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Abstract: Fast-track surgery is becoming increasingly popular, whereas the monitoring of
postoperative rehabilitation remains a matter of considerable debate. The aim of this study was
to validate a newly developed wearable system intended to monitor knee function and mobility.
A sensor system with a nine-degree-of-freedom (DOF) inertial measurement unit (IMU) was developed.
Thirteen healthy volunteers performed five 10-meter walking trials with simultaneous sensor and
motion capture data collection. The obtained kinematic waveforms were analysed using root mean
square error (RMSE) and correlation coefficient (CC) calculations. The Bland–Altman method was
used for the agreement of discrete parameters consisting of peak knee angles between systems. To test
the reliability, 10 other subjects with sensors walked a track of 10 metres on two consecutive days.
The Pearson CC was excellent for the walking data set between both systems (r = 0.96) and very
good (r = 0.95) within the sensor system. The RMSE during walking was 5.17◦ between systems and
6.82◦ within sensor measurements. No significant differences were detected between the mean values
observed, except for the extension angle during the stance phase (E1). Similar results were obtained
for the repeatability test. Intra-class correlation coefficients (ICCs) between systems were excellent for
the flexion angle during the swing phase (F1); good for the flexion angle during the stance phase (F2)
and the re-extension angle, which was calculated by subtracting the extension angle at swing phase
(E2) from F2; and moderate for the extension angle during the stance phase (E1), E2 and the range of
motion (ROM). ICCs within the sensor measurements were good for the ROM, F2 and re-extension,
and moderate for F1, E1 and E2. The study shows that the novel sensor system can record sagittal
knee kinematics during walking in healthy subjects comparable to those of a motion capture system.
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1. Introduction

Rehabilitation is an important complement to both conservative and surgical treatment of
orthopaedic patients. With the increased trend towards fast-track surgery [1], its importance
has increased even further. Therefore, technological supplements like telemedicine are expected
to gain popularity [2], especially in rural areas, where patients may have less contact with their
orthopaedic surgeons.
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Total knee arthroplasty (TKA) provides a significant improvement in the quality of life for
knee osteoarthritis patients [3–5]. As life expectancy and activity levels in the elderly increase in
industrialised countries, TKA is becoming even more popular [6]. Aftercare of these patients in the
postoperative period is an area of interest. Current practices of fast-track surgery and postoperative
home-based exercise protocols necessitate remote monitoring of patients to objectively evaluate the
rehabilitation process. Therefore, remote monitoring devices capable of objectively measuring knee
kinematics representative of physical activity are of interest. The objective and qualitative assessment
of patients’ performance after surgical treatment with TKA would help to characterise the changes
in physical function and mobility of patients [7]. One of the key factors for a fast and successful
recovery is the level of the patient’s physical activity [6], but no appropriate tools for its objective
assessment in the postoperative period are currently available [8]. Telerehabilitation has been shown
to be successful and beneficial for both patients and clinicians in providing a more objective clinical
outcome assessment [9]. The continuous monitoring of patients’ mobility, and specifically knee motion,
would moreover allow for a better assessment of the success of therapy and for an early detection of
potential functional disabilities, such as a lack of expected range of motion and extent of mobility in
terms of exercise monitoring. It could also guide patients through the rehabilitation programme and
help clinicians optimise the programme by providing information about the intensity and frequency of
exercises and general patient compliance, and thus contribute to patient satisfaction [9].

This motivated the development of a wearable system for the monitoring of knee functions and
mobility (Figure 1). The system is based on inertial sensors. It has an advantage over laboratory
methods for motion analysis, like camera-based motion capture or videofluoroscopy. The advantage is
that it allows for the assessment of knee motion in a field setup without restricting patients in their
daily life. However, because attachment of the sensors to the upper and the lower leg can be arbitrary
and there is no practical way to ensure that the sensor axes coincide with the physiological joint axis of
the knee, a complex system calibration is necessary for a reliable assessment of knee motion [10]. While
preliminary validation attempts on a robotic arm (KUKA Youbot, KUKA AG, Augsburg, Germany)
demonstrated good precision and repeatability of measurements (unpublished internal data), the
performance of the system on a living subject has yet to be confirmed.

Therefore, the present study aimed to validate the developed system by comparing it to motion
capture, a gold standard method in gait analysis, and evaluate its applicability in the monitoring of
sagittal knee kinematics.

2. Material and Methods

2.1. The Sensor System

The system comprised of two sensor units, each including a nine-degree-of-freedom (DOF) inertial
measurement unit (IMU) (BNO055, Bosch Sensortec GmbH, Reutlingen, Germany). In the evaluated
prototype, the sensors (unit 1: 2.4 cm × 2.4 cm× 0.4 cm, unit 2: 1.8 cm× 1.8 cm× 0.4 cm) were connected
via cable to one of the sensors acting as a “master” synchronising the sensor data (Figure 1). This sensor,
in turn, was connected to a storage unit (size: 12.5 cm × 5.5 cm; mass: 80 g), which transmitted the
synchronised sensor data to a tablet with a custom-developed app to remotely control the measurement
process and calculate the knee angle. After the measurements, the data were downloaded from the
tablet via a USB. The chip of the developed IMU system contained an implemented magnetic rejection
algorithm, which switched the device to a 6-DOF mode if a strong magnetic distortion was detected,
and switched back to a 9-DOF mode when the distortion was no longer present.



Sensors 2019, 19, 5193 3 of 14
Sensors 2016, 16, x 3 of 4 

 
Figure 1. The system was comprised of two sensor units, one of which was larger and acted as a 
master unit synchronising the sensor data. The units were connected via a cable. 

2.2. Sensor-to-Segment Calibration 

The aim of the system calibration was to determine the placement of the sensors relative to the 
knee joint axis based on a set of arbitrary motions. Assuming the knee is a hinge joint and the sensors 

are rigidly attached to each of the segments, one can see that the unit vectors 𝑗ଵ→  and 𝑗ଶ→  defining the 

joint axis 𝑗→ in the local coordinate system of the corresponding sensors remain constant, regardless 
of joint position. Moreover, while the orientation of each segment is a function of time, the dot 
product is time-invariant: [𝒒ଵ(𝑡)𝑗ଵ→𝒒ଵିଵ(𝑡)] ⋅ [𝒒ଶ(𝑡)𝑗ଶ→𝒒ଶିଵ(𝑡)] = 1. (1) 
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should evaluate to be zero at any position of the joint, i.e., for any set of sensor data (𝑞ଵ, 𝑞ଶ). Since in 
reality, the knee is not an ideal hinge joint and the sensors are attached to the skin, skin motion and 

soft tissue deformation during movement make it impossible to find a pair of vectors 𝑗→ଵ and 𝑗→ଶ that 
satisfy the condition for all (𝑞ଵ, 𝑞ଶ). However, having a sufficiently large set of sensor data, a least-
squares solution of Equation (1) can be found, which is the solution of the following optimisation 
problem: 𝑚𝑖𝑛௫∈ℝర ∑ 𝑟௜ଶ(𝑥)௡௜ୀଵ , (3) 
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Figure 1. The system was comprised of two sensor units, one of which was larger and acted as a master
unit synchronising the sensor data. The units were connected via a cable.

2.2. Sensor-to-Segment Calibration

The aim of the system calibration was to determine the placement of the sensors relative to the
knee joint axis based on a set of arbitrary motions. Assuming the knee is a hinge joint and the sensors

are rigidly attached to each of the segments, one can see that the unit vectors
→

j1 and
→

j2 defining the

joint axis
→

j in the local coordinate system of the corresponding sensors remain constant, regardless of
joint position. Moreover, while the orientation of each segment is a function of time, the dot product is
time-invariant: [

q1(t)
→

j1q1
−1(t)] · [q2(t)

→

j2q2
−1(t)

]
= 1. (1)

Here, qi(t)
→

ji qi
−1(t) is the rotation of the local unit vector

→

ji by the orientation quaternion qi of the
corresponding sensor at time point t. This means that the function:

r
(
→

j1,
→

j2
)
= 1−

[
q1

→

j1q1
−1] · [q2

→

j2q2
−1

]
(2)

should evaluate to be zero at any position of the joint, i.e., for any set of sensor data (q1, q2). Since in
reality, the knee is not an ideal hinge joint and the sensors are attached to the skin, skin motion and soft

tissue deformation during movement make it impossible to find a pair of vectors
→

j 1 and
→

j 2 that satisfy
the condition for all (q1, q2). However, having a sufficiently large set of sensor data, a least-squares
solution of Equation (1) can be found, which is the solution of the following optimisation problem:
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min
x∈R4

∑n

i=1
r2

i (x), (3)

where x = (ϕ1,θ1,ϕ2,θ2)
T contains spherical coordinates of the axes such as:

j1 = (cos(ϕ1) cos(θ1), cos(ϕ1) sin(θ1), sin(ϕ1))
T,

j2 = (cos(ϕ2) cos(θ2), cos(ϕ2) sin(θ2), sin(ϕ2))
T,

(4)

and ri(x) corresponds to Equation (2) evaluated at the ith element of the data set. Similarly to the
previously published algorithm [10], a Gauss–Newton algorithm was implemented. The ith row of the

Jacobian matrix Jr =
d

dx r(x) can be calculated using dr
dj |i ·

dj
dx , where dr

dj |i = −((q1
−1
→

j2q1)
T

, (q2
−1
→

j1q2)
T
) is

a 1 × 6 row vector corresponding to the ith element of the data set and

dj
dx

=

 ∂ j1
∂x 0

0 ∂ j2
∂x

 with
∂ ji
∂x

=


− sin(ϕi) cos(θi) − cos(ϕi) sin(θi)

− sin(ϕi) sin(θi) cos(ϕi) cos(θi)

cos(ϕi) 0

 (5)

can be calculated once per iteration step. In each iteration s, the next approximation is determined to
be x(s+1) = x(s) − J−1

r r
(
x(s)

)
, with J−1

r being the pseudo-inverse of the Jacobian matrix. The solution
converges to one of the two possible candidates, which differ only by the sign determining the motion
direction. The correct plane of the calculated knee motion can either be determined during the
measurement or predefined by prescribing approximate orientations of the sensor attachment.

2.3. Measurement Protocol

The validation study was conducted after obtaining the local ethics committee approval from the
Ethics Committee of Brandenburg (AS 928bB)/2018). Following a power analysis using data from a
similar study [11], it was decided to include at least nine subjects to avoid a type I error with α = 0.05
and a type 2 error with β = 0.85. Thirteen healthy subjects (4 females; age: 32.7 ± 3, height: 1.75 ± 0.1 m,
body mass: 73.3 ± 16.7 kg, body mass index: 23.5 ± 3.2 kg/m2) participated in the study. All participants
provided written informed consent prior to entering the study.

A 10-camera motion capture system (VICON-MX-S, Vicon Motion System LTD, Oxford, UK)
collected kinematic data from 31 reflective markers, which were placed on anatomical landmarks as
suggested for the OCST, SARA and SCoRE combined approach (OSSCA) [12]. Markers were placed
on the following landmarks: anterior and posterior iliac spines, greater trochanter, tibial tuberosity,
fibular head, calcaneus, first and fifth metatarsals, medial and lateral femoral epicondyles and ankle
malleoli. The remaining markers were optimally placed on the limb [13] for functional identification
of the hip joint centre [14] and the knee axes [15]. Participants were barefoot and wore tight shorts
for all trials. The two sensor units were fixed above and below the right knee using elastic adhesive
bandages (Figure 2). The proximal sensor was placed on the distal lateral femur, 10 cm cranial to the
lateral femoral condyle, and the distal sensor was placed 5 cm caudal to the knee joint line on the
anteromedial aspect of the tibia.

Sensor calibration movements consisted of arbitrary movements of the hip and knee joints along
different axes. These movements were hip and knee flexions and internal and external hip rotations.
There were no minimum or maximum angle limits for these movements. The subjects were then
asked to walk along a 10-metre marked pathway in a laboratory setting, turning, then returning to
the starting point. Each subject completed this task five times. At both ends of the track, subjects
were asked to maximally flex the knee before walking in order to indicate the beginning of the test.
Recording frequencies were 50 Hz and 100 Hz for the sensor and motion capture systems, respectively.
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Test–retest reliability was evaluated on ten subjects in a room outside the motion analysis laboratory
with 10 metres of available space. These subjects (3 female; age: 42.5 ± 13, height: 1.78 ± 0.12 m,
body mass: 76 ± 11.3 kg, body mass index: 23.9 ± 3.35 kg/m2) were not included in the validation
study. Subjects walked a track of 10 metres in both directions on two consecutive days at a rate of
90 steps per minute using a metronome.Sensors 2016, 16, x 5 of 4 
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contractions. The second unit was placed 5 cm caudal to the knee joint line on the anteromedial aspect 
of the tibia. 
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Figure 2. (a) Frontal view of the sensor placement. (b) Lateral view of the sensor placement. Red circles
indicate sensor units. The master sensor unit was placed on the distal lateral femur, 10 cm cranial to
the lateral femoral condyle to eliminate disturbances related to soft tissues and muscle contractions.
The second unit was placed 5 cm caudal to the knee joint line on the anteromedial aspect of the tibia.

2.4. Data Analysis

Kinematic data collected from the motion capture system were post-processed (VICON Nexus
1.8.2, Oxford, UK). Resultant marker trajectories were used to calculate sagittal knee angles with the
OSSCA projection [12] using custom scripts written in the MATLAB environment (R2011b, Mathworks,
Natick, MA, USA) with reference to a static trial in a neutral position.

Calculated knee angles from the motion capture were downsampled to 50 Hz to match the sensor
waveform data. Synchronisation of the recorded data from both systems was done using the time point
of the peak flexion angle during hyperflexion at the beginning of each trial. Offset calibration [11,16,17]
was done using the second extension angle (E2) during the stance phase (Figure 3). All recorded
data were cut into single walking strides. Discrete parameters were determined as the peak knee
angles, comprising the flexion angle during the swing phase (F1), the flexion angle during the stance
phase (F2), the extension angle during the stance phase (E1) and the extension angle during the swing
phase (E2) (Figure 3). Additionally, the difference between E2 and F2 was calculated to determine the
re-extension angle of the knee during walking (Re-ext) [18,19].

All collected data were analysed (a) between the two systems (n = 13) and (b) for the repeatability
assessment (n = 10).
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Figure 3. Sample kinematic waveform during walking for a single subject. Discrete parameters used
in data analysis are marked as follows: flexion angle in the swing phase (F1), extension angle in the
stance phase (E1), flexion angle in the stance phase (F2), and extension angle in the swing phase (E2).
Re-extension angle was calculated by subtracting E2 from F2. Blue line: sensor, red line: motion capture.

2.5. Statistics

All data in the form of kinematic waveforms were analysed by calculating: (1) the Pearson
correlation coefficients (PCCs) and associated p-values and (2) the root-mean-square error (RMSE).
Correlations of kinematic waveforms were evaluated by adding all acquired data in tandem. RMSE
values were calculated for each subject, and subsequently, all data were used to determine the mean
values. The correlation was evaluated as excellent (>0.95), very good (0.85–0.95), good (0.75–0.85),
moderate (0.65–0.75) or weak (<0.65) [11].

The mean range of motion (ROM), as well as the discrete parameters’ mean values, were calculated
and analysed. Parameters calculated from the sensors were benchmarked against those calculated from
motion capture measurements using a one-sample t-test. A Pearson correlation test was conducted for
single values of each discrete parameter as recorded by both systems.

Intra-class correlation coefficients (ICCs) were calculated with a 95% limitation of agreement
(1.96 × standard deviation of the difference between the two systems). ICCs were rated as either
excellent (0.9–1), good (0.74–0.89), moderate (0.4–0.73) or poor (0–0.39) [11]. Analysis of the agreement
between the systems was performed using the Bland–Altman method.

3. Results

A post-hoc power analysis was run using the G*Power 3 program. To avoid a type I error with
α=0.05, thirteen subjects provided a power of 81.3%. The Pearson correlation coefficient, associated
p-values and RMSE values are depicted in Table 1. The correlation was excellent between systems
(r = 0.96) and very good (r = 0.95) within the sensor system. The RMSE was 5.17◦ between systems
and 6.82◦ within the sensor measurements.

Table 1. Pearson correlation test, associated p-values and RMSE values for kinematic waveforms.

Activity

Correlation
Coefficient

between Systems
(p-value)

Correlation
Coefficient of
Repeatability

(p-value)

RMSE between
Systems

RMSE of
Repeatability

Walking 0.96 (0.001) 0.95 (0.001) 5.17◦ 6.82◦
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A one sample t-test revealed no significant differences between the observed mean values of
parameters, except for E1 (p < 0.05) during walking (Table 2). Similar results were obtained for the
repeatability test (Table 3).

Table 2. Flexion and extension of the knee during gait measured by motion capture and the new sensors.
(F-Flexion, E-Extension, ROM -range of motion). Bold p-values indicate a nonsignificant difference.

Discrete Parameters
from Walking Data

Sensor
Mean (SD)

VICON
Mean (SD) p-Value

F1 56.1◦ (8.4◦) 53.7◦ (9.0◦) 0.506
E1 4.55◦ (4.28◦) 3.35◦ (3.23◦) 0.021
F2 16.5◦ (6.4◦) 15.7◦ (7.1◦) 0.150
E2 3.73◦ (3.89◦) 3.64◦ (2.32◦) 0.751

Re-extension 13.2◦ (7.31◦) 12.1◦ (7.65◦) 0.059
ROM 61.3◦ (3.85◦) 58.2◦ (4.4◦) 0.776

Table 3. One-sample t-test with the hypothesis that there would be no difference between the
mean values recorded at different time points of the same subjects. Bold p-values indicate a
nonsignificant difference.

Discrete Parameters
from Walking Data

Sensor First Recording
Mean (SD)

Sensor Second
Recording Mean (SD) p-Value

F1 53.80◦ (2.9◦) 54.6◦ (3.5◦) 0.122
E1 0.58◦ (3.8◦) −0.91◦ (3.6◦) 0.019
F2 14.7◦ (3.5) 14.0◦ (4.1) 0.235
E2 2.9◦ (2.4) 2.1◦ (2.4) 0.092

Re-extension 12.0◦ (5.2) 11.9◦ (5.2) 0.939
ROM 62.2◦ (3.17) 61.6◦ (3.56) 0.254

The ICCs between systems are displayed in Table 4. They were rated as excellent for F1, good for
F2 and re-extension, and moderate for E1, E2 and ROM mean values during walking. ICCs within the
sensor measurements are presented in Table 5. The ROM, F2 and re-extension mean values had good
correlations, and F1, E1 and E2 mean values had moderate correlations.

Table 4. Intra-class correlation coefficients (ICCs) for discrete parameters during walking between the
systems with a 95% limit of agreement.

Discrete Parameters from Walking Data ICC

F1 0.923
E1 0.542
F2 0.859
E2 0.684

Re-extension 0.829
ROM 0.701

Table 5. ICCs for discrete parameters during walking within the sensor recordings with a 95% limit
of agreement.

Discrete Parameters from Walking Data ICC

F1 0.680
E1 0.696
F2 0.771
E2 0.663

Re-extension 0.771
ROM 0.852
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The Bland–Altman plots between the two systems are depicted in Figure 4 and the repeatability
test in Figure 5 with the corresponding ICC values.Sensors 2016, 16, x 9 of 4 
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Figure 4. Bland–Altman plots of the discrete parameters from both systems. Each graph represents the
mean difference (black line) and 1.96× standard deviation of the difference (dashed lines) as recorded
by the sensors and motion capture.
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Figure 5. Bland–Altman plots of the discrete parameters from the sensor reliability test. Each graph
represents the mean difference (black line) and 1.96× standard deviation of the difference (dashed lines)
as recorded by the sensors at two different time points.



Sensors 2019, 19, 5193 10 of 14

4. Discussion

The study showed that during walking, the novel sensors provided sagittal knee kinematic
parameters comparable to those obtained with the gold standard of a motion analysis system.

The interest in easy-to-use and cheap gait analysis systems without local restrictions has increased
due to the high cost and difficulty of obtaining kinematic data from individuals using optoelectronic
systems in a more artificial setting [20]. Several studies have investigated the performance of novel
sensors, comparing them to different measurement methods using disparate devices [11,16,21]. The gold
standard method for gait analysis is, however, the camera-based motion detection system [22]. Using a
camera system, markers and sensors should be placed separately to determine landmarks, and the data
obtained should be analysed for measurement agreement. Although markers for camera systems are
often placed according to generally accepted guidelines, there appears to be no consensus for sensor
placement or what material to use for placement, partly due to distinctive features of different sensor
systems [12]. The placement of sensors on the extremity is therefore a question of interest regarding
the inertial sensor units. Several authors have suggested different applications [16,23–25]. The data
of cutaneous and transosseous inertial sensors on cadaver knees were analysed, and the authors
concluded that the cutaneous placement of inertial sensors provides adequate positive correlation with
transosseous sensors [25]. Cooper et al. [23] also validated an IMU with a camera motion tracking
system connected via a cable, in their paper studying seven subjects. However, although they obtained
good agreement between systems, this agreement might be caused by the authors’ placement of
camera markers not directly on the extremity but on the sensor materials fixed on the subjects’ legs.
Schulze et al. [24] suggested placing sensors on the leg so that they do not constrain knee movements
and used kinesiotape for fixation. The authors placed the markers at a distance from the sensors
on anatomical landmarks that are easy to identify. To obtain bone proximity and minimal muscle
contraction disturbance, the authors suggested the placement of a femoral sensor unit on the lateral
distal thigh and of a tibial unit medial to the tibial tuberosity; this method was adopted for the current
study. In the current study, markers of the motion analysis system were placed first, followed by
the sensor units, which were placed separately from the markers. The sensor units are commonly
placed on the subjects using velcro straps, kinesiotape, or bandages [16,23,24,26]. To reduce the fixation
method-related disturbances in the sensor recordings and to alleviate any constraint on natural knee
movement, self-adhesive bandages were preferred in this study as a practical method.

Furthermore, different sensor systems consist of different numbers of units, with two to seven units
per system [11,16,23,24,26,27]. Also, different calibration methods exist for different systems [11,16,24],
some of which require squatting of the subject [11]. Seel et al. [10] used gyroscope data for the
calibration and calculation of the joint angle; however, this approach can lead to an integration
error that accumulates over time. To eliminate the integration error, the fusion of the gyroscope,
accelerometer (6-DOF fusion) and magnetic field sensor data (9-DOF fusion) is implemented in each
sensor unit. This problem diminishes when using orientation quaternions, since the integration errors
are taken care of by the proprietary sensor fusion algorithms. Moreover, the use of the absolute
orientation makes the proposed algorithm more suitable for a clinical postoperative setup, since its
performance does not depend on the sample rate, and it even works for a set of several static joint
positions. The novel device used in this study required only two sensor units, which sufficiently
acquired data comparable to the gold standard method. Due to the fact that the calibration process
should also be an easy-to-perform task, which is appropriate for postoperative patients, the calibration
method required by the developed sensors in this study was more practical compared with previously
published methods [11,17,28]. It consisted of arbitrary movements of the lower extremity: simple hip
and knee flexion movements and internal and external hip rotations with no minimum or maximum
angle limit. Other studies required either squatting from an upright position [11] or up to 80◦ of knee
flexion [17,28], which are difficult to perform by postoperative patients.
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Regarding the statistical methods of validation, several studies were performed to reliably detect
kinematic parameters for lower extremity joints. Whereas some studies distinctively evaluated more
complex and discrete parameters [11,29,30], others only performed RMSE and/or Pearson correlation
coefficient analysis on a limited number of participants [24,28]. Tanaka et al. [30] validated a sensor
system by comparing it to VICON. The authors only used kinematic waveform data and analysed them
using Pearson correlation coefficients on percentage-based gait cycle data without using any discrete
parameters. Eltoukhy et al. [29] validated a sensor system analysing spatiotemporal variables, such as
step length, step width and stride time on participants walking on a treadmill. They also compared
the total range of motion in lower extremity joints; however, no discrete parameters were used for
any gait cycle data for any joint. Nuesch et al. [11] compared sensors consisting of seven units with
a camera-based system between walking and running on a treadmill. The authors obtained a good
agreement between systems by analysing RMSE, multiple correlation coefficients and Bland–Altman
plots for the range of motion of lower extremity joints. The analysed data were ROM, specific gait
cycle periods and discrete parameters, which were also adopted in the current study. Although this
study appears to be the strongest in terms of statistical comparison and agreement evaluation between
systems, two major drawbacks were that the measurement was equipment-intensive (the use of a
treadmill and the sensor system consisted of seven units) and that the calibration required squatting,
which is a difficult task to perform in the clinical setting, especially after knee surgery. The current
study, on the other hand, included only two sensor units for practical reasons and overground walking
was preferred to treadmill walking.

The results obtained in this study were comparable to, if not better than, the results
published in previous similar studies, regarding the RMSE and Pearson correlation coefficients
for walking [11,23,24,28]. The RMSE for walking data was 5◦ in this study, while it was 3◦ [23,24],
5◦ [11] and 7◦ [28] in previously published studies. Regarding discrete parameters, there are no
comparable data in the literature, since no previously published study compared peak knee flexion
and extension angles in stance or swing phases between different systems. The Bland–Altman plots
and related ICC results were comparable to data reported previously by Nuesch et al [11].

Correlation parameters were statistically insignificantly smaller than between-system comparisons
when repeated measurements were performed with the sensors. This was easily justified since
recordings from both systems belonged to the same gait cycles at a certain time point from the same
subject. Repeatability measurements, on the other hand, belonged to different gait cycles of the same
subject at different time points. Since gait cycle parameters of the same subject have been shown to
differ even within the same day [31,32], these results are reasonable and justified.

Furthermore, the mean E1 values were found to be significantly different, both between systems
and within sensors (repeatability). This, however, is of lesser importance in view of the fact that mean
E1 values were lower than the standard deviations for this parameter, a result that was also found in a
former study [19].

Several authors valued the importance of remote monitoring using sensors on postoperative
patients and performed clinical studies [16,21,26,27,33]. Msayib et al. [21] advocated the use of a sensor
system on postoperative TKA patients, which allows for remote monitoring of the physiotherapy
process. However, the authors neither described the device they used nor validated it using an
appropriate method, other than a goniometer measurement. Chiang et al. used sensors clinically
on postoperative TKA patients, with no validation of the sensors other than KUKA robot trials [16].
Callies et al. [26], on the other hand, cited a validation study to justify the use of the sensors in the
clinical setting of their study. However, their cited research only included correlation coefficient and
RMSE calculations to validate the sensors, without benchmarking it against a validated measurement
methodology [24]. This research, therefore, constitutes the first study in the literature that is practical,
applicable and includes a statistically reliable validation of the sensors. Using only two sensor units
with easy-to-use and practical features and an easy-to-perform calibration process, regardless of minor
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sensor placement differences, the developed sensors were able to detect data comparable to the VICON
system measurements.

This study was not without limitations. It was only performed during walking and with
healthy subjects. Future studies should evaluate additional activities, and also include patients with
different pathologies.

In conclusion, the sensors developed were shown to provide sagittal knee kinematics comparable
to the gold standard of a motion capture system. The data justified the use of these sensor units in
further clinical trials as a clinical assessment tool. One of the biggest advantages in using this novel
sensor system is the ability to monitor knee functions and mobility in the sagittal plane during the
postoperative period without restricting daily life.
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