high reliability and durability, low cost and easy implementation.
Specifically, in developing wayside wheel condition monitoring system, the following features of FBG
sensing techniques are particularly favorable:

e Assurance of immunity to electromagnetic field: most of the conventional wheel condition
monitoring systems, either resistance strain gauge- or accelerometer-based, are vulnerable to EMI
induced by high voltage power supply system of modern HSR [23];

e  Massive multiplexing capability: HSR always has strict requirements on clearance, which can be
problematic for conventional sensing systems when considerable measuring points are needed.
In contrast, FBG-based sensing system allows the use of hundreds of sensing points (FBGs) in
a single fiber cable. This ability facilitates easy installation on HSR tracks with light-weight
trackside equipment;

e  High reliability and durability: the FBG-based sensing system can operate for more than 20 years
without losses in performance even in extreme climate, such as heavy rains and snows, strong
winds, or extremely hot summer days, and corrosion environment and large shocks caused by
track maintenance work [22];

e Long conduction distance: the FBG-based sensing system can offer up to 100 km distant
detection [23], because the optical fiber has a salient advantage in long-distance transmission
with much lower signal attenuation. This allows the monitoring equipment to be installed far
away from the instrumented rail section where the sensors are deployed and both the sensors and
connecting fibers at the instrumented zone require no power supply.

2.2. FBG-Based Wayside Wheel Defect Detector

An FBG-based wayside rail strain response detector was developed in our recent research [35],
where two FBG arrays were devised for deployment on feet of parallel rails (both left and right rails) to
capture the features of potential wheel defects. The configuration of FBG array is determined based
on numerical simulation presented in [36]. Through this simulation, the rail dynamic strain response
subject to the excitation of defective wheel is precisely evaluated, from which the features of localized
anomalies caused by wheel local defect can be revealed. This proves the feasibility of mounting strain
gauges on rail foot to collect response data containing features of potential defects. The FBG sensor
array deployed on rail is thereby designed which, by densely distributing the FBG sensors along a rail
segment, can capture with high fidelity the localized anomaly caused by flat-defect if it exists. Figure 1
shows the deployment of FBG sensor array and configuration of the devised system. Each FBG can
measure the longitudinal strain of rail foot caused by bending moment of the cross-section under the
excitation of wheel dynamic load. The length of the array is slightly longer than the distance rolled
over by the wheel for a complete cycle (i.e., the circumference of the wheel tread). The interval of the
FBGs (denoted as d) along the array is around 0.15 m. This is to ensure that a few neighboring FBG
sensors can concurrently detect the defect-sensitive features when a potential defect hits at any location
within the instrumented rail section.

Because FBG sensors are used, power supply is not required at the railway site, the interrogator,
as data logger can be installed with computer in a control room/office far away from the instrumented
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rail section with the use of a multi-core armored fiber optic cable to realize data transmission. As shown
in Figure 1, the configuration of the devised online monitoring system consists of: (i) two FBG strain
gauge arrays installed on the feet of the parallel rails; (ii) a high-speed interrogator for data collection;
and (iii) a computer with data acquisition and processing software for system control and data analysis.
The online detector collects rail response data at a sampling rate of 5000 Hz. The high sampling rate
renders the time interval of sampling much shorter than the predicted time difference of localized
anomalies, thereby the desired features can be captured.

v
 ——
Wheel
Rail
—-| d |— FBG sensor array
| L>2nR }
Armored optical cable
Interrogator -
—-—
OSSN
Network cable Computer

Figure 1. Deployment of FBG sensor array and configuration of the online monitoring system.
3. Wheel Defect Identification

With the online detector presented in Section 2, the rail strain responses to the excitation of passing
wheels can be collected by FBG sensors deployed on the instrumented section. To detect the defective
wheels as well as identify the local defects in an accurate and timely manner, a signal processing
method is needed. Besides, as aforementioned, the defect detection for high-speed trains should
focus on minor defects with small radius deviation, so the wheel defect detection method needs to be
carefully designed in order to extract features from rail response signals that are sensitive to the defects.

The procedure of wheel defect detection in compliance with monitoring data of rail responses can
be divided into three steps: firstly, the monitoring data are pre-processed using a signal extraction
method, as detailed in Section 3.1. Then, the defect-sensitive feature is extracted by Bayesian BSS,
as described in Section 3.2. Lastly, the potential defect is confirmed and identified by a defect
confirmation scheme based on the Chauvenet'’s criterion, as presented in Section 3.3.

3.1. Strain Response Extraction

The requirement of real-time wheel condition monitoring and defect detection means a need
for signal processing algorithm that can automatically extract response excited by each wheel from
whole time history of rail strain response. To this end, the first step is to search the peak values and
the corresponding time slots. The number of peaks is equal to the number of passing wheelsets.
A signal processing strategy comprising four loops is developed for the response extraction, as shown
in Figure 2.
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Figure 2. Procedure of rail response extraction. ! The user-defined threshold Th is based on the
knowledge of passing trains (e.g., heavy wagons, locomotives, metro trains, or high-speed trains).
For high-speed trains concerned in this study, for example, the variance of the peak values is relatively
small, the value of Th can be greater than 0.5. 2 In this step, the maximum strain value may not be the
peak point considering that the noise in observation data may generate false peaks.

Figure 3 shows the measured strain response acquired by an FBG sensor deployed at rail foot
during the passage of an eight-car train. The time history of the strain response exhibits 32 peaks in
accordance with 32 wheelsets. By conducting the response extraction procedure, the strain responses
corresponding to all the wheels can directly refer to the excitation of passing wheels. As such, we can
extract the rail strain responses automatically with the proposed procedure, which offer a window
to obtain the section of interest from the waveform of rail strain response, as indicated in Figure 3.
The strain responses around their peaks obtained from different FBG sensors when a wheel passes
over the instrumented rail section are illustrated in Figure 4.
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Figure 3. Measured strain response acquired by an FBG sensor deployed at rail foot.
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Figure 4. Strain responses acquired by different FBG sensors.

3.2. Defect-Sensitive Feature Extraction Based on Bayesian BSS

The datasets of rail response referring to all passing wheels have been obtained in Section 3.1.
As shown in Figure 4, the output strain data contain a major trend that reflects the variation of rail
strain response excited by the wheel passage, as well as disturbance caused by both wheel tread
roughness and signal noise. In this section, the rail strain response data will be decomposed and the
feature corresponding to wheel local defect will be extracted by employing Bayesian BSS, so that the
effect of tread roughness of the passing wheel can be quantified.

3.2.1. Bayesian BSS

The aim of BSS is to estimate # signals (sources) and a mixing function from the m sole observations
of mixtures of them. To solve the BSS problem, as an ill-posed inverse problem, the most used prior
knowledge is to assume the mutual independence of each series of source signals, which leads to
the development of independent component analysis (ICA) methods [37,38] and the second-order
blind identification (SOBI) methods [39]. These methods cannot fully consider the temporal structure
in the source signals and the difference of noise power among different channels. For rail strain
response signals, the time-varying feature can be seen clearly, as shown in Figure 4. Therefore, in
signal decomposition, the temporal structure in source signals should be taken into account. Besides,
the FBG sensors on the array may have different performances at different locations because of
uncertainties generated during the manufacturing and installation. These factors inevitably have some
influence on the monitoring data. Thus, different noise power should be assigned to different channels.
In recognition of this, the present study uses a Bayesian BSS framework, in which a hierarchical fully
Bayesian approach for BSS problem is built.
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3.2.2. Assumptions and Model Establishment

The basic form of a BSS problem at time ¢ can be written as
X(t) =Y(t) + Z(t) = AS(t) + Z(t) (1)

where X(t) = [x1(t), x2(t), ..., xm(t)]T is a vector of size m standing for noisy observations, S(t) = [s1(t),
5p(t), ..., sp(H)]" is a vector of size n containing the hidden sources mixing in the observation signals; A is
called ‘mixing matrix’ representing the transfer function from the sources to the sensors; Z(t) = [z;(t),
25(t), ..., zm(H)]T is the noise vector of size m; Y(t) is observation signals without noise contamination.
Unlike traditional BSS techniques (e.g., SOBI method) which assume that different noise sequences
have a same variance, the present study considers a diagonal covariance matrix Xz to model the noise

{L,)- TMeeon L) @

where L is the length of sequences X, S, and Z; and N(Z(t);0, Y.) represents normal distribution with
2

sequences Z(t). Thus,

the mean p and variance 2. The diagonal elements in the matrix are equal to different noise power o;
of the ith observation point (i.e., Y.z = 0?). After modeling the noise, the likelihood function of the
observation X can be expressed as

L L

pxia,5,%2) = [ [r(xwla s, ) = [[ Mxsas), ) ®)

=1 t=1

Due to the fact that each source signal of rail response is temporally correlated, GP prior is applied
in the model as a prior distribution for source signals. For any finite dimensions, there always are a
mean vector and a covariation matrix to describe a selected set of variables. In this model, each source
signal is assumed to be a stationary GP with zero-mean, squared exponential covariation function.
Thus, the source prior can be written as

n

p(slK;) = [ o(s]) = ]ﬁN (sT;0,K)) 4)

=1

where S; = [s;(t1), s;(t2), ..., sj(L)] is the jth source signal; K| is the covariation matrix with a GP kernel
expression of any two times t and t’

Ki(t,t) —pXexp(—'t_trlz) )
IR 2h;
where p is a scale factor of the kernel that indicates the power of the generated GP, }; is the
hyperparameter of the jth source signal.
For the prior of mixing matrix A, we consider discriminative inferences for different measuring
points (FBGs) in modeling, and it is written as

[Tp(a) = TT T Masi0.¢5) ®)

=1 i=1 j=1

p(Ale) =

m n m n
i=1

where a;; is the element in the ith row and the jth column of the mixing matrix; €;; is the variance of a;;
and it can be considered as a hyperparameter of the mixing matrix prior.
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For the distribution of the hyperparameters of noise (£) and mixing matrix (€), the conjugate
prior for the variance in Gaussian likelihood is used

p<Zz) - HP( Zzl.l.|0¢z,ﬂz) - HIG(O%‘“Z’[SZ) @)
i=1 i=1
ple) = H p el]|au,ﬁa H HIG el]|ag,ﬁa (8)

where az, f7, as, and B, are known parameters in inverse-gamma distribution.
Due to the non-negativity of the hyperparameter of source (k), gamma distribution is used to
describe this hyperparameter’s statistical feature

Hp H hjlas, Bs) ©)

j=1

where ag and fs are two known parameters in the above gamma distribution.

After modeling of all the prior distributions and introducing distributions of the source and mixing
matrix hyperparameters, the joint posterior distribution can be calculated by the Bayes’ theorem, which
is expressed as

p(A,S, Xz, elX) o (L |A,S,Zz) xp(Ale) xp(e) X p(h) X p(Lz

~—

_ : T.0 T 10 e
= [T N(X(); AS(1), Z7) x HN(S ,,)xlljljgljv( ) o
<11 HllG(g,'j|aa,ﬁa)x I G(hjlas, s) x I 1G( 02|, Bu)

To solve this joint posterior, both Gibbs sampling and Metropolis-Hastings (M-H) algorithm,
as two MCMC methods, are used in Bayesian BSS model to estimate A, S, X7, i, and €. The procedure,
which was detailed in our previous research [40], consists of: (i) generating samples of the source,
mixing matrix, noise covariance matrix and mixing matrix hyperparameter from the corresponding
conditional posteriors p(SIX,A,Zz,h), p(AlS,X,Xz,he), p(Xz|A,S,X), and p(e|A) by Gibbs sampling;
(ii) deriving the expression of these conditional posteriors; and (iii) deriving the posterior of the source
hyperparameter p(h|S), which does not belong to a standard conjugate family by the M-H algorithm.

3.2.3. Defect-Sensitive Feature Extraction

The original strain response acquired by an FBG sensor situated at rail foot under the excitation
of an eight-car EMU (32 wheels) is shown in Figure 4. By using the proposed Bayesian BSS method,
two sources are derived. The raw response data can thereby be decomposed into two components by
multiplying sources by mixing weights. Figures 5 and 6 illustrate two sets of original signals of rail
response and their decomposed components. They are generated by a healthy wheel and a wheel with
local defects, respectively. It is seen that in both cases, the first component is the trend of the original
response signal and it reflects the rail response to an ideally rounded wheel, whereas the second
component is the response excited by wheel roughness only. Comparing the two cases, the defect
feature can be extracted by analyzing the second component.
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Figure 5. Raw signal of rail response to the excitation of a healthy wheel and its decomposed
components: (a) plotted in different panels; (b) plotted in the same panel.
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Figure 6. Raw signal of rail response to the excitation of a defective wheel and its decomposed
components: (a) plotted in different panels; (b) plotted in the same panel.

3.3. Defect Identification

Pursuant to the signal decomposition and feature extraction of rail strain responses described
above, this section will identify anomalies in the time history from the second signal component
obtained by Bayesian BSS, targeting to detect potential defects. To the end, a threshold is to be set
by a criterion for outlier detection. If a number of data points of the decomposed signal exceed the
threshold, they will be recognized as localized anomalies.

Regarding the choice of criterion, it is considered that track structures and vehicle components can
sustain the dynamic loads in all but the worst cases, without catastrophic failure [11]. Similarly,
wheel defects that may generate such wheel-rail interaction force should be rare. Therefore,
the Chauvenet’s criterion is a suitable method in identifying localized anomalies that are likely
to be wheel defects. A threshold (limit) for judging the anomalies from the normalized data can thereby
be placed. The upper and lower limits of the probability band given by the Chauvenet’s criterion are
expressed in Equation (11) and Equation (12), respectively.

X, = F—1(1 —~0.25/N

o) a1

x)=2u—F(1-0.25/N|u,0) (12)

where x, and x; are the upper and lower limits of the probability band, F~! is the normal inverse
function, and N is the sample size. Given the lower and upper limits, the anomalies on the time history
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of normalized strain data can then be easily detected, as shown in Figure 7. Note that in this study,
anomalies are the data points that are beyond lower or upper limits and the adjacent data points within
a certain range in time series.

So far, the anomalies on the normalized rail strain data are obtained. However, whether
these anomalies are caused by actual wheel defects still needs further investigation. Our previous
studies [35,36] revealed that a strong evidence for the presence of a wheel defect is that there are more
than one anomaly found on the responses collected by different FBGs and these anomalies occur at the
same time period. In view of this, we can further examine the anomalies identified by the Chauvenet’s
criterion through a comparison of adjacent FBGs. Specifically, if an anomaly is concurrently identified
from the normalized responses collected by different FBGs at the same time period, a wheel local defect
can be confirmed. The features of the potential defect, including the relative response amplitude and
its location on the wheel tread, can subsequently be obtained. An example of the screening mechanism
was given in [35].

Strain (ue)

13.85 13.9

13.95

Time (s)

Figure 7. Detection of localized anomalies from the normalized strain data — an example of two
strain response datasets: blue and green curves—normalized strain time histories from two different
FBGs; black straight lines—the upper and lower thresholds specified by the Chauvenet’s criterion;
red curves—the anomalies identified using the Chauvenet’s criterion.

The implementation procedures for online wheel defect detection in a timely manner are as
follows: when a train passes over the instrumented rail section, the detector is triggered to collect data
and the three-step algorithm is employed for instant data processing and evaluation. The acquired data
are pre-processed first to obtain the rail response corresponding to the specific wheel load excitation
(step I); afterwards, the defect-sensitive feature extraction is conducted through signal decomposition
based on Bayesian BSS (step II); lastly, the localized anomalies obtained through feature extraction are
used to identify potential wheel local defect by the Chauvenet’s criterion (step III).

In the proposed defect detection process, there are several factors that may have effects on
detection results. Among them, three issues need further exploration: the speed variation of passing
trains, the temperature effect on strain measurement, and the location of FBGs with respect to sleepers.
Their possible influences are discussed in the following;:

e  The speed variation of passing trains: The process of train passage lasts from seconds to dozens of
seconds, so it is possible that the train is speeding up or slowing down during this process and
the speed is not constant. However, as described in the proposed method, the condition of wheels
is assessed individually, that is, the detection of each wheel is free from the interference of other
wheels. Since the instrumented rail section with FBG array is only about 3 m long, the speed of
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each wheel is unlikely to change dramatically during its passage across the instrumented section.
In addition, it has been proven that the dynamic strain monitoring data of rail obtained under
different constant running speeds of a train give rise to consistent wheel defect detection results
as long as the running speed is instantly measured and enough large dynamic strain of the rail is
excited by the passing wheel. It is observed that when the train’s running speed is lower than
20 km/h, the anomaly stemming from minor wheel defect is difficult to perceive in the measured
rail dynamic strain response.

e The temperature effect on strain measurement: For strain measurement using FBG sensors,
the temperature effect usually should not be ignored, since the output wavelength of FBG sensors
can shift with temperature variation. However, temperature-induced wavelength change would
not influence the performance of the proposed method. This is because the wavelength change
caused by temperature variation mainly results in the change of baseline of the output signal.
The influence of temperature can be easily eliminated by deducting the mean value of wavelength
before or after train passage. Particularly in the proposed method, after pursuing BSS, the change
of temperature will be reflected in the first component (source) rather than the second component
(source), the latter being used for wheel defect detection. Also, the temperature variation during
the short time of the wheel’s passage across the instrumented section is ignorable.

e Different locations of FBGs with respect to sleepers: In this study, the FBG sensors on the array
have different locations with respect to sleepers. These FBGs measure the rail strain due to
bending, and the measurement result may be influenced by the distance of the sensor from the
sleeper. Therefore, it is necessary to compare the signals generated by different FBGs on the array.
As shown in Figure 4, under the excitation of the same wheel, the waveforms of the rail strain
responses at different locations are similar. Even if there are slight differences in the amplitude
of response peak, this kind of difference is mainly reflected in the first component after signal
processing using BSS, rather than in the second component. Therefore, the detection results would
not be affected by this issue.

4. In-Situ Verification

In this section, the proposed online detector is deployed on a rail line to verify its capability to
collect singles and detect multiple wheel local defects through a blind test. Based on the test results,
the performance of the devised system in local defect detection will be assessed.

4.1. Implementation of Online Detector

The devised online wheel defect detector presented in Section 2 has been implemented on a rail
line, as shown in Figure 8. The devised system has a trigger module which allows the interrogator
to collect wavelength data from the FBG array automatically when there is a train passing over the
instrumented rail section. The monitoring data of rail strain response will be stored in a hard disk
and sent to the data processing and analysis module, which integrates the wheel defect identification
algorithms presented in Section 3. In this way, the condition of the wheel tread and defect information
(if any) can be obtained and displayed in real time.
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Figure 8. Configuration of the online wheel condition monitoring system.
4.2. Blind Test

To verify the proposed defect detection method, a blind test was conducted by operating a train
with potential wheel local defects on the instrumented rail. The test train is a new high-speed EMU
equipped with several defective wheels, as shown in Figure 9a. The distance between bogie pivot
centers of the test train is 18 m and bogie wheelbase is 2.5 m. The train passes over the instrumented
rail several times and the running speed ranges from 20 km/h to 50 km/h. The defective wheels
have single or multiple wheel defects on their treads, but the defects were unknown before the test.
The proposed defect identification method is applied to process and analyze the monitoring data
collected by the online detector. By comparing the online detection results with the results of offline
wheel inspection (wheel radius deviation measurement) conducted later in a depot, as shown in
Figure 9b, the performance of the detector is evaluated. The detection results and performance analysis
of the proposed wheel local defect detection method will be detailed in Section 4.3.

(a) (b)

Figure 9. (a) The test train of an eight-car high-speed EMU; (b) In-depot offline wheel inspection by
radius deviation measurement.

4.3. Test Results and Validation

After conducting data pre-processing (step I) and feature extraction (step II), there are 21 x 64
(21 FBGs on each array, 64 wheels) datasets of the second component of rail response signals. The defect
identification algorithm (step III) is then applied to confirm the existence of potential defects. Among
the rail strain responses corresponding to all 64 wheels, the right wheels of wheelsets no. 1, 6, and
24, and the left wheel of wheelset no. 27 are identified to have local anomalies. Figures 10a, 11a, 12a
and 13a illustrate the second component of raw signals collected by different FBGs on the array (blue
and green curves) and localized anomalies (highlighted in red) corresponding to these wheels. It is
found that the defect detection results match the radius deviation measurement results (shown in
Figures 10b, 11b, 12b and 13b) well in most cases, even in the multiple defect cases. Furthermore,
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the proposed method has excellent performance in detecting minor defects, whose depth is as low as
around 0.06 mm (amplitude is —0.08 mm and baseline is around —0.02 mm), as seen in Figure 11b. It is
noteworthy that in multiple defect cases, the signature of a same local defect may occur twice on the
response signals collected by the FBG array because it may hit the rail twice and both hits can generate
localized anomalies if the contact point is near one end of the FBG array. The online detection result for
the left wheel of wheelset no. 27 is such an example, as shown in Figure 13a.
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Figure 10. Defect detection results of the right wheel of wheelset no. 1: (a) online detection result;
(b) offline wheel radius deviation measurement.
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Figure 11. Defect detection results of the right wheel of wheelset no. 6: (a) online detection result;
(b) offline wheel radius deviation measurement.
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Figure 12. Defect detection results of the right wheel of wheelset no. 24: (a) online detection result;
(b) offline wheel radius deviation measurement.
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Figure 13. Defect detection results of the left wheel of wheelset no. 27: (a) online detection result;
(b) offline wheel radius deviation measurement.

5. Conclusions

The demand for ensuring operation safety and reducing maintenance cost for high-speed rail
calls for a well-organized CBM scheme which can provide timely and necessary information about the
condition of wheels and other key components to the railway operators. To facilitate the application of
online wheel defect detection methods, as a critical part of CBM scheme for rolling stocks on HSR,
more efforts should be devoted to improving the performance of the existing detection methods,
from the perspective of the system configuration design, performance of sensors, data acquisition
system, and defect identification algorithms in line with online monitoring data. The work presented in
this paper is among these efforts. It is recognized that the FBG-based wayside wheel impact detectors
can be more effective for HSR wheel condition assessment and defect detection than conventional
detectors. In this study, a new defect identification method for wheel minor defects which are commonly
reported to cause abnormal vibration on HSR vehicle-track system is proposed, where an online
monitoring system using FBG sensor arrays is employed to collect rail strain responses at multiple
locations at rail feet.

In order to automatically detect potential wheel defects, this study proposes a three-step defect
identification algorithm to identify local defects in light of the online monitoring data of rail strain
responses. The algorithm is carefully designed to reduce both false alarms and missed hits which may
induce considerable cost in HSR. Because Bayesian BSS outperforms the conventional BSS techniques
in processing signals with temporal structure and quantifying measurement error/uncertainty;,
the proposed algorithm uses Bayesian BSS to decompose the raw signals and obtain useful features
that are sensitive to wheel defects. Through data pre-processing, defect-sensitive feature extraction,
and defect confirmation procedure, not only can we identify the defective wheels from all passing
wheelsets, we are also able to predict the location of wheel local defects in multiple defect cases.

Blind tests were implemented to verify the performance of the proposed method. Test results
indicate that the local defects can be identified with high fidelity, which are in good agreement with
the offline measurements of wheel radius deviation taken in a depot. It is found that wheel defects
with depth (radius deviation) as low as 0.06 mm can be successfully detected by the proposed method.
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