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Abstract: Fruit detection in real outdoor conditions is necessary for automatic guava harvesting, and
the branch-dependent pose of fruits is also crucial to guide a robot to approach and detach the target
fruit without colliding with its mother branch. To conduct automatic, collision-free picking, this study
investigates a fruit detection and pose estimation method by using a low-cost red–green–blue–depth
(RGB-D) sensor. A state-of-the-art fully convolutional network is first deployed to segment the RGB
image to output a fruit and branch binary map. Based on the fruit binary map and RGB-D depth
image, Euclidean clustering is then applied to group the point cloud into a set of individual fruits.
Next, a multiple three-dimensional (3D) line-segments detection method is developed to reconstruct
the segmented branches. Finally, the 3D pose of the fruit is estimated using its center position
and nearest branch information. A dataset was acquired in an outdoor orchard to evaluate the
performance of the proposed method. Quantitative experiments showed that the precision and recall
of guava fruit detection were 0.983 and 0.948, respectively; the 3D pose error was 23.43◦ ± 14.18◦;
and the execution time per fruit was 0.565 s. The results demonstrate that the developed method can
be applied to a guava-harvesting robot.

Keywords: guava detection; pose estimation; fully convolutional network; branch reconstruction;
RGB-D sensor

1. Introduction

Guava harvesting is labor-intensive, time-consuming, and costly work. The aging population
and growing urbanization in China have resulted in an older agricultural labor force [1], which is
becoming a potential threat to fruit harvesting. Therefore, it is urgent to develop an automatic
guava-harvesting robot that can work in the field. In-field fruit detection is an important aspect of
a harvesting robot [2], containing many challenges including varying illuminations, occlusion caused
by leaves and branches, and color variations in fruit. Additionally, if only the fruit position information
is available, the end-effector of the harvesting robot is likely to have collisions with the mother branch
of the fruit when moving toward a fruit, hence lowering the harvest success rate. Thus, for each fruit,
estimating a three-dimensional (3D) pose relative to its mother branch along which the end-effector
can approach the fruit without colliding with the branch is very important. In this work, the fruit pose
is defined as a vector that passes through the fruit center and is perpendicular to the mother branch
of the fruit. Bac et al. has shown that such a pose could increase the grasp success rate from 41% to
61% [3]. Guava fruit detection and pose estimation were investigated in this study.
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Fruit detection has been extensively studied. Analysis of red–green–blue (RGB) images captured
from charge-coupled device (CCD) cameras is a common approach [4]. For instance, Song et al. [5]
used a high-resolution CCD camera to acquire images from which a naïve Bayes classifier and support
vector machine (SVM) trained on color and texture features were applied to recognize peppers.
Sengupta and Lee [6] utilized a circular Hough transform (CHT) and texture-based SVM to detect
citrus. Qureshi et al. [7] used a color camera at night with a shape-based detector to locate mangoes.
Our research group studied a color-based [8] and texture-based [9] AdaBoost classifier to detect
fruits. In these methods, convolutional neural networks (CNN) have shown impressive performance.
For instance, Sa et al. [10] presented a multi-modal faster region-based CNN (Faster R-CNN) to detect
peppers from near-infrared (NIR) and RGB images captured from a multispectral camera, and achieved
an F1 score of 0.838. Stein et al. [11] developed a multi-sensor-based method that used a Faster R-CNN,
multiple RGB images, and light detection and ranging (LiDAR) data to predict apple yield with an error
rate of 1.36% per tree. Bargoti and Underwood [12] also deployed a Faster R-CNN to detect apples
and mangoes in outdoor orchards, and realized an F1-score larger than 0.9. In another study, Bargoti
and Underwood [13] developed a shallow CNN to segment RGB images followed by watershed
segmentation and CHT to detect apples with an F1 score of 0.858. As red–green–blue–depth (RGB-D)
images encode the color and 3D geometry of the object, and the RGB-D depth image is invariant to
illumination changes, RGB-D images are more informative than RGB images. Therefore, there has been
an increase in using RGB-D sensors to detect fruits [4]. Barnea et al. [14] combined image highlights,
3D normal features, and fruit symmetry planes to detect sweet peppers from RGB-D images generated
by a depth and an RGB camera, and realized a mean average precision of 0.52. Nguyen et al. [15] used
a color and depth filter, Euclidean clustering [16], and CHT to detect apples on trees. The algorithm
can detect 100% of visible apples and 82% of occluded apples by using a low-cost RGB-D sensor.
Kusumam et al. [4] first performed depth filtering and outlier removal to exclude useless points,
and then used Euclidean clustering to group point clouds into a set of clusters, and finally applied
an SVM classifier to remove false positives to achieve broccoli head detection. A detection accuracy of
0.947 was obtained. Wang et al. [17] first utilized a cascade classifier to detect mangoes, and then used
an ellipse fitting method and the RGB-D depth image to estimate the mango size. A root mean square
error of 4.9 mm was reported. In conclusion, both the CNN-based and RGB-D-based methods show
promising results on fruit detection in the fields. This study fuses these two methods to detect guava
fruits in outdoor conditions.

Currently, there is a small amount of research on fruit pose estimation. Depth-sensing cameras
are used typically. Eizentals and Oka [18] first used a LiDAR sensor to acquire pepper point clouds,
and then applied a coherent point drift algorithm to align the point clouds with a given 3D model
to compute the affine transformations that represent the fruit poses. Pose errors of 77.6% of the
fruits were within 25 mm in indoor conditions, although the algorithm was inefficient (14.50 s per
fruit). Lehnert et al. [19] employed a multivariate Gaussian model to detect pepper fruits from RGB-D
images, and then used a nonlinear least squares method to fit a superellipsoid to the detected pepper
point cloud to estimate its pose. Li et al. [20] used an Intel RealSense depth sensor to acquire point
clouds, and then estimated the poses of sweet peppers by detecting their symmetry axes. The average
error was about 7.4◦. These methods do not take into account the relative position of the fruit to
its mother branch, probably resulting in a collision between the robot and branch when applied to
a guava-harvesting robot.

Branch information is crucial for estimating the pose of the guava fruit relative to its mother branch.
Branch or stem detection has been widely studied. Van Henten et al. [21] took the advantage of the high
reflectance of plant stems in NIR images to detect cucumber stems. Lu et al. [22] used multispectral
imaging technology to recognize citrus branches. Noble and Li [23] analyzed NIR images at varying
spectral bands from a spectrophotometer to segment cucumber plant parts, and reported that reliable
lighting conditions were required to obtain promising results. Bac et al. [24] used a hyperspectral
camera to acquire images in which a classification and regression trees classifier (CART) is deployed
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to segment pepper plant parts as soft or hard obstacles, and showed that the result was insufficient
for planning collision-free trajectories. In another study, Bac et al. [25] developed a vision system that
used support wires twisted around the stems as visual cues to detect pepper stems. This method
completed a true positive rate of 0.94, but the usage of support wires limits its application. Zhang
and Xu [26] proposed an unsupervised conditional random field algorithm to cluster tomato plants
into fruits, leaves, and stems, which obtained a high accuracy, but took 94.45 s per image. Recently,
Majeed et al. [27] applied a CNN, SegNet [28], for segmenting apple tree trunks and branches from
RGB-D images, and obtained promising results. Therefore, the CNN could be used to segment
guava branches.

The objective of this study was to develop a vision sensing algorithm to detect the guava fruit
and estimate its pose in real outdoor conditions using a low-cost RGB-D sensor. The pipelines of the
study (i) employed a fully convolutional network (FCN) [27–29] to segment guava fruits and branches
simultaneously from RGB images, (ii) used Euclidean clustering [4,15,16] to detect all the 3D fruits
from the fruit binary map output by a FCN, (iii) established a 3D line segments detection method to
reconstruct the branches from the branch binary map, and (iv) estimated the 3D pose of the fruit using
its center position and mother branch information [3].

2. Materials and Methods

2.1. Vision Sensing System

The guava-harvesting robot and its vision sensing system are shown in Figure 1. The vision
sensing system comprised a low-cost RGB-D sensor and a sensing algorithm. The RGB-D sensor that
was used was the Kinect V2 made by Microsoft Inc., which consists of an infrared (IR) light source, an
IR camera, and an RGB camera. The IR light source actively illuminates the object using modulated
light, and the IR camera can detect the phase shift of the received light to measure a sensor-to-target
distance and result in a depth image of 424 × 512 pixels. The RGB camera can create an RGB image of
1920 × 1080 pixels. The RGB and depth images need to be aligned before application, because their
resolutions are different. The MapDepthFrameToColorSpace function from the Kinect for Windows
SDK 2.0 was used to implement the image alignment operation. In this way, the RGB image is resized
to 424 × 512 pixels to match the depth image. The depth data can be converted to 3D coordinates by
the following equation [2]: 

zi = Idepth(ui, vi)

xi = zi(ui −Ux)/ fx

yi = zi
(
vi −Uy

)
/ fy

(1)

where (xi, yi, zi) are the 3D coordinates of pixel i; (ui, vi) are the pixel coordinates of pixel i; Idepth is the
depth image;

(
Ux, Uy

)
are the pixel coordinates of the principal point of the IR camera; and

(
fx, fy

)
are the focal lengths of the IR camera. Ux, Uy, fx, and fy were estimated using the calibration method
developed by Zhang [30]. In the experiment, the minimum distance from the Kinect V2 to the guava
tree was set to 550 mm.
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Figure 1. The guava-harvesting robot and its vision sensing system. (a) Robot system; (b) vision
sensing system.

2.2. Fruit Detection and Pose Estimation Algorithm

The pipeline of the developed vision sensing algorithm is shown in Figure 2. It processes the
RGB and depth images and comprises the following functions: (i) using an FCN model to segment
guava fruits and branches, (ii) applying Euclidean clustering to obtain all of the individual fruits from
fruit point clouds, (iii) presenting a multiple 3D line segments detection method to reconstruct the
branches from branch point clouds, and (iv) estimating the pose of the fruit relative to its mother
branch. Note that each point cloud is created from a single viewpoint, so it only contains part of the
geometry of the object. Nevertheless, partial point clouds are sufficient for fruit detection [15].
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Figure 2. Flow diagram of the developed vision sensing algorithm.

2.2.1. Image Segmentation

The objective of image segmentation is to segment the guava fruits and branches from aligned
RGB images. A state-of-the-art FCN model [29] is used. It rewrites the fully connected layers of
VGG-16 [31] or GoogLeNet [32] into the fully convolutional layers, thus outputting a dense prediction
map. The first row in Figure 3 shows a VGG-16-based FCN model, which is made up of a succession of
convolutional, max-pooling, and deconvolutional layers. The deconvolutional layer is used to linearly
up-sample the coarse maps to dense maps. As a total of five max-pooling operations are performed by
FCN, the size of the output of the conv7 layer is 1/32 of the input image. Consequently, a deconvolution
operation with a stride of 32 will reduce the detailed information of the final prediction. To deal with
this problem, a skip strategy [29] is presented to fuse the outputs from the conv7 layer and some lower
layers (second row in Figure 3) to refine the final prediction. By combining the coarse layer and fine
layer, the new model considers not only global structures, but also local details, thus improving the
segmentation accuracy. More details can be found in [29].
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Figure 3. Fully convolutional network (FCN) configuration. The first row uses a deconvolution stride
of 32, resulting in a coarse prediction. The second row fuses the outputs from the conv7 layer, the pool3
layer, and the pool4 layer at stride 8, leading to a finer prediction. The deconvolution parameter is
defined as ‘(stride) × deconv’.

Here, the input to FCN is the aligned RGB image with a resolution of 424 × 512 pixels.
A fine-tuning strategy is used to train the FCN model on our small-sized training set (Section 3.1).
The details of fine-tuning include (i) using bilinear interpolation [29] to initialize the parameters of all
the deconvolutional layers, (ii) initializing other parameters by simply inheriting the parameters of
a publicly available FCN model [33], and (iii) using an Adam solver [34] with a learning rate of 0.0001
to update the FCN parameters. In addition, 10-fold cross-validation was applied over the training set
to determine an optimal FCN. After training, FCN can be applied to segment the aligned RGB image
to output a fruit and a branch binary map. A visual example is shown in Figure 4.
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Figure 4. Segmentation results of the FCN model. (a) An aligned red–green–blue (RGB) image where
black pixels represent objects outside the working range of the Kinect V2 sensor; (b) segmentation
result where the red parts represent the fruits, and the green parts are the branches.

2.2.2. Fruit Detection and Localization

Since the FCN is unable to identify how many fruits are in the fruit binary map that it outputs
and may segment adjacent fruits into a single region, it is necessary to extract all of the individual
fruits from the FCN output in order to realize fruit detection.

Let p f ruit denote a set of pixels that belong to the fruit class in the fruit binary map outputted
by FCN. p f ruit can be transformed into a point cloud (Figure 5a), which is defined as P f ruit, by using
Equation (1). Euclidean clustering [16] is performed to group P f ruit into a set of clusters, with each
cluster representing a single fruit. Euclidean clustering is a region growing-based clustering method. It
first selects a point from P f ruit as an initial cluster, and then grows this cluster by searching the nearest
neighbors of each point in the cluster within a given threshold. Once this cluster stops growing, another
unclustered point is selected as the initial value of the new cluster, which is enlarged in the same way.
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When no unclustered point exists, a certain number of clusters will be obtained. A clustering example
is shown in Figure 5b.

It is worthwhile to note that determining a proper value for the threshold is very important.
A large threshold will result in merging adjacent fruits as a single fruit, while a small one will
split a fruit into several parts. In experiments, this threshold was set to 4 mm, as suggested by [4].
Additionally, for each point in P f ruit, finding its nearest neighbors within a threshold requires

∣∣∣P f ruit

∣∣∣
calculations, which is very time-consuming. A Kd-tree algorithm is used to optimize the computation.
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where each cluster is marked with a random color.

The next task is to determine the fruit center position. Two methods based on (i) the bounding
box [4] and (ii) sphere fitting are presented. The bounding box method uses the mean of a fruit cluster
as the fruit center position. The sphere fitting method applies linear least squares fitting to fit a sphere
model for a fruit cluster, and uses the sphere center as the fruit center position. The former method is
computationally efficient, while the latter is relatively precise in positioning.

2.2.3. Branch Reconstruction

In this paper, the fruit pose is defined as the orientation of the fruit center relative to its mother
branch. To achieve reliable 3D pose estimation, it is crucial to reconstruct the branches.

A skeleton extraction algorithm [35] is first performed to thin the branches from the FCN output
to decrease the scale of the branch point cloud to improve the computational efficiency. Let A denote
a binary branch map generated by FCN, and S denote the branch skeletons. S can be computed by:

S =
K
∪

k=0
(A	 kB)− (A	 kB)◦B (2)

where B is a structure element; (A	 kB) means performing k morphological erosion operations
on A using the structure element B; ◦ refers to the morphological opening operation;
and K = max{k|(A	 kB) 6= ∅}. Figure 6a shows an example of branch skeleton extraction.

Figure 6b shows the point cloud of the branch skeletons. As can be seen, each branch is in fact
a complicated 3D curve that is hard to fit. Inspired by Botterill et al. [36], straight line segments were
used to approximate the branches. A random sample consensus algorithm (RANSAC)-based 3D
line-segments detection method is investigated in this study, which comprises the following steps:

Step 1. Randomly select two points, p1 and p2, from the branch point cloud Pbranch to calculate the
parameters of a line candidate as (p1, t1) where t1 = (p1 − p2)/|p1 − p2|, then search inliers that
fit this line within a threshold. The threshold was set to 15 mm in our experiments.
Step 2. Repeat Step 1 N times (N was set to 4000 in experiments). If the number of inliers of the
line model with the largest number of inliers is larger than a predefined threshold (which was set
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to 40 in the experiments), choose this line model as a line segment, subtract the inliers from Pbranch,
and go to Step 3. Otherwise, stop the line detection.
Step 3. Repeat Step 2 until the Pbranch is empty.

The proposed line detection method can detect a set of line segments. An example is shown in
Figure 6c. It is worthwhile to note that Botterill et al. [36] used a 2D line-segments detection method,
which may wrongly detect two line segments that are collinear in the 2D plane, but non-collinear in
the 3D space as one line segment. The developed 3D line-segments detection method can address
this problem.
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2.2.4. Fruit Pose Estimation

The final step of the proposed pipeline is to estimate the fruit pose so that the robot can approach
the fruit along its pose for collision-free picking. Firstly, for an arbitrary detected fruit, such as the ith
fruit, its mother branch is determined by finding the nearest line segment by:

j = argmin
k∈[1,...,M]

∣∣∣(ci − pk)− (ci − pk)
Ttktk

∣∣∣ (3)

where ci is the center position of the ith fruit; (pk, tk) refer to the parameters of the kth line segment,
where pk is a point that the line passes through, and tk is the unit direction vector of the line; and M
is the total number of line segments detected. Then, the nearest point of the mother branch to the

fruit center is calculated by ni = pj +
(

ci − pj

)T
tjtj (Figure 7a). Finally, the fruit pose is estimated by

q̃i = (ci − ni)/|ci − ni|. A pose estimation example is shown in Figure 7b.
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3. Datasets

3.1. Image Acquisition

The setup as mentioned in Section 2.1 was used to acquire RGB-D images. The experimental
site was located in a commercial guava orchard in Guangzhou, China. The guava variety is carmine.
The image collection time was from 12:00–17:00 on 8 July 2018, 08:00–17:00 on 15 September 2018,
and 08:00–17:00 on 13 October 2018. No artificial light source was used; i.e., the collected images
contained all kinds of illuminations. There were 437 RGB-D images captured in total. To train and test
the proposed algorithm, the image dataset was divided into a training set and a test set. The training
set contained approximately 80% of the RGB-D images in the dataset, and the test set included the
remaining images, as suggested by [10].

3.2. Ground Truth

To train the FCN and evaluate its performance, all of the images in the training set and test
set needed to be annotated. The Image Labeler app in MATLAB was used to manually label each
pixel in the images as a background, fruit, or branch class (Figure 8a). The annotation task was very
time-consuming, and took five days.

To evaluate the precision of the fruit pose estimation, the ground-truth pose of each fruit in the
test set should be measured. The following steps were adopted to measure the ground-truth pose:
(i) using MATLAB’s Image Labeler app to manually label each fruit and its mother branch in the
aligned RGB image (Figure 8b); (ii) using a robust RANSAC-based sphere fitting method [37] to fit
the fruit point cloud to determine the fruit center position; (iii) determining the nearest point of the
mother branch point cloud to the fruit center; and (iv) using the vector that passes through this nearest
point and points to the fruit center as the fruit pose. Note that if the mother branch of a fruit in the
test set was invisible, the ground-truth pose of this fruit was not measured. In total, the ground-truth
poses of 63.55% of the fruits in the test set were measured.
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4. Results and Discussions

To evaluate the performance of the proposed vision sensing algorithm, quantitative experiments
were carried out. All of the codes were programmed in MATLAB 2017b, except for the FCN, which was
implemented in Caffe [38] using a publicly available code [33].

4.1. Image Segmentation Experiment

Image segmentation performance is crucial for the proposed pipeline. The mean accuracy and
mean region intersection over union (IOU) were used to evaluate the segmentation performance of the
FCN, which takes the following form:

mean accuracy = nii/ti (4)

IOU = nii/(ti + ∑ncl
j=1 nji − nii) (5)

where ncl is the number of classes and equals three in our case; nij is the number of pixels that belong
to class i, but are predicted for class j; and ti is the number of pixels that belong to class i, and equals
∑ncl

j=1 nij. SegNet [28] and CART were used as baseline algorithms. SegNet is a CNN for image
segmentation; it was trained on the training set, as mentioned in Section 3.1. CART was employed by
Bac et al. [24] to model pixel-wise features to segment plant parts; here, it was trained on RGB and
Gabor-like texture features [39] extracted from our training set.

Table 1 showed the segmentation results of FCN, SegNet, and CART on our test set. Obviously,
the FCN and SegNet outperformed CART, because CNN-based algorithms have a great number of
filter banks that can extract a wide context for each pixel well, which enhances the segmentation
performance, whereas CART only uses several hand-engineered filter banks. Additionally, the FCN
performed better than SegNet, mainly because an over-fitting problem occurred when training the
SegNet. In short, the FCN is more suitable for small-sized datasets, and hence could be applied to
segment guava fruits and branches.

It is worthy of note that in the experiment, some guava branches were easily classified as the
background by the FCN, resulting in a lower mean accuracy and IOU than the fruits. Future work
could fuse multi-source images to improve the vision saliency of the branches and fuse the outputs of
more lower layers of the FCN, improving the performance of the branch segmentation.
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Table 1. Mean accuracy and intersection over union (IOU) of the FCN, SegNet, and classification and
regression trees classifier (CART) over the test set.

Fruit Branch

Mean Accuracy IOU Mean Accuracy IOU

FCN 0.893 0.806 0.594 0.473
SegNet 0.818 0.665 0.642 0.389
CART 0.264 0.235 0.071 0.067

4.2. Fruit Detection Experiment

To evaluate the guava detection performance, precision and recall were used. Precision is the
ratio of the number of true positives to the number of detections; recall is the ratio of the number
of true positives to the number of fruits in the images. A state-of-the-art RGB-D-based detection
method presented by Kusumam et al. [4] was used as the comparison algorithm. It consisted of the
following steps: (i) depth filtering, (ii) Euclidean clustering, and (iii) point cloud classification via
an SVM classifier trained on angular features.

Table 2 showed the detection results over the test set. The proposed algorithm realized a precision
of 0.983 and a recall of 0.949, both of which were better than the comparison algorithm. In [4], Euclidean
clustering was prone to group fruits and adjacent leaves as single objects, decreasing the detection
performance. It can be concluded that the proposed algorithm is robust for detecting guava fruits in
the field, and could be applicable to a guava-harvesting robot.

Table 2. Precision and recall of the proposed algorithm and the method in [4] over the test set.

Algorithm # Images # Fruits # True Positives # False Positives Precision Recall

Proposed 91 237 225 4 0.983 0.949
method in [4] 91 237 159 10 0.941 0.671

The detection results are shown in Figure 10 (Section 4.3). Some unsuccessful detections of the
proposed algorithm are shown in Figure 9. There were two main reasons for the lack of success: (i) in
strong sunlight, the standard deviation of the depth data of Kinect V2 for a sensor-to-target distance
z = 1 m was up to 32 mm as reported by Fankhauser et al. [40], which would increase the invalid points
in the point cloud and result in detection failures (Figure 9a); and (ii) on four occasions in experiments,
Euclidean clustering clustered two neighboring fruits as a single fruit (Figure 9b). To address these
two problems, the following solutions can be adopted: (i) avoiding using Kinect V2 at noon or using
a light shield to block sunlight [15]; and (ii) adding curvature cues in Euclidean clustering, because the
curvatures between two neighboring fruits are obviously larger than the fruit surfaces.
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4.3. Pose Estimation Experiment

The 3D pose estimation experiment was carried out over the test set. The fruit pose error was
measured by calculating the angle between the estimated and the ground-truth pose:

θi = acos(
q̃i

Tqi
|q̃i||qi|

) (6)

where q̃i and qi are the estimated and ground-truth poses of the ith fruit, respectively. Smaller angles
correspond to smaller errors, and higher angles correspond to higher errors. Since the mean error and
standard deviation may be affected by large errors, the median error (MEDE) and median absolute
deviation (MAD) were used to analyze the pose errors, which take the following form [4]:{

MEDE = median{θi}
MAD = median{|θi −MEDE|}

(7)

where median() is the median operation.
Table 3 shows the experimental results of our two algorithms for the estimation of fruit

poses. The 3D pose error of the bounding box-based method was 25.41◦ ± 14.73◦, while the sphere
fitting-based method was 23.43◦ ± 14.18◦. The frequency of the 3D pose error within certain angle
limits was also analyzed. The results for limits of 45◦, 35◦, and 25◦ can be found in Table 4. These results
suggested that the sphere fitting method was more suitable for pose estimation. However, in terms of
the computational efficiency, the bounding box-based method was more attractive.

In practical applications, the errors of the fruit poses under a certain limit would not cause the
robot to collide with the branch. Further study will conduct field experiments to determine such limits
and the contribution of the fruit pose information to the harvest success rate. It is important to note
that for branches without fruits, if they block the end-effector from approaching the fruit, the path
planning algorithm proposed by our research group [41] can be utilized to avoid them.

Table 3. Median error (MEDE) and median absolute deviation (MAD) of the 3D pose errors.

Method MEDE (degree) MAD (degree)

Bounding box 25.41 14.73
Sphere fitting 23.43 14.18

Table 4. Frequency of 3D pose error within certain angle limits.

Limit (Degree) Bounding Box (%) Sphere Fitting (%)

< 45 70.45 74.24
< 35 62.88 63.64
< 25 49.24 53.79

The visual results of fruit pose estimation are shown in Figure 10. Some failures are shown in
Figure 11. The causes of failures were grouped into two categories: (i) when the mother branch of
a fruit was very thin or invisible, the FCN was unlikely to recognize it, and hence the pose of this
fruit relative to its mother branch could not be estimated (Figure 11a); and (ii) the pose estimation
algorithm used the nearest branch as the mother branch of a fruit, which may be a false mother branch
(Figure 11b). To deal with these problems, the following solutions can be considered: (i) cultivating
a new variety with fewer leaves, which would be more suitable for robotic harvesting [42] or improving
the FCN performance; and (ii) utilizing the prior knowledge of the fruit; for example, considering that
the mother branch tends to be above the fruit.



Sensors 2019, 19, 428 12 of 15Sensors 2019, 19 FOR PEER REVIEW  12 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 10. Examples illustrating the fruit poses estimated by the proposed algorithm. The yellow 

array represents the fruit pose. 

  
(a) (b) 

Figure 11. Failure examples. The yellow array represents the estimated pose, while the white array is 

the ground-truth pose. 

4.4. Time Efficiency Analysis 

The vision sensing system should not slow the robotic system during harvesting to ensure the 

production, and so its real-time performance was analyzed. The real-time experiment was 

implemented on a computer running a 64-bit Windows 10 system with 16 GB RAM, NVIDIA 

GeForce GTX 1060 6GB GPU, and Intel core i5-3210M CPU. Table 5 showed the average time and 

standard deviation of the proposed pipeline. The average running time was 1.398 s with 2.473 fruits 

detected; i.e., successfully processing a fruit required 0.565 s on average. Therefore, the execution 

time of the developed method was reasonable for robotic harvesting. Euclidean clustering and 

branch reconstruction, which takes up most of the computational time, can be optimized to further 

improve the computational efficiency by (i) point cloud downsampling and (ii) making full use of 

the computational capability of the graphics processing unit. 

Figure 10. Examples illustrating the fruit poses estimated by the proposed algorithm. The yellow array
represents the fruit pose.

Sensors 2019, 19 FOR PEER REVIEW  12 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 10. Examples illustrating the fruit poses estimated by the proposed algorithm. The yellow 

array represents the fruit pose. 

  
(a) (b) 

Figure 11. Failure examples. The yellow array represents the estimated pose, while the white array is 

the ground-truth pose. 

4.4. Time Efficiency Analysis 

The vision sensing system should not slow the robotic system during harvesting to ensure the 

production, and so its real-time performance was analyzed. The real-time experiment was 

implemented on a computer running a 64-bit Windows 10 system with 16 GB RAM, NVIDIA 

GeForce GTX 1060 6GB GPU, and Intel core i5-3210M CPU. Table 5 showed the average time and 

standard deviation of the proposed pipeline. The average running time was 1.398 s with 2.473 fruits 

detected; i.e., successfully processing a fruit required 0.565 s on average. Therefore, the execution 

time of the developed method was reasonable for robotic harvesting. Euclidean clustering and 

branch reconstruction, which takes up most of the computational time, can be optimized to further 

improve the computational efficiency by (i) point cloud downsampling and (ii) making full use of 

the computational capability of the graphics processing unit. 

Figure 11. Failure examples. The yellow array represents the estimated pose, while the white array is
the ground-truth pose.

4.4. Time Efficiency Analysis

The vision sensing system should not slow the robotic system during harvesting to ensure the
production, and so its real-time performance was analyzed. The real-time experiment was implemented
on a computer running a 64-bit Windows 10 system with 16 GB RAM, NVIDIA GeForce GTX 1060 6GB
GPU, and Intel core i5-3210M CPU. Table 5 showed the average time and standard deviation of the
proposed pipeline. The average running time was 1.398 s with 2.473 fruits detected; i.e., successfully
processing a fruit required 0.565 s on average. Therefore, the execution time of the developed method
was reasonable for robotic harvesting. Euclidean clustering and branch reconstruction, which takes up
most of the computational time, can be optimized to further improve the computational efficiency by
(i) point cloud downsampling and (ii) making full use of the computational capability of the graphics
processing unit.
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Table 5. Real-time performance for the proposed algorithm over the test set.

Subtasks Average Time (s) Standard Deviation (s)

Segmentation 0.165 0.076
Fruit detection 0.689 0.368

Branch reconstruction 0.543 0.397
Pose estimation 0.000 0.000

Total 1.398 0.682

5. Conclusions

Guava fruit detection and pose estimation are very important, as they can be used to guide
a harvesting robot to approach the fruit without collisions with the branches, thus improving the
harvest success rate. Therefore, this study investigated a vision sensing algorithm to detect the
guava fruit and estimate its pose in real field conditions by using a low-cost RGB-D sensor, which
comprised the following functions: (i) an FCN-based image segmentation method, (ii) a Euclidean
clustering-based fruit detection method, (iii) a multiple 3D line segments detection method, and (iv)
a pose estimator. The performance of the proposed algorithm was evaluated through experiments,
and the following conclusions were summarized:

(i) The FCN model realized a mean accuracy of 0.893 and an IOU of 0.806 for the fruit class,
and obtained a mean accuracy of 0.594 and an IOU of 0.473 for the branch class. The result
revealed that the guava fruit can be well segmented, but the branch was a little difficult to segment;

(ii) The detection precision and recall of the proposed algorithm were 0.983 and 0.949, respectively.
It can be concluded that the proposed algorithm was robust for detecting in-field guavas;

(iii) The pose error of the bounding box-based method was 25.41◦ ± 14.73◦, while that of the sphere
fitting-based method was 23.43◦ ± 14.18◦. The results suggested that the sphere fitting method
was more suitable for pose estimation;

(iv) The proposed pipeline needs 0.565 s on average to detect a fruit and estimate its pose, which was
sufficient for a guava-harvesting robot.

In conclusion, the proposed vision sensing algorithm is able to detect guava fruits on trees and
obtain promising 3D pose information with the use of a low-cost RGB-D sensor. Our future work will
mainly focus on improving the success rate and precision of the 3D pose of the fruit.
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